JP2000252152A - Laminated ceramic capacitor - Google Patents

Laminated ceramic capacitor

Info

Publication number
JP2000252152A
JP2000252152A JP4726799A JP4726799A JP2000252152A JP 2000252152 A JP2000252152 A JP 2000252152A JP 4726799 A JP4726799 A JP 4726799A JP 4726799 A JP4726799 A JP 4726799A JP 2000252152 A JP2000252152 A JP 2000252152A
Authority
JP
Japan
Prior art keywords
dielectric
dielectrics
ceramic capacitor
dielectric material
breakdown voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4726799A
Other languages
Japanese (ja)
Inventor
Akira Hirasawa
章 平澤
Takehisa Kitamura
武久 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP4726799A priority Critical patent/JP2000252152A/en
Publication of JP2000252152A publication Critical patent/JP2000252152A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve breakdown voltage and reliability by adjusting the thickness of a dielectric and laminating it, so that the breakdown voltages of respective dielectric are substantially uniform. SOLUTION: A laminated body 2 is comprised of three kinds of dielectrics 6 (A, B, C), which are made of various dielectric materials (A', B', C') differing in the temperature properties of permittivities and inner electrodes 7 (7a-7d) formed respectively on one surfaces of the dielectrics A, B and C. The dielectric material A' of the dielectric A, for example, is 0.35PNN-0.65PMN, the dielectric material B' of the dielectric B is 0.95PMN-0.05PT, and the dielectric material C' of the dielectric C is 0.85PMN-0.15PT. (PNN: is Pb(Ni1/3Nb2/3)O3; PMN is Pb(Mg1/3Nb2/3)O3, and PT is PbTiO3). The film thickness of the respective dielectrics A, B and C after baking is about 20 to 40 μm per layer, and it is adjusted so that the breakdown voltages are substantially uniform.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、積層セラミックコ
ンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer ceramic capacitor.

【0002】[0002]

【従来の技術】積層セラミックコンデンサは、誘電体材
料としてチタン酸バリウム(BaTiO3 )等の強誘電
体を主成分とするものと、鉛(Pb)を含む誘電体材料
を用いたものがある。これらの誘電体材料に添加物等を
加えると、温度変化による容量変化を少なくすることが
できるが、誘電率(ε)は低下する。例えば、主成分が
チタン酸バリウム系の場合、JISの温度特性規格のB
特性では、温度範囲が−25°C〜85°Cで静電容量
の変化率が電圧を印加しない状態において±10%のと
き、誘電率εは3000程度となる。また、各誘電体の
温度特性を異ならせると、一般に破壊電圧は減少する。
破壊電圧が減少するのは、温度特性の異なる誘電体を得
るためにその組成を変化させると、誘電損率(誘電率ε
×tanδ)も変化し、各誘電体の誘電損率が不均一に
なることに起因している。
2. Description of the Related Art Multilayer ceramic capacitors include those having a ferroelectric material such as barium titanate (BaTiO 3 ) as a main component as a dielectric material and those using a dielectric material containing lead (Pb). When an additive or the like is added to these dielectric materials, a change in capacitance due to a change in temperature can be reduced, but the dielectric constant (ε) decreases. For example, when the main component is a barium titanate-based material, JIS temperature characteristic standard B
In terms of characteristics, when the temperature range is −25 ° C. to 85 ° C. and the rate of change in capacitance is ± 10% in a state where no voltage is applied, the dielectric constant ε is about 3000. Further, when the temperature characteristics of the dielectrics are made different, the breakdown voltage generally decreases.
The breakdown voltage decreases because the dielectric loss factor (dielectric constant ε
× tan δ) also changes, and the dielectric loss factor of each dielectric becomes non-uniform.

【0003】そこで、誘電率の温度特性を改善するため
に、例えば特開昭48−65446号公報に記載された
積層形セラミックコンデンサ(以下、先行技術1とい
う)は、互いに誘電損率が同程度で温度特性を異にする
高誘電体セラミック薄板を積層して焼成している。ま
た、このコンデンサにおいては、各セラミック薄板の誘
電損率を同程度に選ぶことにより、破壊電圧を高めるよ
うにしている。
Therefore, in order to improve the temperature characteristics of the dielectric constant, for example, a multilayer ceramic capacitor (hereinafter referred to as prior art 1) described in Japanese Patent Application Laid-Open No. 48-65446 has a dielectric loss factor similar to each other. Are laminated and fired with high dielectric ceramic thin plates having different temperature characteristics. Also, in this capacitor, the breakdown voltage is increased by selecting the dielectric loss factor of each ceramic thin plate to be substantially the same.

【0004】実開昭55−156425公報に記載され
た積層コンデンサ(以下、先行技術2という)は、キュ
リー点の異なる二種類以上の強誘電体層を薄膜状の導体
層を挟んで複数枚組合わせて積層することにより、温度
特性を向上させるようにしている。
A multilayer capacitor described in Japanese Utility Model Laid-Open Publication No. 55-156425 (hereinafter referred to as Prior Art 2) is a set of two or more ferroelectric layers having different Curie points sandwiching a thin-film conductor layer. By stacking them together, the temperature characteristics are improved.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
た先行技術1,2は、いずれも異種の誘電体材料、例え
ば先行技術1ではBaO,TiO2 ,SiO2 ,AlO
3 で誘電体セラミック薄板を形成しているので、各材料
の機械的特性、電気的特性が異なり、その結果として最
も弱い材料に負荷が集中することが判明した。例えば、
構成材料のうちのある材料の電界強度が他の材料に比べ
て低い場合は、電圧を加えていくとある材料の対向電極
間に特に大きな電界が加わるため、これらの対向電極間
が破壊されコンデンサとしての破壊電圧が低くなる。
However, the above prior arts 1 and 2 are all different dielectric materials, such as BaO, TiO 2 , SiO 2 , and AlO in the prior art 1.
Since the dielectric ceramic thin plate was formed in 3 , the mechanical and electrical properties of each material were different, and as a result, it was found that the load was concentrated on the weakest material. For example,
If the electric field strength of one of the constituent materials is lower than that of the other materials, a particularly large electric field is applied between the opposing electrodes of a certain material when a voltage is applied. As the breakdown voltage.

【0006】本発明は上記した従来の問題を解決するた
めになされたもので、その目的とするところは、破壊電
圧が高く信頼性の高い積層セラミックコンデンサを提供
することにある。
The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a highly reliable multilayer ceramic capacitor having a high breakdown voltage.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明は、誘電率の温度特性を異にする異種の誘電体
を複数枚積層してなる積層セラミックコンデンサにおい
て、前記各誘電体の破壊電圧が略均等になるように誘電
体の厚さを調整して積層したことを特徴とする。
In order to achieve the above object, the present invention provides a multilayer ceramic capacitor comprising a plurality of different types of dielectrics having different dielectric constants having different temperature characteristics. It is characterized in that the dielectrics are laminated while adjusting the thickness so that the breakdown voltage becomes substantially uniform.

【0008】本発明において、内部電極が形成された複
数枚の誘電体を積層し、端縁に外部電極を形成すると電
気回路的には各々のコンデンサが並列に接続されている
ことになるので、小型で大容量のコンデンサが得られ
る。同じ誘電体材料で誘電体を形成した場合は、各々の
誘電体には同一の電圧が印加される。一方、異種の誘電
体材料で誘電体を形成した場合は、電界強度が低い誘電
体の対向電極間に大きな電界が加わるため、これらの対
向電極が破壊される。そこで、各誘電体の破壊電圧が略
等しくなるように誘電体の厚さを調整、具体的には電界
強度の低い材料からなる誘電体を電界強度の高い材料か
らなる誘電体より厚く形成すると、電圧分布を均一化さ
せることができる。したがって、異種の誘電体材料で誘
電体を形成しても、一部の誘電体の対向電極間に大きな
電圧が加わることがなく、コンデンサとしての破壊電圧
および信頼性を高めることができる。
In the present invention, when a plurality of dielectrics on which internal electrodes are formed are laminated, and external electrodes are formed on the edges, the respective capacitors are connected in parallel in an electric circuit. A small and large capacity capacitor can be obtained. When dielectrics are formed of the same dielectric material, the same voltage is applied to each dielectric. On the other hand, when the dielectric is made of a different kind of dielectric material, a large electric field is applied between the opposite electrodes of the dielectric having a low electric field strength, and these opposite electrodes are destroyed. Therefore, by adjusting the thickness of the dielectrics so that the breakdown voltage of each dielectric becomes substantially equal, specifically, when a dielectric made of a material having a low electric field strength is formed thicker than a dielectric made of a material having a high electric field strength, The voltage distribution can be made uniform. Therefore, even if a dielectric is formed of different kinds of dielectric materials, a large voltage is not applied between the opposing electrodes of some of the dielectrics, and the breakdown voltage and reliability of the capacitor can be improved.

【0009】[0009]

【発明の実施の形態】以下、本発明を図面に示す実施の
形態に基づいて詳細に説明する。図1は本発明に係る積
層セラミックコンデンサの一実施の形態を示す断面図で
ある。同図において、積層セラミックコンデンサ1は、
積層体2と、この積層体2の面方向の両端縁、すなわち
内部電極取出面4a,4bにそれぞれ設けられた一対の
外部電極3と、積層体2の表裏面をそれぞれ保護する外
装体5とで構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on an embodiment shown in the drawings. FIG. 1 is a sectional view showing an embodiment of the multilayer ceramic capacitor according to the present invention. In the figure, a multilayer ceramic capacitor 1 is
A laminate 2, a pair of external electrodes 3 provided on both end edges in the surface direction of the laminate 2, that is, the internal electrode extraction surfaces 4 a and 4 b, and an exterior body 5 for protecting the front and back surfaces of the laminate 2, respectively. It is composed of

【0010】前記積層体2は、誘電率の温度特性が異な
る異種の誘電体材料(A’,B’,C’)によって形成
された3種類からなる誘電体6(A,B,C)と、これ
らの誘電体A,B,Cの一方の面にそれぞれ形成された
内部電極7(7a〜7d)とで構成されている。誘電体
Aの誘電体材料A’としては、例えば0.35PNN−
0.65PMNが用いられ、誘電体Bの誘電体材料B’
としては、例えば0.95PMN−0.05PTが用い
られ、誘電体Cの誘電体材料C’としては、例えば0.
85PMN−0.15PTが用いられる。PNNはPb
(Ni1/3Nb2 /3)O3、PMNはPb(Mg1/3Nb
2/3)O3、PTはPbTiO3 である。なお、焼成後の
各誘電体A,B,Cの一層当たりの膜厚は20〜40μ
mで、破壊電圧が略均等になるように厚さが調整されて
いる。具体的には、破壊電圧の低い材料によって形成さ
れた誘電体ほど厚さが厚く設定されている。
The laminate 2 includes three types of dielectrics 6 (A, B, C) formed of different types of dielectric materials (A ′, B ′, C ′) having different dielectric constant temperature characteristics. , And internal electrodes 7 (7a to 7d) formed on one surface of these dielectrics A, B, and C, respectively. As the dielectric material A 'of the dielectric A, for example, 0.35 PNN-
0.65 PMN is used, and the dielectric material B ′ of the dielectric B is used.
For example, 0.95 PMN-0.05PT is used, and as the dielectric material C ′ of the dielectric C, for example, 0.
85 PMN-0.15PT is used. PNN is Pb
(Ni 1/3 Nb 2/3) O 3, PMN is Pb (Mg 1/3 Nb
2/3 ) O 3 and PT are PbTiO 3 . The thickness of each of the dielectrics A, B, and C after firing is 20 to 40 μm.
With m, the thickness is adjusted so that the breakdown voltage becomes substantially uniform. Specifically, the thickness is set to be thicker for a dielectric formed of a material having a lower breakdown voltage.

【0011】前記内部電極7は、パラジウム、銀パラジ
ウム合金等の貴金属からなる導体膜で、1〜3μm程度
の膜厚で形成されている。また、各内部電極7a〜7d
は、左右の外部電極3に対して交互に、すなわち下から
奇数番目の内部電極7a,7cの一端縁が積層体2の一
方の内部電極取出面4aに露出し、偶数番目の内部電極
7b,7dの一端縁が他方の内部電極取出面4bに露出
し、左右の外部電極3にぞれぞれ電気的に接続されてい
る。
The internal electrode 7 is a conductive film made of a noble metal such as palladium and silver-palladium alloy, and is formed to a thickness of about 1 to 3 μm. In addition, each of the internal electrodes 7a to 7d
Are alternately arranged with respect to the left and right external electrodes 3, that is, one end edges of the odd-numbered internal electrodes 7a and 7c are exposed on one internal electrode extraction surface 4a of the laminate 2 and the even-numbered internal electrodes 7b and One end of 7d is exposed on the other internal electrode extraction surface 4b, and is electrically connected to the left and right external electrodes 3 respectively.

【0012】前記外部電極3は、導電体膜層によって形
成されている。このような導電体膜層は、銀または銀パ
ラジウム合金とガラス粒子とで形成されている。
The external electrode 3 is formed by a conductor film layer. Such a conductor film layer is formed of silver or a silver-palladium alloy and glass particles.

【0013】前記外装体5は、誘電体A,BまたはCと
同一の誘電体材料(A’),(B’)または(C’)も
しくはこれらとは全く別の誘電体材料によって形成され
ている。
The package 5 is made of the same dielectric material (A '), (B') or (C ') as the dielectrics A, B or C or a dielectric material completely different from these. I have.

【0014】このような積層セラミックコンデンサ1に
おいては、誘電率の温度特性が異なる異種の誘電体材料
(A’,B’,C’)によってそれぞれ形成される各誘
電体A,B,Cの厚さを、略均一な破壊電圧が加わるよ
うに調整しているので、電界強度が低い一部の誘電体の
対向電極間に大きな電圧が加わるようなことがなく、電
圧分布を均一化させることができる。したがって、電界
強度が低い誘電体の対向電極が破壊するおそれがなく、
コンデンサとしての破壊電圧および信頼性を高めること
ができる。
In such a multilayer ceramic capacitor 1, the thickness of each of the dielectrics A, B, C formed of different dielectric materials (A ', B', C ') having different temperature characteristics of the dielectric constant. Is adjusted so that a substantially uniform breakdown voltage is applied, so that a large voltage is not applied between the opposing electrodes of some dielectrics having low electric field strength, and the voltage distribution can be made uniform. it can. Therefore, there is no possibility of the dielectric counter electrode having a low electric field strength being broken,
The breakdown voltage and reliability of the capacitor can be improved.

【0015】(実施例)次に、実施例として温度特性の
異なる3種類の誘電体材料(A’,B’,C’)によっ
て形成した誘電体A,B,Cを所要枚数積層してなる積
層セラミックコンデンサの製造方法を簡単に説明する。
各誘電体A,B,Cの温度特性を図2に示し、破壊電圧
(電界強度)を表1に示す。
(Embodiment) Next, as an embodiment, a required number of dielectrics A, B and C formed by three kinds of dielectric materials (A ', B' and C ') having different temperature characteristics are laminated. A method for manufacturing a multilayer ceramic capacitor will be briefly described.
FIG. 2 shows the temperature characteristics of the dielectrics A, B, and C, and Table 1 shows the breakdown voltage (electric field strength).

【0016】[0016]

【表1】 [Table 1]

【0017】先ず、各誘電体A,B,Cの誘電体材料
(A’,B’,C’)ごとに誘電体材料100に対しポ
リビニールアルコール樹脂10、トルエン15およびイ
ソプロピルアルコール15を加えて24時間ボールミル
で混練した後、シリコン加工したPETフィルム上に塗
布して乾燥させセラミックシートを作成する。このと
き、各セラミックシートの厚さは、各誘電体A,B,C
の電界強度から算出した表1に記載した厚さとする。ま
た、このようなセラミックシートによって作成されるコ
ンデンサのJIS温度特性規格をB特性とするため、本
実施例では材料の異なる各セラミックシートの積層数を
表1に示す枚数とした。
First, a polyvinyl alcohol resin 10, toluene 15 and isopropyl alcohol 15 are added to the dielectric material 100 for each dielectric material (A ', B', C ') of each of the dielectrics A, B, C. After kneading with a ball mill for 24 hours, the mixture is applied on a PET film that has been subjected to silicon processing and dried to form a ceramic sheet. At this time, the thickness of each ceramic sheet is determined by each of the dielectrics A, B, and C.
And the thickness described in Table 1 calculated from the electric field strength of In addition, in order to set the JIS temperature characteristic standard of the capacitor made of such a ceramic sheet to the B characteristic, in this embodiment, the number of stacked ceramic sheets of different materials is set to the number shown in Table 1.

【0018】次に、外装体5となる内部電極を含まない
誘電体層を3枚重ね合わせる。この場合、本実施例にお
いては前記誘電体層を誘電体材料(A’)によって形成
したが、誘電体材料(B’)または(C’)もしくはこ
れらとは全く別の誘電体材料によって形成してもよい。
Next, three dielectric layers which do not include the internal electrodes serving as the outer package 5 are stacked. In this case, in the present embodiment, the dielectric layer is formed of the dielectric material (A '), but is formed of the dielectric material (B') or (C ') or a completely different dielectric material. You may.

【0019】次に、外装体5となる誘電体層の上に、内
部電極7となる導体膜がスクリーン印刷によって形成さ
れた誘電体材料A’からなる厚さ60μmのグリーンシ
ートを前記導体膜が交互になるように20層積層する。
次いで、この積層されたグリーンシート上に内部電極7
となる導体膜がスクリーン印刷によって形成された誘電
体材料B’からなる厚さ30μmのグリーンシートを前
記導体膜が交互になるように10層積層する。さらに、
その上に内部電極7となる導体膜がスクリーン印刷によ
って形成された誘電体材料C’からなる厚さ30μmの
グリーンシートを前記導体膜が交互になるように10層
積層する。そして、その上に外装体5となる内部電極を
含まない誘電体層を3枚重ね合わせ、熱圧着して一体化
する。これを所定寸法に切断してグリーンチップを作成
する。そして、このグリーンチップを所定温度で焼成し
て一体化することにより積層体2とした後、外部電極3
を形成して積層セラミックコンデンサを作成した。
Next, a 60 μm-thick green sheet made of a dielectric material A ′ in which a conductor film serving as the internal electrode 7 is formed by screen printing on a dielectric layer serving as the outer package 5 is provided. Twenty layers are stacked alternately.
Next, the internal electrodes 7 were placed on the laminated green sheets.
A green sheet having a thickness of 30 μm and made of a dielectric material B ′ in which a conductor film to be formed is formed by screen printing is laminated in ten layers so that the conductor films are alternately formed. further,
On top of this, 10 layers of 30 μm thick green sheets made of a dielectric material C ′ in which a conductor film serving as the internal electrode 7 is formed by screen printing are laminated such that the conductor films are alternately arranged. Then, three dielectric layers that do not include the internal electrodes serving as the exterior body 5 are superimposed thereon, and are integrated by thermocompression bonding. This is cut into a predetermined size to produce a green chip. Then, the green chip is fired at a predetermined temperature and integrated to form a laminate 2, and then the external electrodes 3
Was formed to produce a multilayer ceramic capacitor.

【0020】これに対して、各誘電体A,B,Cがいず
れも厚さ30μmで、10層ずつ積層したコンデンサを
比較例として実施例と同様に作成した。温度特性は実施
例、比較例のいずれもJISの温度特性規格のB特性を
満足していた。これをガラスエポキシ樹脂からなる基板
にリフローはんだ付けし、60°C、90%RHで50
Vの電圧を印加して耐湿負荷試験を行った。その結果を
図3(a)、(b)に示す。この図から明らかなよう
に、比較例のコンデンサでは時間の経過とともに絶縁性
が低下するのに対し、実施例のコンデンサでは絶縁性に
異常が全くみられなかった。
On the other hand, a capacitor in which each of the dielectrics A, B and C had a thickness of 30 μm and was laminated in ten layers was prepared as a comparative example in the same manner as in the example. The temperature characteristics of both the example and the comparative example satisfied the B characteristic of the temperature characteristic standard of JIS. This is reflow-soldered to a substrate made of glass epoxy resin, and 50 ° C at 60 ° C. and 90% RH.
A voltage of V was applied to perform a moisture resistance load test. The results are shown in FIGS. 3 (a) and 3 (b). As is apparent from this figure, the insulation of the capacitor of the comparative example decreased with time, whereas the insulation of the capacitor of the example did not show any abnormality.

【0021】なお、上記した実施の形態においては、外
部電極3を1層構造に形成した例を示したが、これに限
らず2層以上のものであってもよい。
In the embodiment described above, an example is shown in which the external electrode 3 is formed in a one-layer structure. However, the present invention is not limited to this, and the external electrode 3 may have two or more layers.

【0022】[0022]

【発明の効果】以上説明したように本発明に係る積層セ
ラミックコンデンサによれば、一部の誘電体の対向電極
間に大きな電圧が加わるようなことがなく、電圧分布を
均一化させることができる。したがって、コンデンサと
しての破壊電圧および信頼性を高めることができる。
As described above, according to the multilayer ceramic capacitor of the present invention, it is possible to make the voltage distribution uniform without applying a large voltage between the opposing electrodes of some dielectrics. . Therefore, the breakdown voltage and reliability of the capacitor can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る積層セラミックコンデンサの一
実施の形態を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of a multilayer ceramic capacitor according to the present invention.

【図2】 静電容量の温度特性を示す図である。FIG. 2 is a diagram illustrating temperature characteristics of capacitance.

【図3】 (a)、(b)は耐湿負荷試験での絶縁抵抗
値の変化を示す図である。
FIGS. 3A and 3B are diagrams showing a change in insulation resistance value in a moisture resistance load test.

【符号の説明】[Explanation of symbols]

1…積層セラミックコンデンサ、2…積層体、3…外部
電極、5…外装体、6,…誘電体、7,7a〜7d…内
部電極、A,B,C…誘電体。
DESCRIPTION OF SYMBOLS 1 ... Laminated ceramic capacitor, 2 ... laminated body, 3 ... external electrode, 5 ... exterior body, 6, ... dielectric, 7, 7a-7d ... internal electrode, A, B, C ... dielectric.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 誘電率の温度特性を異にする異種の誘電
体を複数枚積層してなる積層セラミックコンデンサにお
いて、 前記各誘電体の破壊電圧が略均等になるように誘電体の
厚さを調整して積層したことを特徴とする積層セラミッ
クコンデンサ。
1. A multilayer ceramic capacitor comprising a plurality of different types of dielectrics having different dielectric constants having different temperature characteristics, wherein the thickness of the dielectrics is adjusted so that the breakdown voltage of each of the dielectrics becomes substantially equal. A multilayer ceramic capacitor characterized by being adjusted and laminated.
JP4726799A 1999-02-24 1999-02-24 Laminated ceramic capacitor Pending JP2000252152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4726799A JP2000252152A (en) 1999-02-24 1999-02-24 Laminated ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4726799A JP2000252152A (en) 1999-02-24 1999-02-24 Laminated ceramic capacitor

Publications (1)

Publication Number Publication Date
JP2000252152A true JP2000252152A (en) 2000-09-14

Family

ID=12770533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4726799A Pending JP2000252152A (en) 1999-02-24 1999-02-24 Laminated ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2000252152A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7319081B2 (en) 2003-02-27 2008-01-15 Tdk Corporation Thin film capacity element composition, high-permittivity insulation film, thin film capacity element, thin film multilayer capacitor, electronic circuit and electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7319081B2 (en) 2003-02-27 2008-01-15 Tdk Corporation Thin film capacity element composition, high-permittivity insulation film, thin film capacity element, thin film multilayer capacitor, electronic circuit and electronic apparatus

Similar Documents

Publication Publication Date Title
CN112117126B (en) Multilayer ceramic capacitor and method of manufacturing the same
KR101843182B1 (en) Multilayer ceramic electronic component
US8953300B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
CN102543436B (en) Multilayer ceramic condenser and method of manufacturing same
US11004611B2 (en) Acrylic binder and multilayer electronic component using the same
KR101565645B1 (en) Multi-layered capacitor
JP7283675B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2020027928A (en) Multilayer ceramic capacitor and method of manufacturing the same
KR102552423B1 (en) Dielectric powder and multilayered ceramic electronic components using the same
US11610734B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
JP2020027929A (en) Multilayer ceramic capacitor and method of manufacturing the same
JP2021044533A (en) Multilayer ceramic capacitor and method of manufacturing the same
KR20140073644A (en) Multi-layered ceramic capacitor and board for mounting the same
US10650969B2 (en) Ceramic capacitor having metal or metal oxide in side margin portions, and method of manufacturing the same
JP2023076581A (en) Multilayer ceramic capacitor and method of manufacturing the same
JP7248363B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP6512844B2 (en) Multilayer capacitor and method of manufacturing multilayer capacitor
JP2000252152A (en) Laminated ceramic capacitor
KR101933426B1 (en) Multilayer ceramic electronic component
JP2000252153A (en) Laminated ceramic capacitor
JPH08273977A (en) Stacked layer capacitor
JP3078375B2 (en) Multilayer ceramic capacitors
JPH10270281A (en) Laminated ceramic capacitor
KR102057915B1 (en) Multilayer capacitor
JPH11186100A (en) Nonlinear dielectric element