JP4463045B2 - Ceramic electronic components and capacitors - Google Patents

Ceramic electronic components and capacitors Download PDF

Info

Publication number
JP4463045B2
JP4463045B2 JP2004242974A JP2004242974A JP4463045B2 JP 4463045 B2 JP4463045 B2 JP 4463045B2 JP 2004242974 A JP2004242974 A JP 2004242974A JP 2004242974 A JP2004242974 A JP 2004242974A JP 4463045 B2 JP4463045 B2 JP 4463045B2
Authority
JP
Japan
Prior art keywords
metal particles
external electrode
dummy
ceramic
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004242974A
Other languages
Japanese (ja)
Other versions
JP2006060147A (en
Inventor
恒 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004242974A priority Critical patent/JP4463045B2/en
Priority to CNB2005100921604A priority patent/CN100511507C/en
Priority to US11/210,080 priority patent/US7206187B2/en
Publication of JP2006060147A publication Critical patent/JP2006060147A/en
Application granted granted Critical
Publication of JP4463045B2 publication Critical patent/JP4463045B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、セラミック電子部品及びコンデンサに関するものである。   The present invention relates to a ceramic electronic component and a capacitor.

代表的なセラミック電子部品として、セラミックコンデンサを用いて説明する。   A typical ceramic electronic component will be described using a ceramic capacitor.

図5は、従来のセラミックコンデンサを示す横断面図である。   FIG. 5 is a cross-sectional view showing a conventional ceramic capacitor.

図において、セラミックコンデンサ30は、複数個の誘電体層(セラミック層)32を積層した積層体31の内部で、隣接する誘電体層32間に内部電極(配線導体)33、34を介在させるとともに、積層体31の側面に内部電極33、34の端部に電気的に接続される外部電極(外部電極端子)35、36を形成し、外部電極35、36の一端を積層体31の4つの主面に延在させている。   In the figure, a ceramic capacitor 30 includes internal electrodes (wiring conductors) 33 and 34 interposed between adjacent dielectric layers 32 in a laminated body 31 in which a plurality of dielectric layers (ceramic layers) 32 are laminated. External electrodes (external electrode terminals) 35 and 36 that are electrically connected to end portions of the internal electrodes 33 and 34 are formed on the side surfaces of the multilayer body 31, and one end of each of the external electrodes 35 and 36 is connected to the four layers of the multilayer body 31. It extends to the main surface.

上記セラミックコンデンサ10によれば、外部電極35、36は、金属成分とガラス成分を含有する。そして、焼付時に、ガラス成分が外部電極35、36の金属成分と、積層体31の側面及び4つの主面との界面に集まることにより、外部電極35、36と積層体31は電気的・機械的に接続される(例えば、特許文献1参照。)。
特開2002−270457号公報
According to the ceramic capacitor 10, the external electrodes 35 and 36 contain a metal component and a glass component. At the time of baking, the glass components gather at the interfaces between the metal components of the external electrodes 35 and 36 and the side surfaces and the four main surfaces of the multilayer body 31, so that the external electrodes 35 and 36 and the multilayer body 31 are electrically and mechanically (For example, refer to Patent Document 1).
JP 2002-270457 A

しかしながら、上記セラミックコンデンサ30によれば、外部電極35、36の内、積層体31の側面に形成された部分は、内部電極33、34と金属−金属結合により強固に接続しているが、積層体31の4つの主面に形成された部分は、積層体31との機械的接続強度が弱いため、図5に示すように、外部からの衝撃により、剥離37が生じやすいという問題点があった。   However, according to the ceramic capacitor 30, the portion formed on the side surface of the multilayer body 31 among the external electrodes 35 and 36 is firmly connected to the internal electrodes 33 and 34 by a metal-metal bond. The portions formed on the four main surfaces of the body 31 have a weak mechanical connection strength with the laminated body 31, and as a result, as shown in FIG. It was.

本発明は、上述の問題点に鑑みて案出されたものであり、その目的は、簡単且つ安価な方法で、外部電極端子の剥離を効果的に防止できるセラミック電子部品及びコンデンサを提供することにある。   The present invention has been devised in view of the above-described problems, and an object thereof is to provide a ceramic electronic component and a capacitor that can effectively prevent peeling of external electrode terminals by a simple and inexpensive method. It is in.

本発明は、複数個のセラミック層を積層した積層体の表面及び/又は内部に配線導体を配設するとともに、前記積層体の主面に前記配線導体と電気的に接続される外部電極端子を形成してなるセラミック電子部品において、前記積層体の内部に、前記外部電極端子との間に1層のセラミック層を隔ててダミー配線を埋設するとともに、該ダミー配線と前記外部電極端子とを両者間のセラミック層内に存在する1個または2個の金属粒子を介して電気的・機械的に接続したことを特徴とするものである。   According to the present invention, a wiring conductor is disposed on and / or inside a laminated body in which a plurality of ceramic layers are laminated, and an external electrode terminal electrically connected to the wiring conductor is provided on a main surface of the laminated body. In the formed ceramic electronic component, a dummy wiring is embedded in the multilayer body with a ceramic layer between the external electrode terminal and the dummy wiring and the external electrode terminal. It is characterized by being electrically and mechanically connected through one or two metal particles present in the ceramic layer between them.

また、前記金属粒子を介した機械的接続が、前記金属粒子と前記ダミー配線中の金属成分との焼結、並びに前記金属粒子と前記外部電極端子中の金属成分との焼結によってなされていることを特徴とするものである。   The mechanical connection via the metal particles is performed by sintering the metal particles and the metal component in the dummy wiring, and sintering the metal particles and the metal component in the external electrode terminal. It is characterized by this.

さらに、前記セラミック層内に存在する金属粒子の粒径Aが、前記ダミー配線と前記外部電極の延在部の間に位置するセラミック層の厚みBに対し100%〜200%に設定されていることを特徴とするものである。   Further, the particle size A of the metal particles present in the ceramic layer is set to 100% to 200% with respect to the thickness B of the ceramic layer located between the dummy wiring and the extended portion of the external electrode. It is characterized by this.

またさらに、複数個の誘電体層を積層した積層体の内部で、隣接する誘電体層間に内部電極を介在させるとともに、前記積層体の側面に前記内部電極の端部に電気的に接続される外部電極を形成し、該外部電極の一端を前記積層体の主面に延在させてなるコンデンサにおいて、前記積層体の内部に、前記外部電極の延在部との間に1層の誘電体層を隔ててダミー電極を埋設するとともに、該ダミー電極と前記外部電極の延在部とを両電極間の誘電体層内に存在する1個または2個の金属粒子を介して電気的・機械的に接続したことを特徴とするものである。   Still further, an internal electrode is interposed between adjacent dielectric layers in a laminated body in which a plurality of dielectric layers are laminated, and is electrically connected to an end portion of the internal electrode on a side surface of the laminated body. In a capacitor in which an external electrode is formed and one end of the external electrode extends to the main surface of the multilayer body, a single-layer dielectric is formed inside the multilayer body and between the extended portion of the external electrodes. The dummy electrode is embedded with the layer being separated, and the dummy electrode and the extended portion of the external electrode are electrically / mechanically interposed via one or two metal particles present in the dielectric layer between the two electrodes. It is characterized by having been connected.

さらにまた、前記金属粒子を介した機械的接続が、前記金属粒子と前記ダミー電極中の金属成分との焼結、並びに記金属粒子と前記外部電極中の金属成分との焼結によってなされていることを特徴とするものである。   Furthermore, the mechanical connection through the metal particles is made by sintering the metal particles and the metal component in the dummy electrode, and sintering the metal particles and the metal component in the external electrode. It is characterized by this.

そして、前記誘電体層内に存在する金属粒子の粒径Aが、前記ダミー電極と前記外部電極の延在部の間に位置する誘電体層の厚みBに対し100%〜200%に設定されていることを特徴とするものである。   The particle size A of the metal particles present in the dielectric layer is set to 100% to 200% with respect to the thickness B of the dielectric layer located between the dummy electrode and the extended portion of the external electrode. It is characterized by that.

本発明によれば、積層体の内部に、外部電極端子との間に1層のセラミック層を隔ててダミー配線を埋設するとともに、ダミー配線と外部電極端子とを両者間のセラミック層内に存在する1個または2個の金属粒子を介して電気的・機械的に接続してなる。   According to the present invention, the dummy wiring is embedded in the multilayer body with a single ceramic layer between the external electrode terminals, and the dummy wiring and the external electrode terminals exist in the ceramic layer between them. It is electrically and mechanically connected through one or two metal particles.

すなわち、外部電極端子は、積層体主面において、積層体内に埋設した金属粒子と強固な金属−金属結合により接続しているため、外部電極端子と積層体主面間の機械的接続強度を増大させることができ、外部電極端子の剥離を防止できる。   That is, since the external electrode terminal is connected to the metal particle embedded in the laminate by a strong metal-metal bond on the main surface of the laminate, the mechanical connection strength between the external electrode terminal and the laminate main surface is increased. And the peeling of the external electrode terminals can be prevented.

また、金属粒子がダミー配線と接続しているため、金属粒子が1層のセラミック層内で確実に固定され、このことによっても、外部電極端子の剥離を効果的に防止できる。さらに、ダミー配線と外部電極端子の間のセラミック層と、ダミー配線間の剥離も防止できる。   Further, since the metal particles are connected to the dummy wiring, the metal particles are securely fixed in one ceramic layer, and this also effectively prevents the external electrode terminal from being peeled off. Further, it is possible to prevent peeling between the dummy wiring and the ceramic layer between the dummy wiring and the external electrode terminal.

またさらに、セラミック層内に1個または2個の金属粒子が存在するため、金属粒子全体として不定形状となり、外部衝撃などによりセラミック層から抜け落ちることがない。   Furthermore, since one or two metal particles are present in the ceramic layer, the entire metal particle has an indefinite shape and does not fall out of the ceramic layer due to external impact or the like.

さらにまた、金属粒子を介した機械的接続が、金属粒子とダミー配線中の金属成分との焼結、並びに金属粒子と外部電極端子中の金属成分との焼結によってなされているため、通常の製造ラインを変更することなく、上記機械的接続を実現できるとともに、金属粒子、ダミー配線中及び外部電極端子は一体化しており、このことによっても、外部電極端子の剥離を効果的に防止できる。   Furthermore, since the mechanical connection through the metal particles is made by sintering the metal particles and the metal component in the dummy wiring, and by sintering the metal particles and the metal component in the external electrode terminal, The mechanical connection can be realized without changing the production line, and the metal particles, the dummy wiring, and the external electrode terminal are integrated. This also effectively prevents the external electrode terminal from being peeled off.

またさらに、セラミック層内に存在する金属粒子の粒径Aが、ダミー配線と外部電極の延在部の間に位置するセラミック層の厚みBに対し100%〜200%に設定されていることが望ましい。すなわち、上記金属粒子の平均粒径Aが、セラミック層の厚みBに対し100%以上であるため、金属粒子がセラミック層を貫通し、ダミー配線と外部電極端子を確実に接続することができる。一方、上記金属粒子の平均粒径Aが、セラミック層の厚みBに対し200%以下であるため、製造時に、スクリーン印刷等によりダミー配線を精度良く形成することができるとともに、積層体となるセラミック層及び配線導体を加圧加熱する際に、セラミック層間の密着性の低下が問題になることはない。   Furthermore, the particle size A of the metal particles present in the ceramic layer is set to 100% to 200% with respect to the thickness B of the ceramic layer located between the dummy wiring and the extended portion of the external electrode. desirable. That is, since the average particle diameter A of the metal particles is 100% or more with respect to the thickness B of the ceramic layer, the metal particles penetrate the ceramic layer, and the dummy wiring and the external electrode terminal can be reliably connected. On the other hand, since the average particle diameter A of the metal particles is 200% or less with respect to the thickness B of the ceramic layer, the dummy wiring can be formed with high precision by screen printing or the like at the time of manufacture, and the ceramic that becomes the laminate When pressurizing and heating the layers and wiring conductors, there is no problem of a decrease in adhesion between the ceramic layers.

そして、上記理由から、本発明は、複数個の誘電体層を積層した積層体の内部で、隣接する誘電体層間に内部電極を介在させるとともに、積層体の側面に内部電極の端部に電気的に接続される外部電極を形成し、外部電極の一端を積層体の主面に延在させてなるコンデンサに特に好適である。   For the reasons described above, the present invention interposes an internal electrode between adjacent dielectric layers in a laminated body in which a plurality of dielectric layers are laminated, and electrically connects the end of the internal electrode to the side surface of the laminated body. The capacitor is particularly suitable for a capacitor in which external electrodes to be connected are formed and one end of the external electrode is extended to the main surface of the laminate.

以下、本発明を添付図面に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の一実施形態に係るセラミックコンデンサを示す図であり、(a)は外観斜視図、(b)は横断面図である。図2は、図1のセラミックコンデンサの製造方法を示す断面図である。   1A and 1B are diagrams showing a ceramic capacitor according to an embodiment of the present invention, in which FIG. 1A is an external perspective view, and FIG. 1B is a cross-sectional view. FIG. 2 is a cross-sectional view showing a method for manufacturing the ceramic capacitor of FIG.

図において、セラミックコンデンサ10は、複数個の誘電体層(セラミック層)2を積層した積層体1の内部で、隣接する誘電体層2間に内部電極3a、4aを介在させるとともに、積層体1の側面に内部電極3a、4aの端部に電気的に接続される外部電極(外部電極端子)5、6を形成し、外部電極5、6の一端を積層体1の4つの主面に延在させている。   In the figure, a ceramic capacitor 10 includes an internal electrode 3a, 4a interposed between adjacent dielectric layers 2 in a laminated body 1 in which a plurality of dielectric layers (ceramic layers) 2 are laminated, and a laminated body 1 External electrodes (external electrode terminals) 5, 6 electrically connected to the end portions of the internal electrodes 3 a, 4 a are formed on the side surfaces of the external electrodes 5, 6, and one ends of the external electrodes 5, 6 are extended to the four main surfaces of the laminate 1. It is left.

誘電体層2は、例えば、BaTiO、CaTiO、SrTiO等を主成分とする誘電体材料によって1層あたり0.5μm〜4μmの厚みに形成されており、かかる誘電体層2を、セラミックコンデンサ10の実装面に垂直な方向に、例えば20層〜2000層だけ積層することによって積層体1が形成される。 The dielectric layer 2 is formed to a thickness of 0.5 μm to 4 μm per layer by a dielectric material mainly composed of, for example, BaTiO 3 , CaTiO 3 , SrTiO 3, and the like. The stacked body 1 is formed by stacking, for example, 20 to 2000 layers in a direction perpendicular to the mounting surface of the capacitor 10.

内部電極3a、4aは、Ni、Cu、Cu−Ni、Ag−Pd等の金属を主成分とする導体材料によって、例えば0.5μm〜2.0μmの厚みに形成されている。   The internal electrodes 3a and 4a are formed to a thickness of, for example, 0.5 μm to 2.0 μm by using a conductive material whose main component is a metal such as Ni, Cu, Cu—Ni, or Ag—Pd.

外部電極5、6は、Ni、Cu、Cu−Ni、Ag等の金属を主成分とする導体材料及びガラス成分によって、積層体1の一対の側面から夫々隣接する4つの主面に回り込むように形成されている。   The external electrodes 5 and 6 are made to wrap around four main surfaces adjacent to each other from a pair of side surfaces of the laminate 1 by a conductive material mainly composed of a metal such as Ni, Cu, Cu-Ni, and Ag and a glass component. Is formed.

本発明において重要なことは、積層体1の内部に、外部電極5、6の延在部との間に1層の誘電体層2を隔ててダミー電極3b、4bを埋設するとともに、ダミー電極3b、4bと外部電極5、6の延在部とを両電極間の誘電体層2内に存在する1個または2個の金属粒子Mを介して電気的・機械的に接続する点である。図中、内部電極3a、4aとダミー電極3b、4bを合わせて配線導体3、4としている。ダミー電極3b、4bは、内部電極3a、4aと同じ導体材料であっても良く、異なる導体材料であっても良い。また、金属粒子Mは、ダミー電極3b、4b中の他の小さな金属粒子(以下、金属微粒子という。)mと同じ金属でも良く、異なる金属でも良い。さらに図中、ダミー電極3b、4bは積層体1の一方の主面側に2層配設されているが、1層以上であれば何層でも良い。ダミー電極3b、4bの数が多い程、外部電極5、6と積層体1主面間の機械的接続強度を増大させることができ、外部電極5、6の剥離を防止することができる。また図中、隣接するダミー電極(3b−3b、4b−4b)間に跨るように複数個の金属粒子Mを埋設しているが、このような金属粒子Mは埋設しなくても良い。   What is important in the present invention is that the dummy electrode 3b, 4b is embedded in the laminated body 1 with the dielectric layer 2 of one layer between the extending portions of the external electrodes 5, 6 and the dummy electrode. 3b, 4b and the extended portions of the external electrodes 5, 6 are electrically and mechanically connected via one or two metal particles M present in the dielectric layer 2 between the electrodes. . In the figure, the internal electrodes 3a, 4a and the dummy electrodes 3b, 4b are combined to form the wiring conductors 3, 4. The dummy electrodes 3b and 4b may be the same conductive material as the internal electrodes 3a and 4a, or may be different conductive materials. The metal particles M may be the same metal as other small metal particles (hereinafter referred to as metal fine particles) m in the dummy electrodes 3b and 4b, or may be different metals. Further, in the drawing, two layers of the dummy electrodes 3b and 4b are arranged on one main surface side of the laminate 1, but any number of layers may be used as long as it is one or more layers. As the number of dummy electrodes 3b and 4b increases, the mechanical connection strength between the external electrodes 5 and 6 and the main surface of the multilayer body 1 can be increased, and peeling of the external electrodes 5 and 6 can be prevented. In the drawing, a plurality of metal particles M are embedded so as to straddle between adjacent dummy electrodes (3b-3b, 4b-4b). However, such metal particles M may not be embedded.

さらに、金属粒子Mを介した機械的接続が、金属粒子Mとダミー電極3b、4b中の金属成分との焼結、並びに金属粒子Mと外部電極5、6中の金属成分との焼結によってなされている。   Furthermore, the mechanical connection via the metal particles M is achieved by sintering the metal particles M and the metal components in the dummy electrodes 3b and 4b, and sintering the metal particles M and the metal components in the external electrodes 5 and 6. Has been made.

そして、誘電体層2内に存在する金属粒子Mの粒径Aが、ダミー電極3b、4bと外部電極5、6の延在部の間に位置する誘電体層2の厚みBに対し100%〜200%に設定されている。ここで、金属粒子Mの粒径Aは、焼成後の積層体1の破断面をケミカルエッチングした後、金属顕微鏡により観察することで確認できる。   The particle size A of the metal particles M present in the dielectric layer 2 is 100% of the thickness B of the dielectric layer 2 located between the extended portions of the dummy electrodes 3b and 4b and the external electrodes 5 and 6. It is set to ~ 200%. Here, the particle size A of the metal particles M can be confirmed by observing with a metal microscope after chemically etching the fracture surface of the fired laminate 1.

以下、本発明のセラミックコンデンサ10の製造方法について説明する。なお、図中の各符号は焼成の前後で区別しないこととする。   Hereinafter, the manufacturing method of the ceramic capacitor 10 of this invention is demonstrated. In addition, each code | symbol in a figure shall not distinguish before and after baking.

まず、BaTiO、CaTiO、SrTiO等を主成分とする誘電体材料の粉末に適当な有機溶剤、ガラスフリット、有機バインダ等を添加・混合して泥漿状のセラミックスラリを作製するとともに、得られたセラミックスラリを従来周知のドクターブレード法等による、所定形状、所定厚みの誘電体層となるセラミックグリーンシート2を形成する。 First, an appropriate organic solvent, glass frit, organic binder, and the like are added to and mixed with a dielectric material powder mainly composed of BaTiO 3 , CaTiO 3 , SrTiO 3, etc. to produce a slurry ceramic slurry. A ceramic green sheet 2 to be a dielectric layer having a predetermined shape and a predetermined thickness is formed from the ceramic slurry thus obtained by a conventionally known doctor blade method or the like.

次に、セラミックグリーンシート2上に、Ni、Cu、Cu−Ni、Ag−Pd等の金属材料の粉末に適当な有機溶剤、有機バインダ等を添加・混合して得た導体ペーストを従来周知のスクリーン印刷等によって所定パターンに塗布し、配線導体となる導体パターン3、4を形成する。このとき、図2(a)に示すように、ダミー電極となる導体ペースト3b、4b中に、粒径が比較的大きな金属粒子Mを混合しておく。具体的には、セラミックグリーンシート2の厚みが0.5μm〜1μmである場合、粒径の大きな金属粒子Mの平均粒径は0.5μm〜2μm、その他の小さな金属粒子(以下、金属微粒子という。)mの平均粒径は0.1μm〜0.3μmの範囲にあることが望ましい。一方、セラミックグリーンシート2の厚みが1μm〜2μmである場合、金属粒子Mの平均粒径は1〜4μm、その他の金属微粒子mの平均粒径は0.3μm〜0.5μmの範囲にあることが望ましい。また、セラミックグリーンシート2の厚みが2μm〜3μmである場合、金属粒子Mの平均粒径は2μm〜6μm、金属微粒子mの平均粒径は0.4μm〜0.6μmの範囲にあることが望ましい。そして、セラミックグリーンシート2の厚みが3μm〜4μmである場合、金属粒子Mの平均粒径は3μm〜8μm、金属微粒子mの平均粒径は0.5μm〜0.1μmの範囲にあることが望ましい。   Next, a conductive paste obtained by adding and mixing an appropriate organic solvent, an organic binder, etc. to a powder of a metal material such as Ni, Cu, Cu—Ni, Ag—Pd, etc. on the ceramic green sheet 2 is conventionally known. A predetermined pattern is applied by screen printing or the like to form conductor patterns 3 and 4 to be wiring conductors. At this time, as shown in FIG. 2A, metal particles M having a relatively large particle size are mixed in the conductor pastes 3b and 4b serving as dummy electrodes. Specifically, when the thickness of the ceramic green sheet 2 is 0.5 μm to 1 μm, the average particle size of the metal particles M having a large particle size is 0.5 μm to 2 μm, and other small metal particles (hereinafter referred to as metal fine particles). .) The average particle size of m is preferably in the range of 0.1 μm to 0.3 μm. On the other hand, when the thickness of the ceramic green sheet 2 is 1 μm to 2 μm, the average particle size of the metal particles M is in the range of 1 to 4 μm, and the average particle size of the other metal fine particles m is in the range of 0.3 μm to 0.5 μm. Is desirable. Further, when the thickness of the ceramic green sheet 2 is 2 μm to 3 μm, the average particle size of the metal particles M is desirably 2 μm to 6 μm, and the average particle size of the metal fine particles m is desirably in the range of 0.4 μm to 0.6 μm. . When the thickness of the ceramic green sheet 2 is 3 μm to 4 μm, the average particle size of the metal particles M is preferably 3 μm to 8 μm, and the average particle size of the metal fine particles m is preferably in the range of 0.5 μm to 0.1 μm. .

次に、図2(b)に示すように、導体パターン3、4が形成されたセラミックグリーンシート2を所定の枚数だけ積層する。   Next, as shown in FIG. 2B, a predetermined number of ceramic green sheets 2 on which conductor patterns 3 and 4 are formed are stacked.

次に、積層された導体パターン3、4及びセラミックグリーンシート2を加圧・加熱することにより、大型積層体11が得られる。このとき、図2(c)に示すように、ダミー電極となる導体パターン3b、4b中に、金属粒子Mが含有されるため、金属粒子Mがセラミックグリーンシート2を突き破って、大型積層体11表面に露出したり、隣接するダミー電極となる導体パターン(3b−3b、4b−4b)に跨る。また、金属粒子Mにより突き破られるセラミックグリーンシート2は、その他のセラミックグリーンシート2に比べ、やわらかいこと、あるいは熱可塑性のセラミックグリーンシート2であることが望ましい。   Next, the large laminated body 11 is obtained by pressurizing and heating the laminated conductor patterns 3 and 4 and the ceramic green sheet 2. At this time, as shown in FIG. 2C, since the metal particles M are contained in the conductor patterns 3 b and 4 b serving as dummy electrodes, the metal particles M break through the ceramic green sheet 2, and the large-sized laminate 11. It is exposed on the surface or straddles the conductor pattern (3b-3b, 4b-4b) that becomes an adjacent dummy electrode. Further, the ceramic green sheet 2 to be pierced by the metal particles M is desirably softer than the other ceramic green sheets 2 or is a thermoplastic ceramic green sheet 2.

次に、大型積層体11を所定の寸法で切断することにより、未焼成状態の積層体1が得られる。   Next, the large-sized laminated body 11 is cut | disconnected by a predetermined dimension, and the laminated body 1 of an unbaking state is obtained.

次に、得られた未焼成状態の積層体1を例えば1100℃〜1400℃の温度で焼成することにより、積層体1が得られる。このとき、焼成後の積層体1をバレル研磨することにより、積層体1内に埋設した1個または2個の金属粒子Mを積層体1の表面に露出させることができる。   Next, the laminated body 1 is obtained by firing the obtained unfired laminated body 1 at a temperature of 1100 ° C. to 1400 ° C., for example. At this time, one or two metal particles M embedded in the laminate 1 can be exposed to the surface of the laminate 1 by barrel polishing the laminate 1 after firing.

次に、積層体1の一対の側面に外部電極5、6を形成する。すなわち、Ni、Cu、Cu−Ni、Ag等の金属材料の粉末に適当なガラス成分、有機溶剤、有機バインダ等を添加・混合して得た導体ペーストを従来周知のディップ法、スクリーン印刷等によって積層体1の一対の側面に塗布後、700℃〜900℃で焼付けを行い、外部電極5、6を得る。必要に応じて、外部電極5、6の表面に、Niメッキ層、Snメッキ層、半田メッキ層等の金属メッキ層(図示せず)により被覆しても良い。   Next, external electrodes 5 and 6 are formed on a pair of side surfaces of the laminate 1. That is, a conductive paste obtained by adding and mixing an appropriate glass component, an organic solvent, an organic binder, etc. to a powder of a metal material such as Ni, Cu, Cu-Ni, Ag, etc. is obtained by a conventionally known dip method, screen printing, etc. After application to the pair of side surfaces of the laminate 1, baking is performed at 700 ° C. to 900 ° C. to obtain external electrodes 5 and 6. If necessary, the surfaces of the external electrodes 5 and 6 may be covered with a metal plating layer (not shown) such as a Ni plating layer, a Sn plating layer, or a solder plating layer.

このようにして、図1に示すようなセラミックコンデンサ10が得られる。   In this way, a ceramic capacitor 10 as shown in FIG. 1 is obtained.

かくして、本発明によれば、積層体1の内部に、外部電極5、6との間に1層の誘電体層2を隔ててダミー電極3b、4bを埋設するとともに、ダミー電極3b、4bと外部電極5、6とを両者間の誘電体層2内に存在する1個または2個の金属粒子Mを介して電気的・機械的に接続してなるため、外部電極5、6は、積層体1主面において、積層体1内に埋設した金属粒子Mと強固な金属−金属結合により接続していることから、外部電極5、6と積層体1主面間の機械的接続強度を増大させることができ、外部電極5、6の剥離37を防止できる。   Thus, according to the present invention, the dummy electrodes 3b and 4b are embedded in the multilayer body 1 with the one dielectric layer 2 between the outer electrodes 5 and 6 and the dummy electrodes 3b and 4b. Since the external electrodes 5 and 6 are electrically and mechanically connected via one or two metal particles M existing in the dielectric layer 2 between them, the external electrodes 5 and 6 are laminated. Since the main surface of the body 1 is connected to the metal particles M embedded in the multilayer body 1 by a strong metal-metal bond, the mechanical connection strength between the external electrodes 5 and 6 and the main surface of the multilayer body 1 is increased. And the separation 37 of the external electrodes 5 and 6 can be prevented.

また、金属粒子Mがダミー電極3b、4bと接続しているため、金属粒子Mが1層の誘電体層2内で確実に固定され、このことによっても、外部電極5、6の剥離37を効果的に防止できる。さらに、ダミー電極3b、4bと外部電極5、6の間の誘電体層2と、ダミー電極3b、4b間の剥離も有効に防止することができる。   Further, since the metal particles M are connected to the dummy electrodes 3b and 4b, the metal particles M are securely fixed in the one dielectric layer 2, and this also causes the peeling 37 of the external electrodes 5 and 6 to occur. It can be effectively prevented. Further, it is possible to effectively prevent peeling between the dielectric layer 2 between the dummy electrodes 3b and 4b and the external electrodes 5 and 6 and the dummy electrodes 3b and 4b.

またさらに、誘電体層2内に1個または2個の金属粒子Mが存在するため、金属粒子全体として不定形状となり、外部衝撃などにより誘電体層2から抜け落ちることはない。   Furthermore, since one or two metal particles M are present in the dielectric layer 2, the entire metal particles have an indefinite shape and do not fall off the dielectric layer 2 due to external impact or the like.

さらにまた、金属粒子Mを介した機械的接続が、金属粒子Mとダミー電極3b、4b中の金属微粒子mとの焼結、並びに金属粒子Mと外部電極5、6中の金属微粒子mとの焼結によってなされているため、製造ラインを大幅に変更することなく、上記機械的接続を実現できるとともに、金属粒子M、ダミー電極3b、4b中及び外部電極5、6は一体化しており、このことによっても、外部電極5、6の剥離を有効に防止することができる。   Furthermore, the mechanical connection through the metal particles M can be performed by sintering the metal particles M and the metal fine particles m in the dummy electrodes 3b and 4b, and between the metal particles M and the metal fine particles m in the external electrodes 5 and 6. Since it is made by sintering, the mechanical connection can be realized without significantly changing the production line, and the metal particles M, the dummy electrodes 3b and 4b, and the external electrodes 5 and 6 are integrated. This also effectively prevents the external electrodes 5 and 6 from being peeled off.

またさらに、誘電体層2内に存在する金属粒子Mの粒径Aが、ダミー電極3b、4bと外部電極5、6の延在部の間に位置する誘電体層2の厚みBに対し100%〜200%に設定されていることが望ましい。すなわち、上記金属粒子Mの平均粒径Aが、誘電体層2の厚みBに対し100%以上に相当するため、金属粒子Mが誘電体層2を貫通し、ダミー電極3b、4bと外部電極5、6を確実に接続することができる。一方、上記金属粒子Mの平均粒径Aが、誘電体層2の厚みBに対し200%以下であるため、製造時に、スクリーン印刷等によりダミー電極となる導体パターン3b、4bを精度良く形成することができるとともに、大型積層体11となるセラミックグリーンシート2及び導体パターン3、4を加圧加熱する際に、セラミックグリーンシート2間の密着性が低下するのを有効に防止することもできる。   Furthermore, the particle size A of the metal particles M present in the dielectric layer 2 is 100 with respect to the thickness B of the dielectric layer 2 located between the extended portions of the dummy electrodes 3b and 4b and the external electrodes 5 and 6. It is desirable that it is set to% to 200%. That is, since the average particle diameter A of the metal particles M corresponds to 100% or more with respect to the thickness B of the dielectric layer 2, the metal particles M penetrate the dielectric layer 2, and the dummy electrodes 3b and 4b and the external electrodes 5 and 6 can be reliably connected. On the other hand, since the average particle diameter A of the metal particles M is 200% or less with respect to the thickness B of the dielectric layer 2, the conductor patterns 3b and 4b serving as dummy electrodes are accurately formed by screen printing or the like during manufacturing. In addition, when the ceramic green sheet 2 and the conductor patterns 3 and 4 to be the large laminate 11 are heated under pressure, it is possible to effectively prevent the adhesion between the ceramic green sheets 2 from being lowered.

なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。   Note that the present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the scope of the present invention.

例えば、上記実施の形態では、セラミック電子部品としてセラミックコンデンサを用いて説明したが、本発明は、積層圧電部品、回路基板、半導体部品等、あらゆるセラミック電子部品に用いることができる。   For example, in the above embodiment, the ceramic capacitor is used as the ceramic electronic component. However, the present invention can be used for any ceramic electronic component such as a laminated piezoelectric component, a circuit board, and a semiconductor component.

図3は、本発明の他の実施形態に係るセラミックコンデンサを示す横断面図である。同図によれば、積層体1の主面にもダミー電極3b、4bが形成されている。そして、外部電極5、6は、積層体1の主面に形成されたダミー電極3b、4b、及び積層体1の側面における内部電極3a、4aの露出部を起点として金属メッキ膜を析出させるとともに、これらの析出物同士を相互に連結させることによって一体的に形成される。この場合、外部電極5、6の厚み精度が向上するとともに、積層体1を無電解メッキ用のメッキ液に所定時間浸漬しておくだけの簡単な加工によって外部電極5、6を所望するパターンに形成することができ、セラミックコンデンサ10の生産性向上に供することが可能である。またこのとき、積層体1の主面に形成されたダミー電極3b、4bとの間に1層の誘電体層2を隔てて、他のダミー電極3b、4bを埋設するとともに、これらのダミー電極3b、4b同士を両者間の誘電体層2内に存在する複数の金属粒子Mを焼結させて接続しているため、積層体1主面に形成されたダミー電極3b、4bが積層体1の主面から剥離するのを有効に防止することができる。なお、外部電極5、6と積層体1の主面に形成されたダミー電極3b、4b間は、金属−金属結合により、強固に結合している。またこのとき、金属粒子となる金属粒子Mは、積層体1の主面に形成されたダミー電極となる導体パターン3b、4bと、1層の誘電体層2を隔てた他のダミー電極となる導体パターン3b、4bの内、少なくとも一方に含有されていれば良く、両方に含有されても良い。さらに、図3において、導体ペーストを塗布後焼き付けることにより外部電極5、6を形成しても良い。   FIG. 3 is a cross-sectional view showing a ceramic capacitor according to another embodiment of the present invention. According to the figure, dummy electrodes 3 b and 4 b are also formed on the main surface of the laminate 1. The external electrodes 5 and 6 deposit a metal plating film starting from the dummy electrodes 3b and 4b formed on the main surface of the multilayer body 1 and the exposed portions of the internal electrodes 3a and 4a on the side surfaces of the multilayer body 1. These precipitates are integrally formed by interconnecting each other. In this case, the thickness accuracy of the external electrodes 5 and 6 is improved, and the external electrodes 5 and 6 are formed into a desired pattern by simple processing by simply immersing the laminate 1 in a plating solution for electroless plating for a predetermined time. Therefore, it is possible to improve the productivity of the ceramic capacitor 10. At this time, one dummy dielectric layer 2 is provided between the dummy electrodes 3b and 4b formed on the main surface of the multilayer body 1, and the other dummy electrodes 3b and 4b are buried, and these dummy electrodes are embedded. Since the plurality of metal particles M existing in the dielectric layer 2 between them are sintered and connected to each other, the dummy electrodes 3b and 4b formed on the main surface of the laminate 1 are connected to the laminate 1. It is possible to effectively prevent peeling from the main surface. The external electrodes 5 and 6 and the dummy electrodes 3b and 4b formed on the main surface of the multilayer body 1 are firmly bonded to each other by metal-metal bonding. Further, at this time, the metal particles M to be the metal particles become the other dummy electrodes with the conductor patterns 3b and 4b to be the dummy electrodes formed on the main surface of the multilayer body 1 and the one dielectric layer 2 therebetween. It may be contained in at least one of the conductor patterns 3b and 4b, and may be contained in both. Further, in FIG. 3, the external electrodes 5 and 6 may be formed by baking after applying the conductive paste.

図4は、本発明の他の実施形態に係るセラミック電子部品を示す横断面図である。図に示すように、本発明のセラミック電子部品10は、回路基板10にも適用できる。また、外部電極端子5は、積層体1側面から離間させても良い。さらに、外部電極端子5やダミー配線3bより寸法の大きいダミー配線4bを埋設するとともに、ダミー配線3bとダミー配線4bとを両者間のセラミック層2内に存在する金属粒子Mを介して電気的・機械的に接続するようにしても良い。このことにより、外部電極端子5と積層体1主面間の機械的接続強度をさらに増大させることができ、外部電極端子5の剥離をさらに効果的に防止できる。なおこのとき、ダミー配線4bとなる導体ペースト中に金属粒子Mを含有すると、ダミー配線3bの外側に金属粒子Mがはみ出てしまうため、ダミー配線3bとダミー配線4bは、ダミー配線3bとなる導体ペースト中に含有される金属粒子Mにより接続されるようにする。また図中、3aは内部配線導体、7はビアホール導体、8は他の電子部品である。   FIG. 4 is a cross-sectional view showing a ceramic electronic component according to another embodiment of the present invention. As shown in the figure, the ceramic electronic component 10 of the present invention can also be applied to a circuit board 10. Further, the external electrode terminal 5 may be separated from the side surface of the laminate 1. Further, a dummy wiring 4b having a size larger than that of the external electrode terminal 5 and the dummy wiring 3b is embedded, and the dummy wiring 3b and the dummy wiring 4b are electrically connected via the metal particles M existing in the ceramic layer 2 therebetween. You may make it connect mechanically. Thereby, the mechanical connection strength between the external electrode terminal 5 and the laminate 1 main surface can be further increased, and peeling of the external electrode terminal 5 can be further effectively prevented. At this time, if the metal paste M is contained in the conductive paste that becomes the dummy wiring 4b, the metal particles M protrude outside the dummy wiring 3b, so that the dummy wiring 3b and the dummy wiring 4b are conductors that become the dummy wiring 3b. The metal particles M contained in the paste are connected. In the figure, 3a is an internal wiring conductor, 7 is a via-hole conductor, and 8 is another electronic component.

そして、ダミー電極3b、4b中に、誘電体層2と略同一の誘電体成分が含有されるようにしても良い。このことによっても、誘電体層2とダミー電極3b、4b間の剥離を防止できる。   The dummy electrodes 3b and 4b may contain the same dielectric component as that of the dielectric layer 2. This can also prevent peeling between the dielectric layer 2 and the dummy electrodes 3b and 4b.

本発明の一実施形態に係るセラミックコンデンサを示す図であり、(a)は外観斜視図、(b)は横断面図である。It is a figure which shows the ceramic capacitor which concerns on one Embodiment of this invention, (a) is an external appearance perspective view, (b) is a cross-sectional view. 図1のセラミックコンデンサの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the ceramic capacitor of FIG. 本発明の他の実施形態に係るセラミックコンデンサを示す横断面図である。It is a cross-sectional view showing a ceramic capacitor according to another embodiment of the present invention. 本発明の他の実施形態に係るセラミック電子部品を示す横断面図である。It is a cross-sectional view showing a ceramic electronic component according to another embodiment of the present invention. 従来のセラミックコンデンサを示す横断面図である。It is a cross-sectional view showing a conventional ceramic capacitor.

符号の説明Explanation of symbols

10・・・・・・セラミック電子部品(コンデンサ)
1・・・・・・・積層体
2・・・・・・・誘電体層(セラミック層)
3、4・・・・・配線導体
3a、4a・・・内部電極
3b、4b・・・ダミー配線(ダミー電極)
5、6・・・・・外部電極(外部電極端子)
M・・・・・・・金属粒子
10. Ceramic electronic parts (capacitors)
1 ····· Laminated body 2 ········ Dielectric layer (ceramic layer)
3, 4 ... wiring conductors 3a, 4a ... internal electrodes 3b, 4b ... dummy wiring (dummy electrodes)
5, 6 ... External electrode (external electrode terminal)
M ... Metal particles

Claims (6)

複数個のセラミック層を積層した積層体の表面及び/又は内部に配線導体を配設するとともに、前記積層体の主面に前記配線導体と電気的に接続される外部電極端子を形成してなるセラミック電子部品において、
前記積層体の内部に、前記外部電極端子との間に1層のセラミック層を隔ててダミー配線を埋設するとともに、該ダミー配線と前記外部電極端子とを両者間のセラミック層内に存在する1個または2個の金属粒子を介して電気的・機械的に接続したことを特徴とするセラミック電子部品。
A wiring conductor is disposed on the surface and / or inside of a multilayer body in which a plurality of ceramic layers are laminated, and an external electrode terminal electrically connected to the wiring conductor is formed on the main surface of the multilayer body. In ceramic electronic components,
A dummy wiring is embedded inside the laminate with a ceramic layer between the external electrode terminals and the dummy wiring and the external electrode terminals are present in the ceramic layer between them. A ceramic electronic component characterized in that it is electrically and mechanically connected via one or two metal particles.
前記金属粒子を介した機械的接続が、前記金属粒子と前記ダミー配線中の金属成分との焼結、並びに前記金属粒子と前記外部電極端子中の金属成分との焼結によってなされていることを特徴とする請求項1に記載のセラミック電子部品。 The mechanical connection through the metal particles is made by sintering the metal particles and the metal component in the dummy wiring, and sintering the metal particles and the metal component in the external electrode terminal. The ceramic electronic component according to claim 1. 前記セラミック層内に存在する金属粒子の粒径Aが、前記ダミー配線と前記外部電極の延在部の間に位置するセラミック層の厚みBに対し100%〜200%に設定されていることを特徴とする請求項1または請求項2に記載のセラミック電子部品。 The particle size A of the metal particles present in the ceramic layer is set to 100% to 200% with respect to the thickness B of the ceramic layer located between the dummy wiring and the extended portion of the external electrode. The ceramic electronic component according to claim 1, wherein the ceramic electronic component is a ceramic electronic component. 複数個の誘電体層を積層した積層体の内部で、隣接する誘電体層間に内部電極を介在させるとともに、前記積層体の側面に前記内部電極の端部に電気的に接続される外部電極を形成し、該外部電極の一端を前記積層体の主面に延在させてなるコンデンサにおいて、
前記積層体の内部に、前記外部電極の延在部との間に1層の誘電体層を隔ててダミー電極を埋設するとともに、該ダミー電極と前記外部電極の延在部とを両電極間の誘電体層内に存在する1個または2個の金属粒子を介して電気的・機械的に接続したことを特徴とするコンデンサ。
An internal electrode is interposed between adjacent dielectric layers in a laminated body in which a plurality of dielectric layers are laminated, and an external electrode electrically connected to an end portion of the internal electrode is provided on a side surface of the laminated body. In a capacitor formed and extending one end of the external electrode to the main surface of the laminate,
A dummy electrode is embedded in the laminated body with a dielectric layer between the extended portion of the external electrode, and the dummy electrode and the extended portion of the external electrode are disposed between both electrodes. A capacitor that is electrically and mechanically connected via one or two metal particles present in the dielectric layer.
前記金属粒子を介した機械的接続が、前記金属粒子と前記ダミー電極中の金属成分との焼結、並びに記金属粒子と前記外部電極中の金属成分との焼結によってなされていることを特徴とする請求項4に記載のコンデンサ。 The mechanical connection via the metal particles is made by sintering the metal particles and the metal component in the dummy electrode, and sintering the metal particles and the metal component in the external electrode. The capacitor according to claim 4. 前記誘電体層内に存在する金属粒子の粒径Aが、前記ダミー電極と前記外部電極の延在部の間に位置する誘電体層の厚みBに対し100%〜200%に設定されていることを特徴とする請求項4または請求項5に記載のコンデンサ。 The particle size A of the metal particles present in the dielectric layer is set to 100% to 200% with respect to the thickness B of the dielectric layer located between the extending portion of the dummy electrode and the external electrode. The capacitor according to claim 4 or 5, wherein
JP2004242974A 2004-08-23 2004-08-23 Ceramic electronic components and capacitors Expired - Fee Related JP4463045B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004242974A JP4463045B2 (en) 2004-08-23 2004-08-23 Ceramic electronic components and capacitors
CNB2005100921604A CN100511507C (en) 2004-08-23 2005-08-22 Ceramic electronic component and manufacturing method thereof
US11/210,080 US7206187B2 (en) 2004-08-23 2005-08-23 Ceramic electronic component and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004242974A JP4463045B2 (en) 2004-08-23 2004-08-23 Ceramic electronic components and capacitors

Publications (2)

Publication Number Publication Date
JP2006060147A JP2006060147A (en) 2006-03-02
JP4463045B2 true JP4463045B2 (en) 2010-05-12

Family

ID=36107338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004242974A Expired - Fee Related JP4463045B2 (en) 2004-08-23 2004-08-23 Ceramic electronic components and capacitors

Country Status (2)

Country Link
JP (1) JP4463045B2 (en)
CN (1) CN100511507C (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635936B2 (en) * 2006-03-29 2011-02-23 Tdk株式会社 Dielectric element and manufacturing method thereof
JP4378371B2 (en) 2006-09-29 2009-12-02 Tdk株式会社 Multilayer capacitor
JP4396682B2 (en) * 2006-09-29 2010-01-13 Tdk株式会社 Multilayer capacitor and method for manufacturing multilayer capacitor
JP4400612B2 (en) * 2006-10-31 2010-01-20 Tdk株式会社 Multilayer capacitor and method for manufacturing multilayer capacitor
JP5056485B2 (en) 2008-03-04 2012-10-24 株式会社村田製作所 Multilayer electronic component and manufacturing method thereof
JP5217584B2 (en) 2008-04-07 2013-06-19 株式会社村田製作所 Multilayer ceramic electronic components
JP4962536B2 (en) * 2009-07-01 2012-06-27 株式会社村田製作所 Electronic components
JP5672162B2 (en) 2010-07-21 2015-02-18 株式会社村田製作所 Electronic components
WO2012043740A1 (en) * 2010-09-29 2012-04-05 京セラ株式会社 Capacitor
KR101548771B1 (en) * 2011-06-23 2015-09-01 삼성전기주식회사 Chip type laminated capacitor
KR20130039400A (en) * 2011-10-12 2013-04-22 삼성전기주식회사 Multilayered ceramic electronic component and manufacturing method thereof
JP5348302B2 (en) * 2012-09-28 2013-11-20 株式会社村田製作所 Multilayer ceramic electronic component and manufacturing method thereof
CN114586122A (en) * 2019-10-30 2022-06-03 京瓷株式会社 Thin film capacitor element
JP7322781B2 (en) * 2020-03-27 2023-08-08 株式会社村田製作所 multilayer ceramic electronic components

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234805A (en) * 1992-02-19 1993-09-10 Nec Corp Layered ceramic capacitor
JPH09129476A (en) * 1995-10-30 1997-05-16 Murata Mfg Co Ltd Ceramic electronic part
JP3477089B2 (en) * 1998-10-30 2003-12-10 京セラ株式会社 Multilayer ceramic capacitor and method of manufacturing the same
JP4097900B2 (en) * 2001-01-11 2008-06-11 Tdk株式会社 Manufacturing method of electronic parts
JP2003282356A (en) * 2002-03-27 2003-10-03 Kyocera Corp Capacitor array

Also Published As

Publication number Publication date
CN100511507C (en) 2009-07-08
JP2006060147A (en) 2006-03-02
CN1755849A (en) 2006-04-05

Similar Documents

Publication Publication Date Title
KR101107236B1 (en) Ceramic electronic component
JP5301524B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4463045B2 (en) Ceramic electronic components and capacitors
US9230740B2 (en) Multilayer ceramic electronic part to be embedded in board and printed circuit board having multilayer ceramic electronic part embedded therein
JP7275951B2 (en) Multilayer ceramic capacitor
US7417196B2 (en) Multilayer board with built-in chip-type electronic component and manufacturing method thereof
JP6376604B2 (en) Multilayer ceramic electronic component for built-in substrate and printed circuit board with built-in multilayer ceramic electronic component
JP2015037183A (en) Multilayer ceramic electronic component for incorporating board and printed circuit board incorporating multilayer ceramic electronic component
JP2017085095A (en) Capacitor and manufacturing method
JP5725678B2 (en) Multilayer ceramic electronic component, its manufacturing method and its mounting substrate
JP4329762B2 (en) Chip type electronic component built-in multilayer board
JP4429130B2 (en) Manufacturing method of ceramic electronic component
JP4463046B2 (en) Ceramic electronic components and capacitors
KR100956212B1 (en) Manufacturing method of multi-layer substrate
JP2006041319A (en) Surface-mounted multiple capacitor and mounting structure thereof
KR102571586B1 (en) Embedded multilayer ceramic electronic component, manufacturing method thereof and print circuit board having embedded multilayer ceramic electronic component
WO2024075427A1 (en) Multilayer ceramic capacitor
JP6164228B2 (en) Module and manufacturing method thereof
CN113593906B (en) Ceramic electronic component and method for manufacturing ceramic electronic component
KR102514236B1 (en) Capacitor and method of fabricating the same
JP3909285B2 (en) Wiring board
JP2008288225A (en) Capacitor and manufacturing method thereof, and substrate with built-in capacitor and manufacturing method thereof
JP2006269829A (en) Ceramic electronic component
JP2005217128A (en) Ceramic electronic part
JP2003037010A (en) Chip laminated-type electronic component and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4463045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees