JPH025006B2 - - Google Patents

Info

Publication number
JPH025006B2
JPH025006B2 JP58031856A JP3185683A JPH025006B2 JP H025006 B2 JPH025006 B2 JP H025006B2 JP 58031856 A JP58031856 A JP 58031856A JP 3185683 A JP3185683 A JP 3185683A JP H025006 B2 JPH025006 B2 JP H025006B2
Authority
JP
Japan
Prior art keywords
capacitor
high dielectric
thickness
capacitance
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58031856A
Other languages
Japanese (ja)
Other versions
JPS59158512A (en
Inventor
Akifumi Katsumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP3185683A priority Critical patent/JPS59158512A/en
Publication of JPS59158512A publication Critical patent/JPS59158512A/en
Publication of JPH025006B2 publication Critical patent/JPH025006B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 本発明は、小型で、かつ静電容量の大きな高誘
電体薄膜コンデンサーに関するものである。電子
機器の小型化に伴ない単位容積当りに収納される
電子部品点数が増加してきている。トランジスタ
ーやダイオードのような境界に係る素子は集積回
路作成技術の進歩により極めて小型化されている
がそれに対し、コンデンサーは、電極面積に静電
容量が正比例する特性の為、静電容量を低下させ
ずに小型化することは容易ではない。特に1μF以
上の静電容量を有するコンデンサーは小型化が遅
れている。静電容量を低下させずにコンデンサー
を小型化するには、三通りの方法がある。一つは
誘電体の誘電率を大きくすることである。誘電率
の大きな材料としては、TiO2などの酸化物、
BaTiO3などの強誘電体があげられる。このよう
な高誘電体を用いたコンデンサーは、従来からセ
ラミツクコンデンサーとして存在するが、これら
は、高誘電体を、有機バインダー等で泥状化し、
薄く延ばして焼結する方法が用いられており、内
部に空隙を多く含む為に、材質の特性を十分に発
揮していない。また、以下に述べるように、コン
デンサーの小型化の要素である厚さを、薄くする
ことにおいても不十分である。コンデンサーを小
型化する他の方法として、電極を構成する基材の
厚さを薄くする方法もある。この方法で、電極の
占める体積を減少させる効果が期待される。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high dielectric thin film capacitor that is small in size and has a large capacitance. As electronic devices become smaller, the number of electronic components housed per unit volume is increasing. Boundary-related elements such as transistors and diodes have become extremely miniaturized due to advances in integrated circuit fabrication technology, but capacitors, on the other hand, have a characteristic that capacitance is directly proportional to electrode area, so it is difficult to reduce capacitance. It is not easy to downsize without In particular, miniaturization of capacitors with a capacitance of 1 μF or more has been slow. There are three ways to downsize a capacitor without reducing capacitance. One is to increase the dielectric constant of the dielectric. Materials with large dielectric constants include oxides such as TiO2 ,
Examples include ferroelectric materials such as BaTiO 3 . Capacitors using such a high dielectric material have traditionally existed as ceramic capacitors, but these are made by turning the high dielectric material into a slurry with an organic binder, etc.
The method used is to spread the material thinly and sinter it, and because it contains many voids inside, it does not fully demonstrate the characteristics of the material. Further, as described below, it is insufficient to reduce the thickness, which is a factor in reducing the size of the capacitor. Another way to downsize capacitors is to reduce the thickness of the base material that makes up the electrodes. This method is expected to have the effect of reducing the volume occupied by the electrode.

また他の方法として、誘電体の厚さを薄くする
方法がある。この方法は、単に誘電体の占める体
積を減少させる効果だけでなく、同じ電極面積で
あれば静電容量を大きくする効果もあり、すなわ
ち、静電容量を同じにするには、電極面積を小さ
くできる効果がある。しかし、後二者のような構
成体の厚さを薄くする方法は、そのような薄い構
成体を製造することも困難になるが、コンデンサ
ーに加工する工程にも特殊な方法を必要とし、扱
いにくくなる。つまり静電容量増大の為に、やむ
を得ず採られる方法であり、もつと扱いやすい厚
さの素材を用いて静電容量を低下させず、小型化
できれば望ましい。
Another method is to reduce the thickness of the dielectric. This method not only has the effect of reducing the volume occupied by the dielectric, but also has the effect of increasing the capacitance for the same electrode area.In other words, to make the capacitance the same, the electrode area must be reduced. There is an effect that can be done. However, the latter two methods of reducing the thickness of the structure not only make it difficult to manufacture such a thin structure, but also require a special method in the process of processing it into a capacitor, and are difficult to handle. It becomes difficult. In other words, this method is unavoidably adopted in order to increase the capacitance, and it is desirable if the capacitance can be reduced without reducing the capacitance by using a material with a thickness that is easy to handle.

本発明者は、このような状況に鑑み、小型で静
電容量の大きなコンデンサーを開発すべく鋭意研
究の結果、本発明に至つた。すなわち、電極が金
属箔であり、誘電体が高誘電体薄膜であるコンデ
ンサーであつて該コンデンサーの電極となる金属
箔表面に、1×10-1Torr以下の減圧下において
0.01〜1ミクロンの厚さで高誘電体薄膜を積層す
ることによつて得られた、高誘電体薄膜積層金属
箔から構成されたコンデンサーが、本発明の目的
を満足することを見い出したものである。
In view of this situation, the present inventor conducted extensive research to develop a compact capacitor with a large capacitance, and as a result, arrived at the present invention. That is, in a capacitor in which the electrode is a metal foil and the dielectric is a high dielectric thin film, the surface of the metal foil serving as the electrode of the capacitor is coated under a reduced pressure of 1×10 -1 Torr or less.
It has been discovered that a capacitor composed of a high dielectric thin film laminated metal foil obtained by laminating high dielectric thin films with a thickness of 0.01 to 1 micron satisfies the object of the present invention. be.

本発明における電極となる金属箔には電気の良
導体であれば、特に何を用いても差しつかえない
が、入手しやすく、価格的にも安価なアルミニウ
ム箔が最も適している。金属箔の厚さは、すでに
述べたように薄い方が小型化には好ましいが、高
誘電体薄膜を積層する工程や、コンデンサーに加
工する工程等において、アルミ箔の場合、20ミク
ロン以下になると、破断したり、シワが入つたり
して、非常に作業が困難になつた。つまり、本発
明の意図する所は金属箔としては、扱い易い厚さ
のものを使用する点にある。金属箔の表面は、対
電極との密着性を高める為に、平滑であることが
好ましい。
Any metal foil serving as the electrode in the present invention may be used as long as it is a good electrical conductor, but aluminum foil is most suitable because it is easily available and inexpensive. As mentioned above, the thinner the metal foil, the better for miniaturization, but in the process of laminating high dielectric thin films, processing into capacitors, etc., in the case of aluminum foil, it is necessary to reduce the thickness to 20 microns or less. , it was broken and wrinkled, making it extremely difficult to work with. In other words, the purpose of the present invention is to use a metal foil with a thickness that is easy to handle. The surface of the metal foil is preferably smooth in order to improve adhesion to the counter electrode.

本発明における高誘電体としては、TiやTaの
酸化物や、BaTiO3等の強誘電体があげられる。
これらの高誘電体を1×10-1Torr以下の減圧下
において、0.01〜1ミクロンの厚さで金属箔に積
層する方法としては、真空蒸着法、スパツタリン
グ法、イオンプレーテイング法、減圧CVD法、
プラズマCVD法等がある。1×10-1Torr以下の
減圧下で積層する理由は、積層された高誘電体薄
膜中に空隙を生じさせない為であり、また、金属
箔表面上に、積層時の熱によつて、金属箔自体の
酸化膜が形成されるのを防ぐ為でもある。上にあ
げた積層方法は、いずれも、このような減圧条件
下での薄膜形成に好適の方法である。高誘電体と
して、BaTiO3の、Baの一部を、Srなどの金属で
置きかえたものは室温付近での誘電率が10000を
超えるものがあり、コンデンサーの小型化に極め
て効果があるが、このような高誘電体の薄膜を積
層する場合は、焼結によつて微結晶化させた高誘
電体をターゲツトに用いた高周波スパツタリング
法が望ましい。特に、マグネトロン方式の高周波
スパツタリング法が薄膜形成速度が速い点で、生
産上、最も適している。誘電体層の厚さは、目的
とするコンデンサーに要求される静電容量と、耐
電圧によつて、適当な厚さを選べばよい。小型化
の為には薄くする方が好ましいが、耐電圧が低下
する以外にもピンホールの発生頻度が増大する為
に0.01ミクロン以下の厚みは実用上意味がない。
また、高誘電体は、もろい性質がある為に、積層
体をロール状に差いて用いる為には1ミクロン以
上の厚みは好ましくない。このように用意された
高誘電体薄膜積層金属箔は1例として、以下のよ
うにコンデンサーに加工される。第1図のよう
に、金属箔1に高誘電体薄膜2を積層した積層体
3に対電極として、金属箔4を重ね、リード線
5,5′を付けて、全体を樹脂6で封止する。ま
た、第2図のように、積層体7の高誘電体薄膜8
の表面に、導電性ペイント9を塗布し、リード線
10を、導電性接着剤11によつて取り付け、全
体を樹脂12で封止する。また、図3のように、
積層体13を、交互に少しずらせて多数枚重ね合
せ、ずらせた部分に電極取出部14,14′とリ
ード線15,15′を取付けて樹脂16で封止す
る。第3図のように重ね合わせた構成で、長いテ
ープ状の積層体を2本用いて捲回型とすることも
できる。
Examples of the high dielectric material in the present invention include oxides of Ti and Ta, and ferroelectric materials such as BaTiO 3 .
Methods for laminating these high dielectric materials on metal foil to a thickness of 0.01 to 1 micron under reduced pressure of 1×10 -1 Torr or less include vacuum evaporation, sputtering, ion plating, and low pressure CVD. ,
There are plasma CVD methods, etc. The reason for laminating the layers under reduced pressure of 1×10 -1 Torr or less is to prevent voids from forming in the laminated high dielectric thin films. This is also to prevent the formation of an oxide film on the foil itself. All of the above-mentioned lamination methods are suitable for forming a thin film under such reduced pressure conditions. As a high dielectric material, BaTiO 3 in which part of the Ba is replaced with a metal such as Sr has a dielectric constant of over 10,000 at room temperature, and is extremely effective in miniaturizing capacitors. When laminating such high dielectric thin films, it is desirable to use a high frequency sputtering method using a high dielectric material microcrystallized by sintering as a target. In particular, the magnetron-based high-frequency sputtering method is most suitable for production because it can form a thin film at a high speed. The thickness of the dielectric layer may be appropriately selected depending on the capacitance and withstand voltage required for the intended capacitor. Although it is preferable to make it thin for miniaturization, a thickness of 0.01 micron or less is practically meaningless because not only the withstand voltage decreases but also the frequency of pinholes increases.
Further, since the high dielectric material has brittle properties, a thickness of 1 micron or more is not preferable in order to use the laminate in the form of a roll. As an example, the high dielectric thin film laminated metal foil prepared in this way is processed into a capacitor as follows. As shown in Fig. 1, a metal foil 4 is layered as a counter electrode on a laminate 3 in which a high dielectric thin film 2 is laminated on a metal foil 1, lead wires 5 and 5' are attached, and the whole is sealed with a resin 6. do. Further, as shown in FIG. 2, the high dielectric thin film 8 of the laminate 7
A conductive paint 9 is applied to the surface of the device, a lead wire 10 is attached with a conductive adhesive 11, and the whole is sealed with a resin 12. Also, as shown in Figure 3,
A large number of laminates 13 are stacked one on top of the other with slight shifts alternately, and electrode extraction parts 14, 14' and lead wires 15, 15' are attached to the shifted parts and sealed with resin 16. It is also possible to use two long tape-like laminates in a rolled-up configuration as shown in FIG. 3, in which they are overlapped.

以下に実施例をあげる。 Examples are given below.

実施例 1 厚さ25μで、表面が平滑なアルミ箔に、TiO2
を、電子ビーム加熱真空蒸着装置によつて、片面
に、厚さ0.05ミクロンとなるように蒸着した。蒸
着膜組成中の酸素が減少していたので、積層体
を、300℃5時間空気中で加熱し、組成を調整し
た。この積層体を、第3図のように50枚重ね合わ
せコンデンサーを作成した。コンデンサーの大き
さは厚さ1.3mm、巾3.0mm、奥行5.0mmであり、電極
面積は6.5cm2であつた。このコンデンサーの静電
容量は4.0μFであつた。
Example 1 TiO 2 was placed on aluminum foil with a thickness of 25μ and a smooth surface.
was deposited on one side to a thickness of 0.05 micron using an electron beam heating vacuum evaporation device. Since oxygen in the composition of the deposited film had decreased, the laminate was heated in air at 300° C. for 5 hours to adjust the composition. A capacitor was fabricated by stacking 50 layers of this laminate as shown in Figure 3. The size of the capacitor was 1.3 mm thick, 3.0 mm wide, and 5.0 mm deep, and the electrode area was 6.5 cm 2 . The capacitance of this capacitor was 4.0 μF.

実施例 2 厚さ50μで、表面が平滑なアルミ箔に、室温に
おける誘電率が18000のBaTiO3系磁器で作成し
たターゲツトを用いて、マグネトロン方式高周波
スパツタリング装置で、厚さ0.1ミクロンの誘電
体層を積層した。この積層体を第2図のように、
導電性ペイントを用いて、コンデンサーとした。
コンデンサーの大きさは、厚さ0.2mm、巾3.0mm、
奥行10.0mmであり、電極面積は0.3cm2であつた。
このコンデンサーの静電容量は80μFであつた。
なお、このような形状のコンデンサーは、回路基
板上に立てて使用されその場合の、基板占有面積
は0.6mm2となる。
Example 2 Using a target made of BaTiO 3 ceramic with a dielectric constant of 18,000 at room temperature on an aluminum foil with a thickness of 50 μm and a smooth surface, a dielectric layer with a thickness of 0.1 μm was formed using a magnetron high-frequency sputtering device. were laminated. As shown in Figure 2, this laminate is
A capacitor was made using conductive paint.
The size of the capacitor is 0.2mm thick, 3.0mm wide,
The depth was 10.0 mm, and the electrode area was 0.3 cm 2 .
The capacitance of this capacitor was 80 μF.
Note that a capacitor of this shape is used standing up on a circuit board, and in that case, the area occupied by the board is 0.6 mm 2 .

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明による高誘電体薄膜積
層金属箔を1枚使用したコンデンサーの構成断面
図、第3図は多数枚使用したコンデンサーの構成
断面図である。
1 and 2 are cross-sectional views of a capacitor using one high dielectric thin film laminated metal foil according to the present invention, and FIG. 3 is a cross-sectional view of a capacitor using a large number of high dielectric thin film laminated metal foils.

Claims (1)

【特許請求の範囲】[Claims] 1 電極となる金属箔表面に、1×10-1Torr以
下の減圧において0.01〜1ミクロンの厚さで高誘
電体薄膜を積層したことを特徴とする高誘電体薄
膜コンデンサー。
1. A high dielectric thin film capacitor characterized by laminating a high dielectric thin film with a thickness of 0.01 to 1 micron at a reduced pressure of 1×10 -1 Torr or less on the surface of a metal foil serving as an electrode.
JP3185683A 1983-03-01 1983-03-01 High dielectric thin film condenser Granted JPS59158512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3185683A JPS59158512A (en) 1983-03-01 1983-03-01 High dielectric thin film condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3185683A JPS59158512A (en) 1983-03-01 1983-03-01 High dielectric thin film condenser

Publications (2)

Publication Number Publication Date
JPS59158512A JPS59158512A (en) 1984-09-08
JPH025006B2 true JPH025006B2 (en) 1990-01-31

Family

ID=12342686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3185683A Granted JPS59158512A (en) 1983-03-01 1983-03-01 High dielectric thin film condenser

Country Status (1)

Country Link
JP (1) JPS59158512A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4876672B2 (en) * 2006-03-29 2012-02-15 Tdk株式会社 Capacitor manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231367A (en) * 1975-09-03 1977-03-09 Matsushita Electric Ind Co Ltd Method of manufacturing thin film capacitor
JPS5262648A (en) * 1975-11-20 1977-05-24 Matsushita Electric Ind Co Ltd Method of manufacturing titanium capacitor
JPS55127011A (en) * 1979-03-26 1980-10-01 Tdk Electronics Co Ltd Capacitor and method of manufacturing same
JPS5683923A (en) * 1979-12-13 1981-07-08 Showa Aluminium Co Ltd Electrode foil for electrolytic condenser and method of manufacting same
JPS5745968A (en) * 1980-08-29 1982-03-16 Ibm Capacitor with double dielectric unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231367A (en) * 1975-09-03 1977-03-09 Matsushita Electric Ind Co Ltd Method of manufacturing thin film capacitor
JPS5262648A (en) * 1975-11-20 1977-05-24 Matsushita Electric Ind Co Ltd Method of manufacturing titanium capacitor
JPS55127011A (en) * 1979-03-26 1980-10-01 Tdk Electronics Co Ltd Capacitor and method of manufacturing same
JPS5683923A (en) * 1979-12-13 1981-07-08 Showa Aluminium Co Ltd Electrode foil for electrolytic condenser and method of manufacting same
JPS5745968A (en) * 1980-08-29 1982-03-16 Ibm Capacitor with double dielectric unit

Also Published As

Publication number Publication date
JPS59158512A (en) 1984-09-08

Similar Documents

Publication Publication Date Title
KR101141457B1 (en) The multi-layerd ceramic condenser and fabricating method using thereof
JP3470830B2 (en) Manufacturing method of multilayer capacitor
US9779874B2 (en) Sintering of high temperature conductive and resistive pastes onto temperature sensitive and atmospheric sensitive materials
CN102543436B (en) Multilayer ceramic condenser and method of manufacturing same
CN112309717B (en) Multilayer ceramic electronic component and method for manufacturing the same
US6690572B2 (en) Single layer electronic capacitors with very thin dielectrics and methods to produce same
JPH05299286A (en) Laminated ceramic element and manufacture thereof
JPH025006B2 (en)
JP6935707B2 (en) Multilayer ceramic capacitors
JPS6145851B2 (en)
JPS6094716A (en) Thin film condenser
JP2000260655A (en) Laminated ceramic capacitor and its manufacturing method
JPH08115849A (en) Laminated capacitor
JPH0113206B2 (en)
JP2002198250A (en) Laminated electronic component
JPH08264381A (en) Laminated capacitor and its manufacture
JPH01175217A (en) Dielectric thin-film laminated body for capacitor
JPH0432527B2 (en)
JP2023034395A (en) Ceramic electronic component and manufacturing method for the same
JPH01315124A (en) Thin-film capacitor
JP2936925B2 (en) Method for producing multilayer semiconductor ceramic composition
JPS59135714A (en) High dielectric thin film laminated film
JPH05114532A (en) Multilayered capacitor
JP2003173927A (en) Flexible thin-film capacitor and its manufacturing method
JPH05326319A (en) Manufacture of laminated ceramic capacitor