JP2005136173A - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
JP2005136173A
JP2005136173A JP2003370450A JP2003370450A JP2005136173A JP 2005136173 A JP2005136173 A JP 2005136173A JP 2003370450 A JP2003370450 A JP 2003370450A JP 2003370450 A JP2003370450 A JP 2003370450A JP 2005136173 A JP2005136173 A JP 2005136173A
Authority
JP
Japan
Prior art keywords
internal electrode
capacitor
electrode
region
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003370450A
Other languages
Japanese (ja)
Inventor
Nobuhiro Higashihara
伸浩 東原
Hideto Sakoda
秀人 佐古田
Atsushi Nakagawa
敦之 中川
Yoshiji Dan
儀治 段
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003370450A priority Critical patent/JP2005136173A/en
Publication of JP2005136173A publication Critical patent/JP2005136173A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacitor whose electrostatic capacity will not be deteriorated and which generates hardly a structural defect such as crack or the like even when the capacitor is mounted on a wiring substrate. <P>SOLUTION: The widths of a first internal electrode 3 and a second internal electrode 4 in the opposing region of both of the internal electrodes are widened gradually toward both of upper and lower sides compared with those at the central area in the widthwise direction of a laminate. The rate of the minimum value to the maximum value of the electrode width in the opposing region of the first internal electrode 3 and the second internal electrode 4 is specified as 96%-99%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はコンデンサの構造に関するものである。   The present invention relates to a capacitor structure.

従来のコンデンサとしては、例えば図5に示す如く、矩形状を成す誘電体層22を、間に第1の内部電極23と第2の内部電極24とを交互に介在させて積層するとともに、第1の内部電極23、第2の内部電極24にそれぞれ電気的に接続される外部端子25,26を配設した構造のものが知られており、かかるコンデンサは、第1の内部電極23と第2の内部電極24との間に所定の電圧を印加し、両内部電極間に配されている誘電体層22に所定の静電容量を形成することによりコンデンサとして機能する(例えば、特許文献1参照。)。   As a conventional capacitor, for example, as shown in FIG. 5, a dielectric layer 22 having a rectangular shape is laminated with first internal electrodes 23 and second internal electrodes 24 interposed therebetween, There is known a structure in which external terminals 25 and 26 that are electrically connected to one internal electrode 23 and a second internal electrode 24 are arranged, respectively. 2 functions as a capacitor by applying a predetermined voltage between the two internal electrodes 24 and forming a predetermined capacitance in the dielectric layer 22 disposed between the two internal electrodes (for example, Patent Document 1). reference.).

上述した従来のコンデンサは、できるだけ大きな静電容量を得るために、全ての内部電極の外周をコンデンサ本体の外周にできるだけ近づけて内部電極の面積を広く確保するように設計されている。   The above-described conventional capacitor is designed to secure a large area of the internal electrode by making the outer periphery of all the internal electrodes as close as possible to the outer periphery of the capacitor body in order to obtain the largest possible capacitance.

このようなコンデンサをマザーボード等の配線基板上に実装する際は、上述したコンデンサを、その外部端子25,26と配線基板の接続パッドとの間に半田等の導電性接着剤が介在されるようにして配線基板上に載置させた後、半田等を高温で加熱・溶融させることによって行なわれ、これによってコンデンサの内部電極23,24が外部端子25,26及び半田等を介して配線基板の配線導体と電気的に接続される。
特開平1−226130号公報
When such a capacitor is mounted on a wiring board such as a mother board, a conductive adhesive such as solder is interposed between the external terminals 25 and 26 and the connection pads of the wiring board. Then, the solder and the like are heated and melted at a high temperature, so that the internal electrodes 23 and 24 of the capacitor are connected to the wiring board via the external terminals 25 and 26 and the solder or the like. It is electrically connected to the wiring conductor.
JP-A-1-226130

しかしながら、上述した従来のコンデンサにおいては、できるだけ大きな静電容量を得るために、全ての内部電極の外周をコンデンサ本体の外周にできるだけ近づけておくことによって内部電極23,24の面積を極力広く確保するように設計されており、上下に隣接する誘電体層同士が直に接する領域の面積は極めて狭くなっている。それ故、誘電体層間の密着強度は不足気味で、外部からの衝撃や熱等が印加された場合には、特にコンデンサの厚み方向中央域に大きな応力がかかり、コンデンサを構成している誘電体層同士が厚み方向中央域で剥離したり、内部にクラックが発生するといった欠点が誘発される。   However, in the above-described conventional capacitor, in order to obtain as large a capacitance as possible, the area of the internal electrodes 23 and 24 is ensured as wide as possible by keeping the outer periphery of all the internal electrodes as close as possible to the outer periphery of the capacitor body. The area of the region where the upper and lower adjacent dielectric layers are in direct contact with each other is extremely narrow. Therefore, the adhesion strength between the dielectric layers seems to be insufficient, and when an external impact or heat is applied, a large stress is applied particularly to the central region in the thickness direction of the capacitor, and the dielectric constituting the capacitor The drawbacks are that the layers peel in the central region in the thickness direction and cracks are generated inside.

本発明は上記欠点に鑑み案出されたもので、その目的は、大きな静電容量を確保しつつ、厚み方向中央域における誘電体層の剥離やクラックの発生を有効に防止することができるコンデンサを提供することにある。   The present invention has been devised in view of the above-described drawbacks, and its purpose is to provide a capacitor that can effectively prevent peeling of the dielectric layer and generation of cracks in the central region in the thickness direction while ensuring a large capacitance. Is to provide.

本発明のコンデンサは、複数個の誘電体層を積層することにより直方体状をなすように形成した積層体の内部で、隣接する誘電体層間に、第1の内部電極と第2の内部電極とを両内部電極が一部対向するようにして交互に介在させてなるコンデンサであって、前記第1の内部電極及び第2の内部電極は、両内部電極の対向領域における電極幅が、前記積層体の厚み方向中央域より上下両側に向かって漸次広くなっていることを特徴とするものである。   The capacitor according to the present invention includes a first internal electrode and a second internal electrode between adjacent dielectric layers in a stacked body formed by stacking a plurality of dielectric layers to form a rectangular parallelepiped shape. Wherein the first internal electrode and the second internal electrode have an electrode width in a region where the internal electrodes are opposed to each other. It is characterized by being gradually wider toward the upper and lower sides than the central region in the thickness direction of the body.

また本発明のコンデンサは、前記対向領域における第1の内部電極及び第2の内部電極のエッジ部より前記積層体の端面までの距離が前記積層体の厚み方向中央域より上下両側に向かって漸次短くなっていることを特徴とするものである。   In the capacitor of the present invention, the distance from the edge portion of the first internal electrode and the second internal electrode in the facing region to the end surface of the multilayer body gradually increases from the central region in the thickness direction of the multilayer body toward the upper and lower sides. It is characterized by being shortened.

更に本発明のコンデンサは、前記第1の内部電極及び第2の内部電極の前記対向領域における電極幅の最大値に対する最小値の比率が96%〜99%であることを特徴とするものである。   Furthermore, the capacitor of the present invention is characterized in that the ratio of the minimum value to the maximum value of the electrode width in the opposed region of the first internal electrode and the second internal electrode is 96% to 99%. .

また更に本発明のコンデンサは、前記第1の内部電極及び第2の内部電極の前記対向領域におけるエッジ部より前記積層体の端面までの距離の最大値に対する最小値の比率が96%〜99%であることを特徴とするものである。   Furthermore, in the capacitor of the present invention, the ratio of the minimum value to the maximum value of the distance from the edge portion in the facing region of the first internal electrode and the second internal electrode to the end face of the multilayer body is 96% to 99%. It is characterized by being.

更にまた本発明のコンデンサは、前記第1の内部電極及び第2の内部電極の前記対向領域におけるエッジ部より前記積層体の端面までの距離の最大値に対する最小値の比率が96%〜99%であることを特徴とするものである。   Furthermore, in the capacitor of the present invention, the ratio of the minimum value to the maximum value of the distance from the edge portion in the opposed region of the first internal electrode and the second internal electrode to the end face of the multilayer body is 96% to 99%. It is characterized by being.

本発明によれば、第1の内部電極及び第2の内部電極の両内部電極の対向領域における電極幅が、積層体の厚み方向中央域より上下両側に向かって漸次広くすることにより、内部電極のない部位の面積が比較的小さくすることができ、密着強度の高い誘電体層の面積を比較的大きくできるので、応力が強くかかる厚み方向中央領域の機械強度を向上することが可能となり、かかるコンデンサを配線基板上に実装した後に、コンデンサや配線基板に対して大きな衝撃が印加されたり、或いは、熱応力が繰り返し印加され、配線基板が変形した場合でもコンデンサにクラック等の不具合が発生するのを有効に防止することができる。   According to the present invention, the electrode width in the opposing region of both the first internal electrode and the second internal electrode is gradually increased toward the upper and lower sides from the central region in the thickness direction of the laminated body, whereby the internal electrode Since the area of the part without the gap can be made relatively small and the area of the dielectric layer having a high adhesion strength can be made relatively large, it becomes possible to improve the mechanical strength of the central region in the thickness direction where the stress is strong. After mounting the capacitor on the wiring board, a large impact is applied to the capacitor or the wiring board, or even if thermal stress is repeatedly applied and the wiring board is deformed, defects such as cracks occur in the capacitor. Can be effectively prevented.

また本発明によれば、対向領域における第1の内部電極及び第2の内部電極のエッジ部より前記積層体の端面までの距離が積層体の厚み方向中央域より上下両側に向かって漸次短くすることにより、内部電極長さ方向についても上述した内部電極幅と同様の効果がある。このように、強い応力がかかる厚み中央領域において、内部電極幅方向及び長さ方向の密着強度を比較的高く保つことが可能となり、コンデンサにクラック等の不具合が発生するのを有効に防止することができる。   According to the invention, the distance from the edge portions of the first internal electrode and the second internal electrode in the opposing region to the end surface of the multilayer body is gradually shortened from the central region in the thickness direction of the multilayer body toward the upper and lower sides. As a result, the same effect as the internal electrode width described above can be obtained in the internal electrode length direction. In this way, in the thickness central region where a strong stress is applied, the adhesion strength in the internal electrode width direction and the length direction can be kept relatively high, and it is possible to effectively prevent the occurrence of defects such as cracks in the capacitor. Can do.

更に本発明によれば、積層体の厚み方向中央域より上下両側に向かって漸次内部電極の面積を変更し、また、第1の内部電極及び第2の内部電極の対向領域における内部電極幅の最大値に対する最小値の比率が96%〜99%にしたことから、第1の内部電極及び第2の内部電極の対向面積が厚み方向にわたり大きく変化しないので、静電容量を高く保つことができる。   Further, according to the present invention, the area of the internal electrode is gradually changed from the central region in the thickness direction of the laminate toward the upper and lower sides, and the internal electrode width in the opposing region of the first internal electrode and the second internal electrode is changed. Since the ratio of the minimum value to the maximum value is 96% to 99%, the facing area of the first internal electrode and the second internal electrode does not change greatly in the thickness direction, so that the capacitance can be kept high. .

また更に本発明によれば、第1の内部電極及び第2の内部電極の前記対向領域におけるエッジ部より前記積層体の端面までの距離の最大値に対する最小値の比率が96%〜99%にしたことから、内部電極長さ方向についても上述の内部電極幅方向と同様の効果がある。   Furthermore, according to the present invention, the ratio of the minimum value to the maximum value of the distance from the edge portion in the facing region of the first internal electrode and the second internal electrode to the end face of the multilayer body is 96% to 99%. Therefore, the same effect as the internal electrode width direction described above can be obtained in the internal electrode length direction.

以下、本発明を添付図面に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の一実施形態に係るコンデンサの外観斜視図、図2は図1のコンデンサのA−A´断面図、図3は図1のコンデンサのB−B´断面図、図4は図1のコンデンサのC−C´断面図であり、1は積層体、2は誘電体層、3は第1の内部電極,4は第2の内部電極、5,6は外部端子である。   1 is an external perspective view of a capacitor according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line AA ′ of the capacitor shown in FIG. 1, FIG. 3 is a cross-sectional view taken along the line BB ′ of the capacitor shown in FIG. FIG. 2 is a cross-sectional view of the capacitor of FIG. 1, wherein 1 is a multilayer body, 2 is a dielectric layer, 3 is a first internal electrode, 4 is a second internal electrode, and 5 and 6 are external terminals.

同図に示すコンデンサは、矩形状を成す複数個の誘電体層2を積層して略直方体状の積層体1を形成するとともに、該積層体1の内部で、各誘電体層間2−2に、第1の内部電極3及び第2の内部電極4を一部対向させた状態で交互に介在させ、さらに、その積層体1の両端部に、第1の内部電極3に電気的に接続される外部端子5と第2の内部電極4に電気的に接続される外部端子6とを被着・形成した構造を有している。   The capacitor shown in FIG. 1 is formed by laminating a plurality of rectangular dielectric layers 2 to form a substantially rectangular parallelepiped laminated body 1, and in each of the dielectric layers 2-2 within the laminated body 1. The first internal electrode 3 and the second internal electrode 4 are alternately interposed in a partially opposed state, and are further electrically connected to the first internal electrode 3 at both ends of the laminate 1. The external terminal 5 and the external terminal 6 electrically connected to the second internal electrode 4 are attached and formed.

前記誘電体層2は、例えば、チタン酸バリウム、チタン酸カルシウム、チタン酸ストロンチウム等を主成分とする誘電体材料によって1層あたり1μm〜3μmの厚みに形成されており、かかる誘電体層2を、例えば、70層〜600層だけ積層することによって積層体1が形成される。   The dielectric layer 2 is formed to a thickness of 1 μm to 3 μm per layer by a dielectric material mainly composed of, for example, barium titanate, calcium titanate, strontium titanate, and the like. For example, the laminated body 1 is formed by laminating only 70 to 600 layers.

上述した誘電体層2は、例えば、チタン酸バリウムを主成分とする誘電体材料から成る場合、チタン酸バリウムの粉末に適当な有機溶剤、ガラスフリット、有機バインダ等を添加・混合して泥漿状になすとともに、これを従来周知のドクターブレード法等によって所定形状、所定厚みのセラミックグリーンシートと成し、しかる後、得られたセラミックグリーンシートを従来周知のグリーンシート積層法等にて所定の枚数だけ積層・圧着させることによりセラミックグリーンシートの積層体を形成し、最後に積層体を、例えば、1100℃〜1400℃の温度で焼成することによって製作される。尚、この工程において使用されるセラミックグリーンシートの焼成に伴なう収縮率は、例えば、10%〜20%程度に設定される。   For example, when the dielectric layer 2 is made of a dielectric material mainly composed of barium titanate, an appropriate organic solvent, glass frit, organic binder, or the like is added to and mixed with the barium titanate powder. In addition, this is formed into a ceramic green sheet having a predetermined shape and thickness by a conventionally known doctor blade method or the like, and then a predetermined number of ceramic green sheets are obtained by a conventionally known green sheet laminating method or the like. The ceramic green sheet laminate is formed by laminating and pressing only, and finally the laminate is produced by firing at a temperature of 1100 ° C. to 1400 ° C., for example. In addition, the shrinkage | contraction rate accompanying baking of the ceramic green sheet used in this process is set to about 10%-20%, for example.

一方、前記誘電体層2間に介在されている第1の内部電極3及び第2の内部電極4は、ニッケル、銅、ニッケル/銅、銀/パラジウム等の金属を主成分とする導体材料によって、例えば、外形寸法が2mm×2mmの場合、1層あたりの厚みは0.5μm〜2.0μmに設定される。   On the other hand, the first internal electrode 3 and the second internal electrode 4 interposed between the dielectric layers 2 are made of a conductive material whose main component is a metal such as nickel, copper, nickel / copper, silver / palladium. For example, when the outer dimension is 2 mm × 2 mm, the thickness per layer is set to 0.5 μm to 2.0 μm.

かかるコンデンサは、外部電極5を介して隣合う内部電極間3−3に所定の電圧を印加し、内部電極間3−3に配されている誘電体層2に所定の静電容量を形成することによってコンデンサとして機能する。   Such a capacitor applies a predetermined voltage to the adjacent inter-electrode 3-3 via the external electrode 5, and forms a predetermined electrostatic capacity in the dielectric layer 2 disposed between the internal electrodes 3-3. Function as a capacitor.

上述した第1の内部電極3及び第2の内部電極4は、ニッケル/銅から成る場合、例えば、ニッケル/銅の粉末に適当な有機溶剤、ガラスフリット、有機バインダ等を添加・混合して得た導体ペーストを、上述したセラミックグリーンシートの積層前に各セラミックグリーンシートの一主面に従来周知のスクリーン印刷法、インクジェット法等によって、導体ペーストが塗布される幅を漸次変更して、所定パターンに印刷・塗布しておくことにより各セラミックグリーンシート間に介在され、導体ペーストの幅が広く塗布されたセラミックグリーンシートより積層し、厚み方向中央域においてこの幅が最小となった後に、また、幅が広い方を積層することで積層体1を得る。この積層体1を焼成する際に同時焼成されて第1の内部電極3、第2の内部電極4となる。   When the first internal electrode 3 and the second internal electrode 4 are made of nickel / copper, for example, an appropriate organic solvent, glass frit, organic binder, or the like is added to and mixed with the nickel / copper powder. Before the above-mentioned ceramic green sheets are laminated, the width of the conductor paste applied to the main surface of each ceramic green sheet is gradually changed by a conventionally known screen printing method, ink jet method, etc. After being printed and applied to the ceramic green sheet, which is interposed between the ceramic green sheets and coated with a wide width of the conductive paste, and after this width is minimized in the central area in the thickness direction, Laminate 1 is obtained by laminating the wider one. When the laminated body 1 is fired, it is fired simultaneously to become the first internal electrode 3 and the second internal electrode 4.

また、第1の内部電極3及び第2の内部電極4は、例えば、支持体の主面に電解メッキ及び無電解メッキにより析出された金属メッキ膜を所定の内部電極3,4の形状なるようにエッチング処理を施して形成したものを用いることができる。あるいは、支持体の主面に所定の内部電極3,4が得られるように内部電極3,4の形成領域以外をマスクして電解メッキによって内部電極3,4を作製するようにしてもよい。あるいは、金属メッキ膜をイオンプレーテング、スパッタリング、化学蒸着等の薄膜形成法により作製してもよく、その形成方法を特に限定するものではない。   Further, the first internal electrode 3 and the second internal electrode 4 are formed so that, for example, a metal plating film deposited by electrolytic plating and electroless plating is formed on the main surface of the support in the shape of the predetermined internal electrodes 3 and 4. What was formed by performing an etching process on can be used. Alternatively, the internal electrodes 3 and 4 may be produced by electrolytic plating while masking areas other than the formation region of the internal electrodes 3 and 4 so that predetermined internal electrodes 3 and 4 are obtained on the main surface of the support. Alternatively, the metal plating film may be produced by a thin film forming method such as ion plating, sputtering, chemical vapor deposition, etc., and the forming method is not particularly limited.

内部電極3,4をニッケル等の金属メッキ膜で作製した場合、セラミックグリーンシートの主面に略同形状の金属メッキ膜を形成した後、積層し、焼成すると内部電極に面積差を付けなくとも本発明のコンデンサを得ることができる。   When the internal electrodes 3 and 4 are made of a metal plating film such as nickel, a metal plating film having substantially the same shape is formed on the main surface of the ceramic green sheet, and then laminated and fired without causing an area difference in the internal electrodes. The capacitor of the present invention can be obtained.

このように作製された金属メッキ膜をセラミックグリーンシートに転写することにより、各セラミックグリーンシート間に介在され、セラミックグリーンシートの積層体を焼成する際に同時焼成されて第1の内部電極3、第2の内部電極4となる。   By transferring the metal plating film thus prepared to the ceramic green sheet, the first internal electrode 3 is interposed between the ceramic green sheets and simultaneously fired when the laminate of the ceramic green sheets is fired. This becomes the second internal electrode 4.

そして、第1の内部電極3及び第2の内部電極4は、この両内部電極の対向領域における電極幅が、積層体1の厚み方向中央域より上下両側に向かって漸次広くなっており、さらに、この対向領域における第1の内部電極3及び第2の内部電極4のエッジ部より積層体1の端面までの距離が積層体1の厚み方向中央域より上下両側に向かって漸次短くなっている。   The first internal electrode 3 and the second internal electrode 4 are such that the electrode width in the opposing region of both internal electrodes gradually increases from the central region in the thickness direction of the laminate 1 toward the upper and lower sides. The distance from the edge portions of the first internal electrode 3 and the second internal electrode 4 to the end face of the multilayer body 1 in this opposing region is gradually shortened from the central area in the thickness direction of the multilayer body 1 toward the upper and lower sides. .

また、第1の内部電極3及び第2の内部電極4の対向領域における電極幅の最大値に対する最小値の比率は、96%〜99%にすることが好ましい。さらに、この対向領域における第1の内部電極3及び第2の内部電極4のエッジ部より積層体1の端面までの距離の最大値に対する最小値の比率は、96%〜99%にすることが好ましい。   The ratio of the minimum value to the maximum value of the electrode width in the opposing region of the first internal electrode 3 and the second internal electrode 4 is preferably 96% to 99%. Furthermore, the ratio of the minimum value to the maximum value of the distance from the edge portions of the first internal electrode 3 and the second internal electrode 4 to the end face of the multilayer body 1 in this facing region should be 96% to 99%. preferable.

このような構造にすることにより、内部電極と誘電体層の密着強度と、誘電体層同士の密着強度を比較すると誘電体層同士の密着強度のほうが高いので、強い応力がかかる厚み中央領域の誘電体層の面積を増加させればコンデンサとした時の密着強度が向上し、比較的強い機械強度を得ることができる。   By making such a structure, the adhesion strength between the dielectric layers is higher when the adhesion strength between the internal electrode and the dielectric layer is compared with the adhesion strength between the dielectric layers. If the area of the dielectric layer is increased, the adhesion strength of the capacitor is improved, and a relatively strong mechanical strength can be obtained.

故に、配線基板上にコンデンサ8を実装した後に、大きな衝撃が印加されたり、或いは、熱応力が繰り返し印加され配線基板が変形しても、応力が発生するコンデンサの厚み中央域またはコンデンサの厚み方向でクラックが発生するのを有効に防止することができる。   Therefore, after mounting the capacitor 8 on the wiring board, even if a large impact is applied, or a thermal stress is repeatedly applied and the wiring board is deformed, the stress is generated in the central area of the capacitor or in the thickness direction of the capacitor. It is possible to effectively prevent cracks from occurring.

一方、静電容量の観点からは、第1の内部電極及び第2の内部電極の対向面積が厚み方向にわたり大きく変化しないので、静電容量を高く保つことができる。   On the other hand, from the viewpoint of capacitance, the opposing areas of the first internal electrode and the second internal electrode do not change greatly in the thickness direction, so that the capacitance can be kept high.

また、上述した積層体1の両端部に設けられている外部端子5,6は、コンデンサをマザーボード等の配線基板上に搭載する際、配線基板の接続パッドに半田等の導電性接着剤を介して電気的に接続される外部接続用の端子として機能するものであり、積層体1の両端部に外部電極用の導体ペーストを塗布して焼成し、更に、例えば、ニッケルや金等の半田濡れ性が良好な金属を従来周知の電解めっき法等によって所定厚みに被着させることによって形成される。   In addition, the external terminals 5 and 6 provided at both ends of the laminate 1 described above are connected to the connection pads of the wiring board via a conductive adhesive such as solder when the capacitor is mounted on the wiring board such as a mother board. And functions as an external connection terminal that is electrically connected to each other, and a conductive paste for an external electrode is applied to both ends of the laminated body 1 and fired. It is formed by depositing a metal having good properties to a predetermined thickness by a conventionally known electrolytic plating method or the like.

かかるコンデンサは、外部電極5を介して隣合う内部電極間3−3に所定の電圧を印加し、内部電極間3−3に配されている誘電体層2に所定の静電容量を形成することによってコンデンサとして機能する。   Such a capacitor applies a predetermined voltage to the adjacent inter-electrode 3-3 via the external electrode 5, and forms a predetermined electrostatic capacity in the dielectric layer 2 disposed between the internal electrodes 3-3. Function as a capacitor.

尚、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。   The present invention is not limited to the above-described embodiments, and various changes and improvements can be made without departing from the scope of the present invention.

例えば、上述した実施形態においては、積層体の厚み方向中央域より上下両側に向かって漸次内部電極の面積を変えるようにしたが、これに代えて、複数の略同形状の内部電極の群を作製し、その群を積層体の厚み方向中央域より上下両側に漸次積層するようにしても構わない。   For example, in the above-described embodiment, the area of the internal electrodes is gradually changed from the central region in the thickness direction of the laminate toward both the upper and lower sides. The group may be manufactured and the group may be gradually laminated on the upper and lower sides from the central region in the thickness direction of the laminate.

更に上述した実施形態においては、1個のコンデンサを単独で製造する場合を例にとって説明したが、これに代えて、いわゆる‘複数個取り’の手法を採用して、大型の積層体より切り出した複数個の個片を焼成することにより複数個のコンデンサを同時に得ても良いことは言うまでもない。   Further, in the above-described embodiment, the case where one capacitor is manufactured alone has been described as an example, but instead of this, a so-called 'multiple picking' method is adopted and cut out from a large laminate. It goes without saying that a plurality of capacitors may be obtained simultaneously by firing a plurality of pieces.

また、コンデンサの厚み方向の両内部電極より外側の誘電体層は、内部電極間の誘電体と異なる誘電体材料を用いてもよい。更に、この誘電体層の厚みも目的に応じて任意に変更が可能である。   In addition, the dielectric layer outside the internal electrodes in the thickness direction of the capacitor may use a dielectric material different from the dielectric between the internal electrodes. Furthermore, the thickness of the dielectric layer can be arbitrarily changed according to the purpose.

本発明の一実施形態に係るコンデンサの外観斜視図である。1 is an external perspective view of a capacitor according to an embodiment of the present invention. 図1のコンデンサのA−A´線断面図である。FIG. 2 is a cross-sectional view taken along the line AA ′ of the capacitor in FIG. 1. 図1のコンデンサのB−B´線断面図である。FIG. 2 is a cross-sectional view taken along the line BB ′ of the capacitor in FIG. 1. 図1のコンデンサのC−C´線断面図である。FIG. 2 is a cross-sectional view of the capacitor of FIG. 従来のコンデンサの断面図である。It is sectional drawing of the conventional capacitor | condenser.

符号の説明Explanation of symbols

1・・・積層体
2・・・誘電体層
3・・・第1の内部電極(内部電極)
4・・・第2の内部電極(内部電極)
5、6・・・外部端子
DESCRIPTION OF SYMBOLS 1 ... Laminated body 2 ... Dielectric layer 3 ... 1st internal electrode (internal electrode)
4 ... 2nd internal electrode (internal electrode)
5, 6 ... External terminals

Claims (4)

複数個の誘電体層を積層することにより直方体状をなすように形成した積層体の内部で、隣接する誘電体層間に、第1の内部電極と第2の内部電極とを両内部電極が一部対向するようにして交互に介在させてなるコンデンサであって、
前記第1の内部電極及び第2の内部電極は、両内部電極の対向領域における電極幅が、前記積層体の厚み方向中央域より上下両側に向かって漸次広くなっていることを特徴とするコンデンサ。
The first internal electrode and the second internal electrode are connected to each other between the adjacent dielectric layers in the laminated body formed in a rectangular parallelepiped shape by laminating a plurality of dielectric layers. Capacitors that are alternately interposed so as to face each other,
The capacitor in which the first internal electrode and the second internal electrode have an electrode width in an opposing region of both internal electrodes gradually wider toward the upper and lower sides than the central region in the thickness direction of the laminate. .
前記対向領域における第1の内部電極及び第2の内部電極のエッジ部より前記積層体の端面までの距離が前記積層体の厚み方向中央域より上下両側に向かって漸次短くなっていることを特徴とする請求項1に記載のコンデンサ。 The distance from the edge part of the 1st internal electrode in the said opposing area | region and the 2nd internal electrode to the end surface of the said laminated body is gradually shortened toward the up-and-down both sides from the thickness direction center area | region of the said laminated body. The capacitor according to claim 1. 前記第1の内部電極及び第2の内部電極の前記対向領域における電極幅の最大値に対する最小値の比率が96%〜99%であることを特徴とする請求項1に記載のコンデンサ。 2. The capacitor according to claim 1, wherein a ratio of a minimum value to a maximum value of an electrode width in the opposing region of the first internal electrode and the second internal electrode is 96% to 99%. 前記第1の内部電極及び第2の内部電極の前記対向領域におけるエッジ部より前記積層体の端面までの距離の最大値に対する最小値の比率が96%〜99%であることを特徴とする請求項2記載のコンデンサ。

The ratio of the minimum value to the maximum value of the distance from the edge part in the opposing region of the first internal electrode and the second internal electrode to the end face of the multilayer body is 96% to 99%. Item 3. The capacitor according to item 2.

JP2003370450A 2003-10-30 2003-10-30 Capacitor Pending JP2005136173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003370450A JP2005136173A (en) 2003-10-30 2003-10-30 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003370450A JP2005136173A (en) 2003-10-30 2003-10-30 Capacitor

Publications (1)

Publication Number Publication Date
JP2005136173A true JP2005136173A (en) 2005-05-26

Family

ID=34647459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370450A Pending JP2005136173A (en) 2003-10-30 2003-10-30 Capacitor

Country Status (1)

Country Link
JP (1) JP2005136173A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115931A (en) * 2005-10-21 2007-05-10 Taiyo Yuden Co Ltd Varistor
JP2011135032A (en) * 2009-12-24 2011-07-07 Samsung Electro-Mechanics Co Ltd Multilayer ceramic capacitor and method of manufacturing the same
JP2019009222A (en) * 2017-06-22 2019-01-17 太陽誘電株式会社 Multilayer ceramic capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115931A (en) * 2005-10-21 2007-05-10 Taiyo Yuden Co Ltd Varistor
JP2011135032A (en) * 2009-12-24 2011-07-07 Samsung Electro-Mechanics Co Ltd Multilayer ceramic capacitor and method of manufacturing the same
US8194390B2 (en) 2009-12-24 2012-06-05 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and fabricating method thereof
JP2019009222A (en) * 2017-06-22 2019-01-17 太陽誘電株式会社 Multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
JP5777179B2 (en) Multilayer ceramic electronic component for built-in substrate and printed circuit board with built-in multilayer ceramic electronic component
JP2016009860A (en) Board built-in type laminated ceramic electronic component, manufacturing method for the same and laminated ceramic electronic component built-in type print circuit board
JP2012191163A (en) Multilayer ceramic capacitor and manufacturing method for the same
KR20190035178A (en) Multilayer ceramic capacitor and method for fabricating the same
JP7275951B2 (en) Multilayer ceramic capacitor
JP2014123707A (en) Substrate-embedded multilayer ceramic electronic component, method of manufacturing the same, and printed board including substrate-embedded multilayer ceramic electronic component
JP2017108057A (en) Multilayer ceramic capacitor
JP2014216643A (en) Multilayer ceramic electronic component and board for mounting the same
JP4428852B2 (en) Multilayer electronic component and manufacturing method thereof
JP2012009679A (en) Ceramic electronic component and method of manufacturing the same
JP4463045B2 (en) Ceramic electronic components and capacitors
JP2004235377A (en) Ceramic electronic component
JP2000353636A (en) Laminated ceramic part
JP7283221B2 (en) Electronic component manufacturing method
JP2005159056A (en) Laminated ceramic electronic component
JP2000277382A (en) Multi-laminated ceramic capacitor and manufacturing method of the same
JP2005159121A (en) Laminated ceramic electronic component
JP2005136173A (en) Capacitor
JPH09266131A (en) Multilayer electronic part
JP2000315617A (en) Manufacture of laminated ceramic electronic parts
JP4412837B2 (en) Multilayer electronic component and manufacturing method thereof
JP4646779B2 (en) Multilayer capacitor, multilayer capacitor mounting structure, and multilayer capacitor manufacturing method
JPH0935986A (en) Ceramic laminated electronic component and its manufacture
JP2006041319A (en) Surface-mounted multiple capacitor and mounting structure thereof
JP4663706B2 (en) Manufacturing method of electronic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091029