JP2005159056A - Laminated ceramic electronic component - Google Patents

Laminated ceramic electronic component Download PDF

Info

Publication number
JP2005159056A
JP2005159056A JP2003396420A JP2003396420A JP2005159056A JP 2005159056 A JP2005159056 A JP 2005159056A JP 2003396420 A JP2003396420 A JP 2003396420A JP 2003396420 A JP2003396420 A JP 2003396420A JP 2005159056 A JP2005159056 A JP 2005159056A
Authority
JP
Japan
Prior art keywords
dielectric layer
porosity
electronic component
laminated
ceramic electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003396420A
Other languages
Japanese (ja)
Inventor
Keisuke Konishi
啓介 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003396420A priority Critical patent/JP2005159056A/en
Publication of JP2005159056A publication Critical patent/JP2005159056A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated ceramic electronic component capable of preventing internal defects at baking and occurrence of cracks due to an external shock. <P>SOLUTION: The laminated ceramic electronic component is configured such that internal electrodes 3, 4 are laminated with each of a plurality of first dielectric layers 2a inbetween to form a laminated body 1, a first dielectric layer 2b is coated and formed to both principal sides of the laminated body 1, and external electrodes 5, 6 electrically connected to the internal electrodes 3, 4 are coated and formed to end faces of the laminated body 1. The void rate of the first and second dielectric layers 2a, 2b is selected as 0.01% to 1.00%, and the void rate of the first dielectric layer 2a is higher than the void rate of the display second dielectric layer 2b. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、積層セラミック電子部品に関するものである。   The present invention relates to a multilayer ceramic electronic component.

代表的な積層セラミック電子部品として、積層セラミックコンデンサを例にとって説明する。   As a typical multilayer ceramic electronic component, a multilayer ceramic capacitor will be described as an example.

図4は、従来の積層セラミックコンデンサを示す断面図であり、同図において、積層セラミックコンデンサ30は、複数の誘電体層32を間に内部電極33、34を介して積層した積層体1と、積層体1の端面に被着・形成し、内部電極33、34に夫々電気的に接続される外部電極35、36とで構成されている。   FIG. 4 is a cross-sectional view showing a conventional multilayer ceramic capacitor, in which the multilayer ceramic capacitor 30 includes a multilayer body 1 in which a plurality of dielectric layers 32 are stacked with internal electrodes 33 and 34 interposed therebetween, It is composed of external electrodes 35 and 36 which are deposited and formed on the end face of the laminate 1 and are electrically connected to the internal electrodes 33 and 34, respectively.

かかる従来の積層セラミックコンデンサ10は以下の工程によって製作される。   Such a conventional multilayer ceramic capacitor 10 is manufactured by the following process.

まず、セラミックグリーンシート32上に、スクリーン印刷法などにより、Cu、Niなどの金属粉末、バインダ樹脂、溶剤などを混合した導体ペーストを薄膜状に塗布するとともに乾燥し、内部電極となる導体パターン33、34を形成する。   First, a conductive paste mixed with metal powder such as Cu and Ni, a binder resin, a solvent and the like is applied in a thin film on the ceramic green sheet 32 by a screen printing method or the like, and dried to form a conductive pattern 33 serving as an internal electrode. , 34 are formed.

次に、導体パターン33、34が形成された複数のセラミックグリーンシート32を積層し、導体パターン33、34が形成されない複数のセラミックグリーンシート32を積層することにより大型積層体を形成する。   Next, a plurality of ceramic green sheets 32 on which the conductor patterns 33 and 34 are formed are stacked, and a plurality of ceramic green sheets 32 on which the conductor patterns 33 and 34 are not formed are stacked to form a large laminate.

続いて、大型積層体を各素子領域毎に切断して未焼成状態の積層体31を形成し、次に未焼成状態の積層体31を焼成することによって積層体31を得、最後に、得られた積層体31の一対の端部に外部電極35、36を被着・形成することによって積層セラミックコンデンサ30が得られる。
特開平3−91218号公報 特許第2804325号 特許第3047706号公報
Subsequently, the large laminate is cut into each element region to form an unfired laminate 31, and then the unfired laminate 31 is fired to obtain the laminate 31 and finally obtained. The laminated ceramic capacitor 30 is obtained by depositing and forming the external electrodes 35 and 36 on the pair of end portions of the laminated body 31 thus obtained.
Japanese Patent Laid-Open No. 3-91218 Japanese Patent No. 2804325 Japanese Patent No. 3047706

しかしながら、上述した従来の積層セラミックコンデンサ30においては、誘電体層32の空隙率が低い場合、図4(a)に示すように、焼成時に発生する内部応力を緩和する効果が低下するため、デラミネーション・クラックなどの内部欠陥42が発生するという問題点があった。一方、誘電体層32の空隙率が高い場合、図4(b)に示すように、外部からの衝撃により、積層体31にクラック43が発生するという問題点があった。   However, in the conventional multilayer ceramic capacitor 30 described above, when the porosity of the dielectric layer 32 is low, as shown in FIG. 4A, the effect of relieving internal stress generated during firing is reduced. There was a problem that internal defects 42 such as lamination cracks occurred. On the other hand, when the porosity of the dielectric layer 32 is high, as shown in FIG. 4B, there is a problem that a crack 43 is generated in the laminate 31 due to an external impact.

本発明は、上述の問題点に鑑みてなされたもので、その目的は、焼成時の内部欠陥や、外部衝撃によるクラックを防止できる積層セラミック電子部品を提供することにある。   The present invention has been made in view of the above-described problems, and an object thereof is to provide a multilayer ceramic electronic component that can prevent internal defects during firing and cracks due to external impact.

本発明の積層セラミック電子部品は、複数の第1誘電体層を間に内部電極を介して積層するとともに、該積層体の両主面に第2誘電体層を被着・形成し、前記積層体の端面に前記内部電極に電気的に接続される外部電極を被着・形成してなる積層セラミック電子部品であって、前記第1誘電体層及び前記第2誘電体層の空隙率が0.01%〜1.00%に設定されており、且つ前記第1誘電体層の空隙率が前記第2誘電体層の空隙率に比し高いことをことを特徴とするものである。   The multilayer ceramic electronic component of the present invention is formed by laminating a plurality of first dielectric layers with internal electrodes interposed therebetween, and depositing and forming a second dielectric layer on both main surfaces of the laminate, A multilayer ceramic electronic component formed by depositing and forming an external electrode electrically connected to the internal electrode on an end face of a body, wherein the porosity of the first dielectric layer and the second dielectric layer is 0 0.01% to 1.00%, and the porosity of the first dielectric layer is higher than the porosity of the second dielectric layer.

また本発明の積層セラミック電子部品は、前記第1誘電体層の空隙率をP、前記第2誘電体層の空隙率をPとした場合、1<P/P≦10の範囲に設定されていることを特徴とするものである。 In the multilayer ceramic electronic component of the present invention, when the porosity of the first dielectric layer is P 1 and the porosity of the second dielectric layer is P 2 , the range is 1 <P 1 / P 2 ≦ 10. It is characterized by being set to.

さらに本発明の積層セラミック電子部品は、前記第2誘電体層内の空隙率が第1誘電体層側に比し表層側で低くなっていることを特徴とするものである。   Furthermore, the multilayer ceramic electronic component of the present invention is characterized in that the porosity in the second dielectric layer is lower on the surface layer side than on the first dielectric layer side.

本発明によれば、第1誘電体層の空隙率が第2誘電体層の空隙率に比し高い。すなわち、第1誘電体層の空隙率を高くできることから、焼成時のデラミネーション、クラックなどの内部欠陥を防止でき、且つ第2誘電体層の空隙率を低くできることにより、積層体の機械的強度が向上し、外部衝撃によるクラックを防止できる。さらに、第1誘電体層及び第2誘電体層の空隙率が0.01%〜1.00%に設定されているため、上記焼成時のデラミネーション、クラックなどの内部欠陥を防止しつつ、第1誘電体層の厚みが10μm以下と薄型化した場合も、空隙を起点に内部電極間のショートに至ることがない。   According to the present invention, the porosity of the first dielectric layer is higher than the porosity of the second dielectric layer. That is, since the porosity of the first dielectric layer can be increased, internal defects such as delamination and cracks during firing can be prevented, and the porosity of the second dielectric layer can be decreased, so that the mechanical strength of the laminate can be reduced. And cracks due to external impact can be prevented. Furthermore, since the porosity of the first dielectric layer and the second dielectric layer is set to 0.01% to 1.00%, while preventing internal defects such as delamination and cracks during the firing, Even when the thickness of the first dielectric layer is reduced to 10 μm or less, there is no short circuit between the internal electrodes starting from the gap.

また、第1誘電体層の空隙率をP、第2誘電体層の空隙率をPとした場合、1<P/P≦10の範囲に設定されているため、より効果的に、上記焼成時の内部欠陥や、外部衝撃によるクラックを防止しつつ、空隙を起点とする内部電極間のショートを防止できる。 Further, when the porosity of the first dielectric layer is P 1 and the porosity of the second dielectric layer is P 2 , it is more effective because it is set in the range of 1 <P 1 / P 2 ≦ 10. In addition, it is possible to prevent a short circuit between the internal electrodes starting from the gap while preventing internal defects during the firing and cracking due to external impact.

さらに、第2誘電体層内の空隙率が第1誘電体層側に比し表層側で低くなっているため、第2誘電体層内の第1誘電体層側の空隙率を高くできることから、内部電極の有無による段差を緩和できる。   Furthermore, since the porosity in the second dielectric layer is lower on the surface layer side than on the first dielectric layer side, the porosity on the first dielectric layer side in the second dielectric layer can be increased. , Steps due to the presence or absence of internal electrodes can be reduced.

以下、本発明にかかる積層セラミック電子部品の製造方法を、積層セラミックコンデンサを製造する場合を例にとって説明する。   Hereinafter, a method of manufacturing a multilayer ceramic electronic component according to the present invention will be described taking a case of manufacturing a multilayer ceramic capacitor as an example.

図1(a)は、本発明の一実施形態に係る積層セラミックコンデンサを示す外観斜視図、図1(b)は(a)の積層セラミックコンデンサの縦断面図、図2は図1の積層セラミックコンデンサの製造方法を示す図である。   1A is an external perspective view showing a multilayer ceramic capacitor according to an embodiment of the present invention, FIG. 1B is a longitudinal sectional view of the multilayer ceramic capacitor of FIG. 1A, and FIG. 2 is a multilayer ceramic capacitor of FIG. It is a figure which shows the manufacturing method of a capacitor | condenser.

本実施形態の積層セラミックコンデンサ10は、大略的に、積層体1と、積層体1の一対の端面に被着・形成された外部電極5、6とで構成されている。   The multilayer ceramic capacitor 10 of the present embodiment is generally composed of a multilayer body 1 and external electrodes 5 and 6 that are deposited and formed on a pair of end faces of the multilayer body 1.

積層体1は、間に内部電極3、4が形成されて積層された複数の誘電体層2aと、両主面に積層された第2誘電体層2bとからなり、内部電極3と外部電極5、内部電極4と外部電極6が夫々電気的に接続されている。   The multilayer body 1 includes a plurality of dielectric layers 2a laminated with internal electrodes 3 and 4 formed therebetween, and a second dielectric layer 2b laminated on both main surfaces. 5. The internal electrode 4 and the external electrode 6 are electrically connected to each other.

ここで、第1誘電体層2a及び第2誘電体層2bの空隙率が0.01%〜1.00%に設定されており、且つ第1誘電体層2aの空隙率が第2誘電体層2bの空隙率に比し高い。   Here, the porosity of the first dielectric layer 2a and the second dielectric layer 2b is set to 0.01% to 1.00%, and the porosity of the first dielectric layer 2a is set to the second dielectric layer. Higher than the porosity of the layer 2b.

また、第1誘電体層2aの空隙率をP、第2誘電体層2bの空隙率をPとした場合、1<P/P≦10の範囲に設定されている。 Also, P 1 the porosity of the first dielectric layer 2a, if the porosity of the second dielectric layer 2b was set to P 2, is set in a range of 1 <P 1 / P 2 ≦ 10.

以下、本発明の積層セラミックコンデンサ10の製造方法について説明する。なお、図中の参照符は焼成の前後で区別することなく用いるものとする。   Hereinafter, a method for manufacturing the multilayer ceramic capacitor 10 of the present invention will be described. Note that reference numerals in the figure are used without distinction before and after firing.

まず、チタン酸バリウム(BaTiO)などの誘電体材料を主成分とするセラミック粉末、バインダ樹脂、溶剤、可塑剤、分散剤などを混合したセラミックスラリーを、ドクターブレード法、引き上げ法、ダイコーター、グラビアロールコータなどにより、シート状に成形するとともに乾燥し、第1誘電体層となるセラミックグリーンシート2a、第2誘電体層となるセラミックグリーンシート2bを形成する。 First, a ceramic slurry in which a ceramic powder mainly composed of a dielectric material such as barium titanate (BaTiO 3 ), a binder resin, a solvent, a plasticizer, a dispersant, etc. is mixed with a doctor blade method, a pulling method, a die coater, Using a gravure roll coater or the like, it is formed into a sheet and dried to form a ceramic green sheet 2a that becomes the first dielectric layer and a ceramic green sheet 2b that becomes the second dielectric layer.

ここで、セラミックグリーンシート2aに含有されるバインダ樹脂の割合は、セラミックグリーンシート2bに含有されるバインダ樹脂の割合より高くする。例えば、セラミックグリーンシート2aに含有されるバインダ樹脂の割合が10%である場合、セラミックグリーンシート2bに含有されるバインダ樹脂の割合を8%にする。   Here, the ratio of the binder resin contained in the ceramic green sheet 2a is made higher than the ratio of the binder resin contained in the ceramic green sheet 2b. For example, when the ratio of the binder resin contained in the ceramic green sheet 2a is 10%, the ratio of the binder resin contained in the ceramic green sheet 2b is set to 8%.

次に、セラミックグリーンシート2a上に、スクリーン印刷法などにより、Cu、Niなどの金属粉末、バインダ樹脂、溶剤などを混合した導体ペーストを薄膜状に塗布するとともに乾燥し、内部電極となる導体パターン3、4を形成する。   Next, a conductive paste mixed with a metal powder such as Cu or Ni, a binder resin, a solvent, etc. is applied in a thin film on the ceramic green sheet 2a by a screen printing method or the like, and dried to form a conductive pattern serving as an internal electrode. 3 and 4 are formed.

次に、台板21上に、複数のセラミックグリーンシート2bを積層する。また、導体パターン3、4が形成されたセラミックグリーンシート2aを交互に積層する。さらに、複数のセラミックグリーンシート2bを積層することにより積層素体11を形成する。   Next, a plurality of ceramic green sheets 2 b are stacked on the base plate 21. Further, the ceramic green sheets 2a on which the conductor patterns 3 and 4 are formed are alternately laminated. Further, the multilayer body 11 is formed by laminating a plurality of ceramic green sheets 2b.

次に、積層素体11を台板21上に形成した状態で加熱しつつ積層方向に加圧することにより、圧着積層体11を形成する。具体的には、図2に示すように、台板21上に形成した積層素体11の周囲を枠23で囲い、さらに積層素体11上に剛体板22を配置し、これらを可撓性袋24内に収納させて内部を脱気・密封した状態で静水圧プレス装置の加圧室内に投入する。このとき、圧着積層体11が可撓性袋24から剥離しやすいように、これらの間にPETフィルムなどを介在させても良い。   Next, the pressure-bonded laminated body 11 is formed by applying pressure in the stacking direction while heating the laminated body 11 formed on the base plate 21. Specifically, as shown in FIG. 2, the periphery of the multilayer body 11 formed on the base plate 21 is surrounded by a frame 23, and a rigid body plate 22 is disposed on the multilayer body 11, and these are flexible. It is put in the bag 24 and put into the pressurizing chamber of the hydrostatic pressure press apparatus while the inside is deaerated and sealed. At this time, a PET film or the like may be interposed therebetween so that the pressure-bonded laminate 11 is easily peeled off from the flexible bag 24.

このとき、セラミックグリーンシート2aに含有されるバインダ樹脂の割合は、セラミックグリーンシート2bに含有されるバインダ樹脂の割合より高いため、セラミックグリーンシート2aに含有されるバインダ樹脂の割合を高くできることから、セラミックグリーンシート2aと導体パターン3、4間の層間剥離を防止でき、一方、セラミックグリーンシート2bに含有されるバインダ樹脂の割合を少なくできるため、セラミックグリーンシート2bが台板21や剛体板22に貼り付くことによる積層圧着体11の破損を防止できる。   At this time, since the ratio of the binder resin contained in the ceramic green sheet 2a is higher than the ratio of the binder resin contained in the ceramic green sheet 2b, the ratio of the binder resin contained in the ceramic green sheet 2a can be increased. The delamination between the ceramic green sheet 2a and the conductor patterns 3 and 4 can be prevented. On the other hand, since the ratio of the binder resin contained in the ceramic green sheet 2b can be reduced, the ceramic green sheet 2b becomes the base plate 21 and the rigid plate 22. Breakage of the laminated crimped body 11 due to sticking can be prevented.

次に、圧着積層体11を各素子領域毎に切断し、未焼成状態の積層体1を形成し、しかる後、未焼成状態の積層体1を焼成し、積層体1を得る。   Next, the pressure-bonded laminate 11 is cut into each element region to form the unfired laminate 1, and then the unfired laminate 1 is fired to obtain the laminate 1.

このとき、セラミックグリーンシート2aに含有されるバインダ樹脂の割合は、セラミックグリーンシート2bに含有されるバインダ樹脂の割合より高いため、第1誘電体層の空隙率が前記第2誘電体層の空隙率に比し高くなる。   At this time, since the ratio of the binder resin contained in the ceramic green sheet 2a is higher than the ratio of the binder resin contained in the ceramic green sheet 2b, the porosity of the first dielectric layer is the gap of the second dielectric layer. Higher than the rate.

そして最後に、得られた積層体1の一対の端部に、外部電極5、6を被着・形成し、これによって図1に示す積層セラミックコンデンサ10が完成する。   Finally, the external electrodes 5 and 6 are deposited and formed on the pair of end portions of the obtained multilayer body 1, thereby completing the multilayer ceramic capacitor 10 shown in FIG.

以上のような本実施形態の積層セラミックコンデンサ10によれば、第1誘電体層2aの空隙率が第2誘電体層2bの空隙率に比し高い。すなわち、第1誘電体層2aの空隙率を高くできることから、焼成時のデラミネーション、クラックなどの内部欠陥42を防止でき、且つ第2誘電体層2bの空隙率を低くできることにより、積層体1の機械的強度が向上し、外部衝撃によるクラック43を防止できる。さらに、第1誘電体層2a及び第2誘電体層2bの空隙率が0.01%〜1.00%に設定されているため、上記焼成時のデラミネーション、クラックなどの内部欠陥42を防止しつつ、第1誘電体層2aの厚みが10μm以下と薄型化した場合も、空隙を起点に内部電極3−4間のショートに至ることがない。   According to the multilayer ceramic capacitor 10 of the present embodiment as described above, the porosity of the first dielectric layer 2a is higher than the porosity of the second dielectric layer 2b. That is, since the porosity of the first dielectric layer 2a can be increased, internal defects 42 such as delamination and cracks during firing can be prevented, and the porosity of the second dielectric layer 2b can be decreased. This improves the mechanical strength and prevents cracks 43 due to external impacts. Furthermore, since the porosity of the first dielectric layer 2a and the second dielectric layer 2b is set to 0.01% to 1.00%, internal defects 42 such as delamination and cracks during the firing are prevented. However, even when the thickness of the first dielectric layer 2a is reduced to 10 μm or less, there is no short circuit between the internal electrodes 3-4 starting from the gap.

また、第1誘電体層2aの空隙率をP、第2誘電体層2bの空隙率をPとした場合、1<P/P≦10の範囲に設定されているため、より効果的に、上記焼成時の内部欠陥42や、外部衝撃によるクラック43を防止しつつ、空隙を起点とする内部電極3−4間のショートを防止できる。 In addition, when the porosity of the first dielectric layer 2a is P 1 and the porosity of the second dielectric layer 2b is P 2 , it is set in the range of 1 <P 1 / P 2 ≦ 10. Effectively, it is possible to prevent a short circuit between the internal electrodes 3-4 starting from the gap while preventing the internal defect 42 at the time of firing and the crack 43 due to external impact.

なお、本発明は上記の実施の形態例に限定されるものではなく、本発明の要旨を逸脱しない範囲内での種々の変更や改良などは何ら差し支えない。   It should be noted that the present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the scope of the present invention.

図3は、本発明の他の実施の形態を示す縦断面図であり、同図に示すように、内部電極3、4が形成されない誘電体層2b1、2b2を積層するようにし、空隙率が2a<2b1<2aの関係となるようにしても良い。すなわち、誘電体層2b1の空隙率を誘電体層2b2より高くできるため、内部電極3、4の有無による段差を緩和できるという効果もある。   FIG. 3 is a longitudinal sectional view showing another embodiment of the present invention. As shown in FIG. 3, the dielectric layers 2b1 and 2b2 on which the internal electrodes 3 and 4 are not formed are laminated, and the porosity is The relationship 2a <2b1 <2a may be satisfied. That is, since the porosity of the dielectric layer 2b1 can be higher than that of the dielectric layer 2b2, there is also an effect that the step due to the presence or absence of the internal electrodes 3 and 4 can be reduced.

また、図2に示すように、積層素体11を台板21上に形成した状態で加熱しつつ積層方向に加圧することにより、圧着積層体11を形成する際に、セラミックグリーンシート2aと導体パターン3、4間の層間剥離や、セラミックグリーンシート2b2が台板21や剛体板22に貼り付くことによる積層圧着体11の破損を防止ししつ、セラミックグリーンシート2aが積層された部分とセラミックグリーンシート2b2が積層された部分の間の層間剥離も防止できる。   In addition, as shown in FIG. 2, when the laminated body 11 is formed on the base plate 21 and heated in the laminating direction while being heated, the ceramic green sheet 2a and the conductor are formed. While preventing delamination between the patterns 3 and 4 and the damage of the laminated crimped body 11 due to the ceramic green sheet 2b2 sticking to the base plate 21 or the rigid plate 22, the portion where the ceramic green sheet 2a is laminated and the ceramic It is also possible to prevent delamination between the portions where the green sheets 2b2 are laminated.

更に、上述した実施形態では、本発明を積層セラミックコンデンサ10の製造方法に適用した例について説明したが、本発明は、回路基板、積層圧電部品、半導体部品など、あらゆる積層セラミック電子部品10の製造方法に適用可能である。   Furthermore, in the above-described embodiment, the example in which the present invention is applied to the method for manufacturing the multilayer ceramic capacitor 10 has been described. However, the present invention is applicable to manufacturing all the multilayer ceramic electronic components 10 such as circuit boards, multilayer piezoelectric components, and semiconductor components. Applicable to the method.

本発明者は、セラミックグリーンシート2a、2bに含有されるバインダ樹脂の割合を変化させることにより、第1誘電体層2aの空隙率P、第2誘電体層2aの空隙率Pを制御した積層セラミックコンデンサ10を作製した。 The inventor controls the porosity P 1 of the first dielectric layer 2a and the porosity P 2 of the second dielectric layer 2a by changing the ratio of the binder resin contained in the ceramic green sheets 2a and 2b. A laminated ceramic capacitor 10 was produced.

得られた積層セラミックコンデンサ10について、焼成時の内部欠陥42の発生率、実装時のクラック43の発生率を求めた。   About the obtained multilayer ceramic capacitor 10, the incidence rate of the internal defect 42 at the time of baking and the incidence rate of the crack 43 at the time of mounting were calculated | required.

焼成時の内部欠陥42の発生率は、100個の焼成後の積層体1を研磨し、金属顕微鏡で観察することにより、デラミネーション・クラックの発生率を求めた。   The rate of occurrence of internal defects 42 during firing was determined by polishing 100 laminated bodies 1 and observing them with a metallurgical microscope to determine the occurrence rate of delamination cracks.

実装時のクラック43の発生率は、100個の積層セラミックコンデンサ10を1.6mm厚のガラスエポキシ基板(配線基板)上の配線パターンに、半田付けにより表面実装した後、金属顕微鏡で観察することにより、クラックの発生率を求めた。   The incidence of cracks 43 during mounting should be observed with a metal microscope after 100 multilayer ceramic capacitors 10 are surface-mounted by soldering onto a wiring pattern on a 1.6 mm thick glass epoxy substrate (wiring substrate). Thus, the occurrence rate of cracks was obtained.

その結果を表1に示す。

Figure 2005159056
The results are shown in Table 1.
Figure 2005159056

表1に示すように、第1誘電体層2a及び第2誘電体層2bの空隙率が0.01%〜1.00%に設定されており、且つ1<P/P≦10の範囲にある本実施例(試料番号2〜7)は、焼成時の内部欠陥42の発生率、実装時のクラック43の発生率はともに0%だった。 As shown in Table 1, the porosity of the first dielectric layer 2a and the second dielectric layer 2b is set to 0.01% to 1.00%, and 1 <P 1 / P 2 ≦ 10. In this example (sample numbers 2 to 7) in the range, the occurrence rate of internal defects 42 during firing and the occurrence rate of cracks 43 during mounting were both 0%.

これに対し、P=P=0.01%である比較例(試料番号1)は、焼成時の内部欠陥42が2%発生した。一方、P=P=1.00%である比較例(試料番号8)は、実装時のクラック43が1%発生した。 On the other hand, in the comparative example (sample number 1) in which P 1 = P 2 = 0.01%, 2% of internal defects 42 during firing occurred. On the other hand, in the comparative example (sample number 8) in which P 1 = P 2 = 1.00%, 1% of cracks 43 during mounting occurred.

これらの結果から、本発明の積層セラミックコンデンサ10は、第1誘電体層2a及び第2誘電体層2bの空隙率が0.01%〜1.00%に設定されており、且つ1<P/P≦10の範囲にあるため、焼成時の内部欠陥42や、外部衝撃によるクラック43を防止できることがわかった。 From these results, in the multilayer ceramic capacitor 10 of the present invention, the porosity of the first dielectric layer 2a and the second dielectric layer 2b is set to 0.01% to 1.00%, and 1 <P Since it is in the range of 1 / P 2 ≦ 10, it was found that the internal defects 42 during firing and the cracks 43 due to external impact can be prevented.

本発明の一実施形態にかかる積層セラミック電子部品(積層セラミックコンデンサ)を示す図であり、(a)は外観斜視図、(b)は縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the multilayer ceramic electronic component (multilayer ceramic capacitor) concerning one Embodiment of this invention, (a) is an external appearance perspective view, (b) is a longitudinal cross-sectional view. 図1の積層セラミックコンデンサの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the multilayer ceramic capacitor of FIG. 本発明の他の実施形態にかかる積層セラミック電子部品の縦断面図である。It is a longitudinal cross-sectional view of the multilayer ceramic electronic component concerning other embodiment of this invention. 従来の積層セラミックコンデンサの問題点を示す断面図であり、(a)は焼成時に内部欠陥が形成された様子を示す断面図、(b)は外部衝撃によりクラックが形成された様子を示す断面図である。It is sectional drawing which shows the problem of the conventional multilayer ceramic capacitor, (a) is sectional drawing which shows a mode that the internal defect was formed at the time of baking, (b) is sectional drawing which shows a mode that the crack was formed by the external impact It is.

符号の説明Explanation of symbols

10・・・・・・・積層セラミックコンデンサ
1・・・・・・・・積層体
2a・・・・・・・第1誘電体層(セラミックグリーンシート)
2b・・・・・・・第2誘電体層(セラミックグリーンシート)
3、4・・・・・・内部電極(導体パターン)
5、6・・・・・・外部電極
11・・・・・・・圧着積層体(積層素体)
21・・・・・・・台板
22・・・・・・・剛体板
23・・・・・・・枠
24・・・・・・・可撓性袋
10 ····························································· 1st dielectric layer (ceramic green sheet)
2b ... Second dielectric layer (ceramic green sheet)
3, 4, ... Internal electrodes (conductor pattern)
5, 6 ········ External electrode 11 ········· Press-bonded laminated body (laminated body)
21 ..... Base plate 22 ..... Rigid plate 23 ..... Frame 24 ..... Flexible bag

Claims (3)

複数の第1誘電体層を間に内部電極を介して積層するとともに、該積層体の両主面に第2誘電体層を被着・形成し、前記積層体の端面に前記内部電極に電気的に接続される外部電極を被着・形成してなる積層セラミック電子部品であって、
前記第1誘電体層及び前記第2誘電体層の空隙率が0.01%〜1.00%に設定されており、且つ前記第1誘電体層の空隙率が前記第2誘電体層の空隙率に比し高いことを特徴とする積層セラミック電子部品。
A plurality of first dielectric layers are laminated with an internal electrode therebetween, and a second dielectric layer is deposited and formed on both main surfaces of the laminated body, and the internal electrode is electrically connected to the end face of the laminated body. A laminated ceramic electronic component formed by depositing and forming externally connected external electrodes,
The porosity of the first dielectric layer and the second dielectric layer is set to 0.01% to 1.00%, and the porosity of the first dielectric layer is that of the second dielectric layer. A multilayer ceramic electronic component characterized by being higher than the porosity.
前記第1誘電体層の空隙率をP、前記第2誘電体層の空隙率をPとした場合、1<P/P≦10の範囲に設定されていることを特徴とする請求項1に記載の積層セラミック電子部品。 When the porosity of the first dielectric layer is P 1 and the porosity of the second dielectric layer is P 2 , the range is set to 1 <P 1 / P 2 ≦ 10. The multilayer ceramic electronic component according to claim 1. 前記第2誘電体層内の空隙率が第1誘電体層側に比し表層側で低くなっていることを特徴とする請求項1または請求項2に記載の積層セラミック電子部品。 3. The multilayer ceramic electronic component according to claim 1, wherein the porosity in the second dielectric layer is lower on the surface layer side than on the first dielectric layer side. 4.
JP2003396420A 2003-11-26 2003-11-26 Laminated ceramic electronic component Pending JP2005159056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003396420A JP2005159056A (en) 2003-11-26 2003-11-26 Laminated ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003396420A JP2005159056A (en) 2003-11-26 2003-11-26 Laminated ceramic electronic component

Publications (1)

Publication Number Publication Date
JP2005159056A true JP2005159056A (en) 2005-06-16

Family

ID=34721872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003396420A Pending JP2005159056A (en) 2003-11-26 2003-11-26 Laminated ceramic electronic component

Country Status (1)

Country Link
JP (1) JP2005159056A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198947A (en) * 2010-03-18 2011-10-06 Tdk Corp Ceramic electronic component, and method of manufacturing ceramic electronic component
KR101124091B1 (en) * 2009-12-10 2012-03-20 삼성전기주식회사 Multilayer ceramic capacitor
US8345405B2 (en) 2009-12-10 2013-01-01 Samsung Electronics Co., Ltd. Multilayer ceramic capacitor
KR101508503B1 (en) 2010-08-18 2015-04-07 다이요 유덴 가부시키가이샤 Laminated ceramic electronic component
US9042081B2 (en) 2013-04-08 2015-05-26 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and method of manufacturing the same
US20150348712A1 (en) * 2014-05-28 2015-12-03 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor, method of manufacturing the same, and board having the same
CN105761934A (en) * 2015-01-06 2016-07-13 三星电机株式会社 Multilayer ceramic capacitor and board having the same
CN106098295A (en) * 2015-04-27 2016-11-09 株式会社村田制作所 Electronic unit and manufacture method thereof
JP2018186199A (en) * 2017-04-26 2018-11-22 京セラ株式会社 Capacitor
JP2019102655A (en) * 2017-12-04 2019-06-24 太陽誘電株式会社 Ceramic capacitor and method of manufacturing the same
JP2019175935A (en) * 2018-03-27 2019-10-10 Tdk株式会社 Multilayer ceramic electronic component
CN115249586A (en) * 2021-04-28 2022-10-28 Tdk株式会社 Electronic component

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101124091B1 (en) * 2009-12-10 2012-03-20 삼성전기주식회사 Multilayer ceramic capacitor
US8345405B2 (en) 2009-12-10 2013-01-01 Samsung Electronics Co., Ltd. Multilayer ceramic capacitor
US8390983B2 (en) 2009-12-10 2013-03-05 Samsung Electronics Co., Ltd. Multilayer ceramic capacitor
JP2011198947A (en) * 2010-03-18 2011-10-06 Tdk Corp Ceramic electronic component, and method of manufacturing ceramic electronic component
KR101508503B1 (en) 2010-08-18 2015-04-07 다이요 유덴 가부시키가이샤 Laminated ceramic electronic component
US9042081B2 (en) 2013-04-08 2015-05-26 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and method of manufacturing the same
US9812259B2 (en) * 2014-05-28 2017-11-07 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor, method of manufacturing the same, and board having the same
US20150348712A1 (en) * 2014-05-28 2015-12-03 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor, method of manufacturing the same, and board having the same
JP2015226053A (en) * 2014-05-28 2015-12-14 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic capacitor, method of manufacturing multilayer ceramic capacitor, and board with multilayer ceramic capacitor mounted thereon
US10770233B2 (en) 2015-01-06 2020-09-08 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and board having the same
CN105761934A (en) * 2015-01-06 2016-07-13 三星电机株式会社 Multilayer ceramic capacitor and board having the same
US10373762B2 (en) 2015-01-06 2019-08-06 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and board having the same
CN105761934B (en) * 2015-01-06 2019-09-06 三星电机株式会社 Multilayer ceramic capacitor and plate with the multilayer ceramic capacitor
CN106098295A (en) * 2015-04-27 2016-11-09 株式会社村田制作所 Electronic unit and manufacture method thereof
US10256029B2 (en) 2015-04-27 2019-04-09 Murata Manufacturing Co., Ltd. Electronic component and method for manufacturing the same
JP2018186199A (en) * 2017-04-26 2018-11-22 京セラ株式会社 Capacitor
JP2019102655A (en) * 2017-12-04 2019-06-24 太陽誘電株式会社 Ceramic capacitor and method of manufacturing the same
JP7032916B2 (en) 2017-12-04 2022-03-09 太陽誘電株式会社 Ceramic capacitors and their manufacturing methods
JP2019175935A (en) * 2018-03-27 2019-10-10 Tdk株式会社 Multilayer ceramic electronic component
JP7069935B2 (en) 2018-03-27 2022-05-18 Tdk株式会社 Multilayer ceramic electronic components
CN115249586A (en) * 2021-04-28 2022-10-28 Tdk株式会社 Electronic component
CN115249586B (en) * 2021-04-28 2024-05-28 Tdk株式会社 Electronic component

Similar Documents

Publication Publication Date Title
KR102076145B1 (en) Multi-layered ceramic electronic part, board for mounting the same and manufacturing method thereof
KR20170143275A (en) Multi-layered ceramic electronic part and board for mounting the same
JPH08130160A (en) Manufacture of multilayer ceramic electronic component
JP2012099786A (en) Multilayer ceramic capacitor and manufacturing method therefor
JP2005159056A (en) Laminated ceramic electronic component
JP2002015939A (en) Multilayered electronic component and its manufacturing method
JP2006060147A (en) Ceramic electronic component and capacitor
JP2002299148A (en) Laminated ceramic capacitor and method of manufacturing the same
JPH09190947A (en) Laminated ceramic electronic component
JP2009111394A (en) Manufacturing method of multi-layer ceramic substrate
KR101805074B1 (en) Preparation method of ceramic multilayer circuit board
JP2007053294A (en) Process for manufacturing multilayer ceramic electronic component
KR100922943B1 (en) Method for manufacturing multilayer ceramic electronic component
JP4429130B2 (en) Manufacturing method of ceramic electronic component
JP2002270459A (en) Manufacturing method for laminated ceramic electronic component
JP4051298B2 (en) Ceramic electronic components
KR100978654B1 (en) Pressing jig for ceramic lamination and manufacturing method for multi-layer ceramic substrate
JP2004186344A (en) Ceramic laminate and its manufacturing method
JP2006135141A (en) Method for manufacturing laminated electronic component
JPH1065341A (en) Manufacturing method of multilayer ceramic board
JP4507836B2 (en) Multilayer electronic components
JP2005268290A (en) Multilayer ceramic electronic component and its production process
JP2005136126A (en) Method of manufacturing laminated ceramic electronic component
JP2004186341A (en) Method of manufacturing ceramic laminate
JPH09129482A (en) Manufacture of laminated ceramic capacitor