JPH08115849A - Laminated capacitor - Google Patents

Laminated capacitor

Info

Publication number
JPH08115849A
JPH08115849A JP25046494A JP25046494A JPH08115849A JP H08115849 A JPH08115849 A JP H08115849A JP 25046494 A JP25046494 A JP 25046494A JP 25046494 A JP25046494 A JP 25046494A JP H08115849 A JPH08115849 A JP H08115849A
Authority
JP
Japan
Prior art keywords
thin film
laminated
film
capacitor
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25046494A
Other languages
Japanese (ja)
Inventor
Kouji Kajiyoshi
浩二 梶芳
Kunisaburo Tomono
国三郎 伴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP25046494A priority Critical patent/JPH08115849A/en
Publication of JPH08115849A publication Critical patent/JPH08115849A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE: To provide a laminated capacitor which can use a high-permeability material, which can be made thin to the same extent as a thin-film capacitor and a laminated capacitance-type capacitor and which increase an electrode area because films are laminated. CONSTITUTION: A laminated capacitor comprises at least one unit laminated body of a four-layer structure which is composed of a thermoplastic polymer film 1, of a metal thin film 2 laminated on the thermoplastic polymer film, of a semiconductor ceramic thin film 3 laminated on the metal thin film 2 and of a metal thin film 4 which is laminated on the semiconductor ceramic thin film 3 and which forms a pair with the metal thin film 2. The thermoplastic polymer film is used as a carrier, the metal thin film is formed on it, the semiconductor ceramic thin film is laminated on it, the metal thin film is laminated additionally, the unit laminated body of the four-layer structure is formed, a plurality of unit laminated bodies of this constitution are stacked, and the unit laminated bodies are pressurized and thermocompression-bonded at a temperature at which a thermoplastic polymer as a carrier material is melted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は積層コンデンサ、特に、
小型かつ軽量で新規な構造を有する大容量の積層コンデ
ンサ及びその製造方法に関するものである。
FIELD OF THE INVENTION This invention relates to multilayer capacitors, and in particular to
The present invention relates to a small-sized, lightweight, large-capacity multilayer capacitor having a novel structure and a method for manufacturing the same.

【0002】[0002]

【従来の技術】エレクトロニクスの発展に伴い電子機器
の単位容積あたりの電子部品点数が増大し、電子部品の
小型軽量化に対する要求はますます厳しくなってきてい
る。コンデンサについても例外ではなく、小型・大容量
化、低価格化、高信頼性化等についてより一段と要望さ
れている。コンデンサは、トランジスタやダイオードな
ど界面の物理的現象に関る半導体素子と異なり、その静
電容量が電極面積に比例する特質を有するため、大きな
静電容量と小型化を同時に実現することは容易ではない
が、これらの要件をある程度満たすものとして幾つかの
コンデンサが実用化されている。これらを大容量化する
技術的観点から分類すると、(1)チタン酸バリウムに代
表されるペロブスカイト型複合酸化物など高誘電率材料
を誘電体材料として用い、その粉末を有機バインダ等で
スラリー化して膜状に成形し、内部電極形成後に積層一
体化して焼結させた積層セラミックコンデンサ、(2)電
解コンデンサ及び電気二重層コンデンサ、及び(3)薄膜
コンデンサの3種に大別される。
2. Description of the Related Art With the development of electronics, the number of electronic parts per unit volume of electronic equipment has increased, and the demand for smaller and lighter electronic parts has become more and more strict. Capacitors are no exception, and there is a growing demand for smaller size, larger capacity, lower cost, and higher reliability. Unlike semiconductor elements such as transistors and diodes that are related to physical phenomena at the interface, capacitors have the property that their capacitance is proportional to the electrode area. Therefore, it is not easy to achieve both large capacitance and miniaturization at the same time. However, some capacitors have been put to practical use as those that satisfy these requirements to some extent. From a technical viewpoint of increasing the capacity, (1) a high dielectric constant material such as a perovskite complex oxide typified by barium titanate is used as a dielectric material, and its powder is slurried with an organic binder or the like. It is roughly classified into three types: a multilayer ceramic capacitor formed into a film shape, laminated with an internal electrode and then sintered together, (2) an electrolytic capacitor and an electric double layer capacitor, and (3) a thin film capacitor.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、積層セ
ラミックコンデンサは、高誘電率材料の採用と積層化に
よる電極面積の増大により小型大容量化を図ったもので
あるが、通常千数百℃の高温で焼結させる必要があるた
め、内部電極として銀、パラジウムなど高価な貴金属を
使用したり、多大なエネルギーが必要であり、しかも、
製造工程が複雑であることから高コストであり、また、
誘電体層の厚さを10μm以下にすることができず、そ
の大容量化には限界があった。
However, the monolithic ceramic capacitor is intended to have a small size and a large capacity due to an increase in the electrode area due to the adoption of a high dielectric constant material and lamination, but it is usually a high temperature of several thousand hundreds of degrees Celsius. Since it is necessary to sinter in, it is necessary to use expensive precious metals such as silver and palladium as internal electrodes, and to use a large amount of energy.
High cost due to complicated manufacturing process, and
The thickness of the dielectric layer cannot be reduced to 10 μm or less, and there is a limit to increase the capacity.

【0004】また、電解コンデンサ及び電気二重層コン
デンサは電極表面の凹凸により電極の表面積を極力大き
くすることにより大容量化を図ったものであるが、前者
は電極材料であるアルミニウムやタンタルの金属表面の
陽極酸化膜を誘電体として使用している構造上、誘電体
材料の選択の余地がないため多様なコンデンサ特性の要
求に対応できず、また、それらの酸化物の比誘電率が数
十程度で、セラミックコンデンサに使用されているチタ
ン酸バリウム等の誘電体磁器の数千という値に比べると
著しく低いため、電極面積が大きい割に容量が小さく、
しかも、有極性であるという欠点もある。他方、後者の
電気二重層コンデンサは体積比/静電容量を小さくとれ
るが、電解液を含むため衝撃に弱い他、使用電圧が低
い、積層化による電極面積の増大が望めないなどの問題
がある。
Further, the electrolytic capacitor and the electric double layer capacitor are intended to have a large capacity by maximizing the surface area of the electrode due to the unevenness of the electrode surface. In the former case, the metal surface of the electrode material such as aluminum or tantalum is used. Due to the structure that uses the anodic oxide film as the dielectric, there is no room to select the dielectric material, so it is not possible to meet the requirements of various capacitor characteristics, and the relative permittivity of these oxides is about several tens. Since it is significantly lower than the value of thousands of dielectric porcelains such as barium titanate used in ceramic capacitors, the capacitance is small despite the large electrode area,
Moreover, it has the drawback of being polar. On the other hand, the latter electric double layer capacitor can have a small volume ratio / capacitance, but is vulnerable to shocks because it contains an electrolytic solution, and has problems such as low operating voltage and the inability to increase the electrode area due to lamination. .

【0005】更に、薄膜コンデンサは、電極及び誘電体
の厚さを極力薄くすることにより誘電体の占める体積の
低減化と同時に、単位面積当たりの静電容量を大きくし
て大容量化を図ったものであり、その膜厚は数百nm以下
にするのが一般的である。薄膜コンデンサとして、酸化
タンタルなど酸化物を蒸着やスパッタリングなどの気相
法により薄膜化したものがあるが、これらの誘電率は大
きくても数十であり、大容量の実現には不十分である。
また、これと同様の気相法によりチタン酸バリウムなど
の高誘電率材料を薄膜化する試みが為されている。しか
しながら、気相法による薄膜は、強誘電性が十分に現わ
れないため比誘電率が数百で、酸化タンタルよりは高い
もののセラミックコンデンサで使用している膜厚での数
千に比べると極めて低く、積層化の技術や大表面積への
薄膜形成技術が開発されていないことから電極面積の増
大が望めず、薄膜化だけでの大容量コンデンサの実現に
はいたっていないのが現状である。他方、単位面積当た
りの静電容量を大きくできるコンデンサに堰層容量型半
導体磁器コンデンサがあるが、これはチタン酸バリウム
などの高誘電率磁器材料を半導体化し、その表面に非オ
ーミックに導体を形成し、半導体と導体との界面にでき
るポテンシャルバリア層の容量を利用して静電容量の増
大を図ったものであるが、素子全体の小型化という点で
は前記3種類のコンデンサには遥かに及ばないという問
題がある。従って、本発明は、電解コンデンサでは望め
ないような高誘電率材料を使用でき、容量を形成する部
分の構造を薄膜コンデンサや堰層容量型コンデンサなみ
に薄層化でき、かつ、積層セラミックコンデンサのよう
に積層化により電極面積を増大することができるコンデ
ンサ、特に、積層セラミックコンデンサと堰層容量型コ
ンデンサの長所を兼ね備えた新規な構造のコンデンサを
得ることを目的とするものである。
Further, in the thin film capacitor, by making the thickness of the electrode and the dielectric as thin as possible, the volume occupied by the dielectric is reduced, and at the same time, the capacitance per unit area is increased to increase the capacitance. The film thickness is generally several hundred nm or less. Thin film capacitors include thin films of oxides such as tantalum oxide formed by vapor phase methods such as vapor deposition and sputtering, but their dielectric constants are at most several tens, which is not sufficient to realize large capacity. .
Attempts have also been made to make thin films of high dielectric constant materials such as barium titanate by the same vapor phase method. However, the thin film formed by the vapor phase method has a relative dielectric constant of several hundreds because the ferroelectricity does not appear sufficiently, but it is much lower than the several thousand of the film thickness used in the ceramic capacitor although it is higher than that of tantalum oxide. Since the lamination technology and the thin film formation technology for a large surface area have not been developed, it is not possible to expect an increase in the electrode area, and it is the current situation that a large capacity capacitor cannot be realized only by thinning. On the other hand, there is a weir layer capacitance type semiconductor porcelain capacitor that can increase the capacitance per unit area, but this is a semiconductor of high dielectric constant porcelain material such as barium titanate and a non-ohmic conductor is formed on its surface. However, the capacitance of the potential barrier layer formed at the interface between the semiconductor and the conductor is used to increase the capacitance. However, in terms of downsizing of the entire device, it is far beyond the three types of capacitors. There is a problem that there is no. Therefore, the present invention can use a material having a high dielectric constant, which cannot be expected in an electrolytic capacitor, can make the structure of a portion forming a capacitance as thin as a thin film capacitor or a weir layer capacitance type capacitor, and can provide a multilayer ceramic capacitor. Thus, it is an object of the present invention to obtain a capacitor which can increase the electrode area by stacking layers, in particular, a capacitor having a novel structure having the advantages of a laminated ceramic capacitor and a dam layer capacitance type capacitor.

【0006】[0006]

【課題を解決するための手段】本発明は、前記目的を達
成する手段として、熱可塑性高分子膜と、該熱可塑性高
分子膜上に積層された金属薄膜と、該金属薄膜上に積層
された半導体磁器薄膜と、該半導体磁器薄膜上に積層さ
れ前記金属薄膜と対を成す金属薄膜とからなる四層構造
を有する少なくとも一つのユニット積層体でコンデンサ
を構成するようにしたものである。
Means for Solving the Problems As a means for achieving the above object, the present invention provides a thermoplastic polymer film, a metal thin film laminated on the thermoplastic polymer film, and a metal thin film laminated on the metal thin film. A capacitor is constituted by at least one unit laminated body having a four-layer structure composed of a semiconductor porcelain thin film and a metal thin film laminated on the semiconductor porcelain thin film and forming a pair with the metal thin film.

【0007】従って、本発明によれば、前記四層構造の
ユニット積層体を複数積層して一体化してなる積層コン
デンサが得られる。
Therefore, according to the present invention, it is possible to obtain a multilayer capacitor in which a plurality of unit laminates having the four-layer structure are laminated and integrated.

【0008】本発明によれば、前記積層コンデンサは、
熱可塑性高分子膜を担体とし、その上に金属薄膜を形成
し、その上に半導体磁器薄膜を積層した後、更に、金属
薄膜を積層して四層構造のユニット積層体を形成し、該
ユニット積層体を複数重ねて担体材料の熱可塑性高分子
が溶融する温度で加圧して熱圧着することにより製造す
ることができる。
According to the present invention, the multilayer capacitor is
A thermoplastic polymer film is used as a carrier, a metal thin film is formed thereon, a semiconductor porcelain thin film is laminated thereon, and then a metal thin film is further laminated to form a unit laminate having a four-layer structure. It can be manufactured by stacking a plurality of laminates and applying pressure at a temperature at which the thermoplastic polymer of the carrier material melts and thermocompression bonding.

【0009】前記熱可塑性高分子膜の材料としては、化
学的に不活性で、寸法安定性及び電気絶縁性が良く、透
湿性が小さいものであれば任意の熱可塑性樹脂を使用で
きるが、代表的なものとしては、ポリトリフルオロスチ
レン、三フッ化塩化エチレン樹脂(PCTFE)などの弗素樹
脂が挙げられる。
As the material of the thermoplastic polymer film, any thermoplastic resin can be used as long as it is chemically inert, has good dimensional stability and electrical insulation, and has low moisture permeability. Typical examples thereof include fluoro resins such as polytrifluorostyrene and trifluorochloroethylene resin (PCTFE).

【0010】また、前記金属薄膜の材料としては、金、
銀、白金、パラジウムなどの貴金属の他、ニッケル、銅
その他の卑金属を使用できるが、半導体磁器薄膜を介在
させて対向する二つの金属薄膜は、必ずしも同じ金属で
ある必要はなく、半導体薄膜形成工程との調和性及びコ
ストの観点から最良のものを選択すれば良い。更に、半
導体磁器薄膜の材料としては、公知の半導体磁器の任意
のものを使用でき、代表的なものとしては、スカンジウ
ム、イットリウム、ランタン、セリウム、プラセオジ
ム、ネオジム、プロメチウム、サマリウムなど希土類元
素を添加したチタン酸バリウム系半導体磁器が代表的な
ものとして挙げられる。
The material of the metal thin film is gold,
In addition to noble metals such as silver, platinum, and palladium, nickel, copper, and other base metals can be used, but the two metal thin films facing each other with the semiconductor porcelain thin film interposed are not necessarily the same metal, and the semiconductor thin film formation process The best one may be selected from the viewpoint of harmony with the cost and cost. Further, as the material of the semiconductor porcelain thin film, any of known semiconductor porcelains can be used, and typical examples thereof include rare earth elements such as scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, and samarium. A barium titanate-based semiconductor ceramic is a typical example.

【0011】[0011]

【作用】本発明に係る積層コンデンサは、熱可塑性高分
子膜と、半導体磁器薄膜と、一対の金属薄膜とを積層
し、該金属薄膜と前記前記熱可塑性高分子膜との界面に
形成される堰層容量により静電容量が得られる。従っ
て、四層構造のユニット積層体をユニットコンデンサと
し、これを複数積層一体化することにより積層コンデン
サの大容量化を図ることができる。
The laminated capacitor according to the present invention is formed by laminating a thermoplastic polymer film, a semiconductor porcelain thin film, and a pair of metal thin films, and is formed at the interface between the metal thin film and the thermoplastic polymer film. The capacitance of the weir layer provides the capacitance. Therefore, a unit capacitor having a four-layer structure is used as a unit capacitor, and by integrating a plurality of these units, it is possible to increase the capacity of the multilayer capacitor.

【0012】[0012]

【実施例1】半導体磁器としてイットリウム添加チタン
酸バリウム(BaYTiO3)を、金属膜材料として白金を、熱
可塑性高分子膜として三フッ化塩化エチレン樹脂(PCTF
E)をそれぞれ用い図1に示す構造を有するコンデンサを
次のようにして作製した。
Example 1 Yttrium-doped barium titanate (BaYTiO 3 ) was used as a semiconductor porcelain, platinum was used as a metal film material, and trifluorochloroethylene resin (PCTF) was used as a thermoplastic polymer film.
A capacitor having the structure shown in FIG. 1 was manufactured in the following manner using E).

【0013】まず、炭酸バリウム、酸化チタン及び酸化
イットリウムを組成がBa1.03Y0.004Ti1.01O3となるよう
に配合し、その混合粉末を900℃で仮焼して仮焼粉末
を得、これをディスク状に成形した後、1300℃で2
時間焼成してBaYTiO3からなる磁器円板を調製した。
First, barium carbonate, titanium oxide and yttrium oxide are blended so that the composition is Ba 1.03 Y 0.004 Ti 1.01 O 3, and the mixed powder is calcined at 900 ° C. to obtain a calcined powder. After molding into a disc, 2 at 1300 ° C
A porcelain disc made of BaYTiO 3 was prepared by firing for a period of time.

【0014】これとは別に、長さ30mm、幅20mm、厚
さ500μmのPCTFEフィルム1を用意し、白金(Pt)をタ
ーゲットとして公知の高周波スパッタリング装置により
PCTFEフィルム1上に0.5μm厚の白金膜2を形成し
た。次に、白金膜2を形成したPCTFEフィルム1上に、
前記磁器円板をターゲットとして、アルゴン雰囲気中、
200℃の温度で0.5μm厚のBaYTiO3薄膜3を形成し
た。更に、得られたBaYTiO3薄膜3上に、その表面の隣
り合う内部電極引出部となる白金膜2の間の中央部をマ
スキングした状態で、白金をターゲットとして高周波ス
パッタリング装置によりPCTFE製フィルム1上に0.5μ
m厚の白金膜4を形成し、Pt/BaYTiO3/Pt/PCTFEの四層膜
を作製した。
Separately from this, a PCTFE film 1 having a length of 30 mm, a width of 20 mm and a thickness of 500 μm was prepared, and platinum (Pt) was used as a target by a known high frequency sputtering apparatus.
A platinum film 2 having a thickness of 0.5 μm was formed on the PCTFE film 1. Next, on the PCTFE film 1 on which the platinum film 2 is formed,
Targeting the porcelain disc in an argon atmosphere,
A BaYTiO 3 thin film 3 having a thickness of 0.5 μm was formed at a temperature of 200 ° C. Further, on the obtained BaYTiO 3 thin film 3, with the central portion between the platinum films 2 serving as the adjacent internal electrode lead-out portions of the surface thereof being masked, a film was made on the PCTFE film 1 with a high frequency sputtering device using platinum as a target. 0.5μ
A platinum film 4 having a thickness of m was formed to prepare a four-layer film of Pt / BaYTiO 3 / Pt / PCTFE.

【0015】このように作製した約500μm厚の四層
膜を、図2に示すように、3枚積層し、その上に厚さ5
00μmのPCTFEフィルム1’を積層した後、金型内で2
00℃に昇温した状態で約10Kg/mm2の圧力を加えて圧
着し、長さ30mm、幅20mm、厚さ1.5mmの積層体を
得た。この積層体を長さ3mm、幅2mmの大きさにカット
して、図3に示すコンデンサチップ10を得た。次い
で、内部電極引出部が交互に露出している相対するコン
デンサチップの両端面に銀ペーストを塗布、乾燥して外
部電極5を形成し、図4に示すチップ状コンデンサ素子
を作製した。このコンデンサ素子の静電容量を周波数1
KHz、印加電圧1.0Vrmsの条件下で測定したところ、8
2.4nFであった。
As shown in FIG. 2, three four-layer films having a thickness of about 500 μm thus produced were laminated on top of each other, and a thickness of 5 was formed on the four layers.
After laminating 00 μm PCTFE film 1 ', 2 in the mold
A pressure of about 10 kg / mm 2 was applied with the temperature being raised to 00 ° C. and pressure bonding was performed to obtain a laminate having a length of 30 mm, a width of 20 mm and a thickness of 1.5 mm. This laminated body was cut into a size of 3 mm in length and 2 mm in width to obtain a capacitor chip 10 shown in FIG. Next, a silver paste was applied to both end faces of the opposing capacitor chips in which the internal electrode lead-out portions were alternately exposed and dried to form the external electrodes 5, and the chip-shaped capacitor element shown in FIG. 4 was produced. The capacitance of this capacitor element is frequency 1
When measured under the conditions of KHz and applied voltage of 1.0 Vrms, 8
It was 2.4 nF.

【0016】[0016]

【実施例2】長さ30mm、幅20mm、厚さ20μmのPCT
FEフィルム1上に、実施例1と同様にして、長さ2.8
0mm、幅20mm、厚さ0.5μmの白金膜2を形成し、そ
の上に0.5μm厚のBaYTiO3薄膜及び0.5μm厚の白金
膜4を形成し、Pt/BaYTiO3/Pt/PCTFEの四層膜を作製し
た。
Example 2 PCT having a length of 30 mm, a width of 20 mm and a thickness of 20 μm
On the FE film 1, in the same manner as in Example 1, a length of 2.8
A platinum film 2 having a thickness of 0 mm, a width of 20 mm and a thickness of 0.5 μm is formed, and a BaYTiO 3 thin film having a thickness of 0.5 μm and a platinum film 4 having a thickness of 0.5 μm are formed on the platinum film 2 to form Pt / BaYTiO 3 / Pt / PCTFE. A four-layer film was prepared.

【0017】作製した約20μm厚の四層膜を金型内で
50枚積層し、その上に厚さ20μm厚のPCTFEフィルム
1´を更に積層した後、200℃に昇温した状態で約1
0Kg/mm2の加圧下で圧着し、長さ30mm、幅20mm、厚
さ1.5mmの積層体を得た。これを長さ3.00mm、幅
2.00mmにカットし、その両端面に銀ペーストを塗
布、乾燥して外部電極5を形成し、チップ状コンデンサ
素子を作製した。このコンデンサ素子の静電容量を周波
数1KHz、印加電圧1.0Vrmsの条件下で測定したとこ
ろ、1.35μFであった。
Fifty sheets of the produced four-layer film having a thickness of about 20 μm were laminated in a mold, and a PCTFE film 1 ′ having a thickness of 20 μm was further laminated thereon, and then heated to about 200 ° C. for about 1 μm.
The laminate was pressed under a pressure of 0 kg / mm 2 to obtain a laminate having a length of 30 mm, a width of 20 mm and a thickness of 1.5 mm. This was cut into a length of 3.00 mm and a width of 2.00 mm, and silver paste was applied to both end surfaces of the cut paste and dried to form the external electrodes 5, to produce a chip-shaped capacitor element. When the electrostatic capacity of this capacitor element was measured under the conditions of a frequency of 1 kHz and an applied voltage of 1.0 Vrms, it was 1.35 μF.

【0018】なお、前記実施例では、一方の内部電極引
出部を形成するため高分子膜表面及び半導体磁器薄膜表
面をマスキングして金属薄膜を積層しているが、必ずし
もマスキングする必要はなく、マスキングなしに金属薄
膜及び半導体磁器薄膜を積層しても良い。
In the above embodiment, the metal thin film is laminated by masking the surface of the polymer film and the surface of the semiconductor porcelain thin film in order to form one internal electrode lead-out portion, but it is not always necessary to mask and the masking is not necessary. Alternatively, a metal thin film and a semiconductor porcelain thin film may be laminated.

【0019】[0019]

【発明の効果】以上の説明から明らかなように、本発明
によれば、積層コンデンサを、熱可塑性高分子膜と、該
熱可塑性高分子膜上に積層された金属薄膜と、該金属薄
膜上に積層された半導体磁器薄膜と、該半導体磁器薄膜
上に積層され前記金属薄膜と対を成す金属薄膜とからな
る四層構造のユニット積層体で構成するようにしたの
で、高誘電率材料を使用でき、容量を形成する部分の構
造が薄膜コンデンサや堰層容量型コンデンサなみに薄層
化でき、しかも、四層構造のユニット積層体を多数積層
一体化することにより並列接続して電極面積を増大させ
ることができるので、小型かつ軽量で、大容量のコンデ
ンサを低コストで得ることができる。
As is apparent from the above description, according to the present invention, a multilayer capacitor is provided with a thermoplastic polymer film, a metal thin film laminated on the thermoplastic polymer film, and a metal thin film on the metal thin film. Since it is configured as a unit laminated body having a four-layer structure composed of a semiconductor porcelain thin film laminated on the semiconductor porcelain thin film and a metal thin film laminated on the semiconductor porcelain thin film and forming a pair with the metal thin film, a high dielectric constant material is used. In addition, the structure of the part that forms the capacitance can be made as thin as a thin film capacitor or a weir layer capacitance type capacitor, and moreover, the unit area of four layer structure can be connected in parallel to increase the electrode area. Therefore, it is possible to obtain a small-sized, lightweight, large-capacity capacitor at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る積層コンデンサのユニット積層
体の構造を示す断面図である。
FIG. 1 is a sectional view showing a structure of a unit laminated body of a laminated capacitor according to the present invention.

【図2】 図1のユニット積層体を複数積層一体化した
状態を示す断面図である。
FIG. 2 is a cross-sectional view showing a state in which a plurality of unit laminated bodies of FIG. 1 are integrally laminated.

【図3】 積層コンデンサ用チップの断面図である。FIG. 3 is a cross-sectional view of a multilayer capacitor chip.

【図4】 本発明に係る積層コンデンサの断面図であ
る。
FIG. 4 is a cross-sectional view of a multilayer capacitor according to the present invention.

【符号の説明】[Explanation of symbols]

1〜熱可塑性高分子膜 1´〜熱可塑性高分子膜 2〜金属薄膜 3〜半導体磁器薄膜 4〜金属薄膜 5〜外部電極 10〜コンデンサチップ 1-Thermoplastic polymer film 1'-Thermoplastic polymer film 2-Metal thin film 3-Semiconductor porcelain thin film 4-Metal thin film 5-External electrode 10 Capacitor chip

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性高分子膜と、該熱可塑性高分子
膜上に積層された金属薄膜と、該金属薄膜上に積層され
た半導体磁器薄膜と、該半導体磁器薄膜上に積層され前
記金属薄膜と対を成す金属薄膜とからなる四層構造を有
する少なくとも一つのユニット積層体を有する積層コン
デンサ。
1. A thermoplastic polymer film, a metal thin film laminated on the thermoplastic polymer film, a semiconductor porcelain thin film laminated on the metal thin film, and the metal laminated on the semiconductor porcelain thin film. A laminated capacitor having at least one unit laminated body having a four-layer structure composed of a thin film and a pair of metal thin films.
【請求項2】 前記熱可塑性高分子膜が弗素樹脂からな
る請求項1記載の積層コンデンサ。
2. The multilayer capacitor according to claim 1, wherein the thermoplastic polymer film is made of a fluororesin.
【請求項3】 前記半導体磁器薄膜がチタン酸バリウム
系半導体磁器からなる請求項1又は2記載の積層コンデ
ンサ。
3. The multilayer capacitor according to claim 1, wherein the semiconductor porcelain thin film is made of barium titanate-based semiconductor porcelain.
【請求項4】 前記金属薄膜が貴金属又は卑金属からな
る請求項1〜3のいづれか一に記載の積層コンデンサ。
4. The multilayer capacitor according to claim 1, wherein the metal thin film is made of a noble metal or a base metal.
【請求項5】 熱可塑性高分子膜を担体上に金属薄膜を
形成し、その上に半導体磁器薄膜を積層した後、更に、
金属薄膜を積層して四層構造のユニット積層体を形成
し、該ユニット積層体を複数重ねて熱圧着することを特
徴とする積層コンデンサ。
5. A thermoplastic thin film is formed on a carrier to form a metal thin film, and a semiconductor porcelain thin film is laminated on the metal thin film.
A multilayer capacitor, comprising: laminating metal thin films to form a unit laminate having a four-layer structure, and stacking a plurality of the unit laminates and thermocompression bonding.
JP25046494A 1994-10-17 1994-10-17 Laminated capacitor Pending JPH08115849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25046494A JPH08115849A (en) 1994-10-17 1994-10-17 Laminated capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25046494A JPH08115849A (en) 1994-10-17 1994-10-17 Laminated capacitor

Publications (1)

Publication Number Publication Date
JPH08115849A true JPH08115849A (en) 1996-05-07

Family

ID=17208266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25046494A Pending JPH08115849A (en) 1994-10-17 1994-10-17 Laminated capacitor

Country Status (1)

Country Link
JP (1) JPH08115849A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222961A (en) * 2010-04-09 2011-11-04 Samsung Electro-Mechanics Co Ltd Manufacturing method of multilayer ceramic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222961A (en) * 2010-04-09 2011-11-04 Samsung Electro-Mechanics Co Ltd Manufacturing method of multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
US9779874B2 (en) Sintering of high temperature conductive and resistive pastes onto temperature sensitive and atmospheric sensitive materials
EP0706193B1 (en) Laminated capacitor and process for producing the same
CN102543436B (en) Multilayer ceramic condenser and method of manufacturing same
JP2021010000A (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2020027928A (en) Multilayer ceramic capacitor and method of manufacturing the same
JP7283675B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
US11610734B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
JP2020027929A (en) Multilayer ceramic capacitor and method of manufacturing the same
US20210104363A1 (en) Ceramic capacitor having metal or metal oxide in side margin portins, and method of manufacturing the same
KR20190121176A (en) Multi-layered ceramic electronic componentthe
JP2023076581A (en) Multilayer ceramic capacitor and method of manufacturing the same
JP2022073955A (en) Multilayer capacitor
JP2020027927A (en) Multilayer ceramic capacitor and method of manufacturing the same
JPH05299286A (en) Laminated ceramic element and manufacture thereof
JPH08115849A (en) Laminated capacitor
JP2000252154A (en) Composite laminated ceramic capacitor
US11164702B2 (en) Multi-layered ceramic electronic component having step absorption layer
JPS63102218A (en) Laminated multiterminal electronic component
JP3078375B2 (en) Multilayer ceramic capacitors
JP2000252153A (en) Laminated ceramic capacitor
JPH0515292B2 (en)
JPH025006B2 (en)
JP2000252152A (en) Laminated ceramic capacitor
KR20170077532A (en) Conductive paste composition for inner electrode and method for manufacturing multi-layered ceramic electronic component
JPH10302928A (en) Surge absorbing element