JP2005159121A - Laminated ceramic electronic component - Google Patents

Laminated ceramic electronic component Download PDF

Info

Publication number
JP2005159121A
JP2005159121A JP2003397225A JP2003397225A JP2005159121A JP 2005159121 A JP2005159121 A JP 2005159121A JP 2003397225 A JP2003397225 A JP 2003397225A JP 2003397225 A JP2003397225 A JP 2003397225A JP 2005159121 A JP2005159121 A JP 2005159121A
Authority
JP
Japan
Prior art keywords
layers
thick film
film conductor
plating
multilayer ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003397225A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Fujikawa
信儀 藤川
Tsutomu Iemura
努 家村
Yoshinori Kawasaki
芳範 河崎
Shinichi Kan
信一 管
Susumu Shimomura
晋 下村
Kazutaka Uchi
一隆 内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003397225A priority Critical patent/JP2005159121A/en
Publication of JP2005159121A publication Critical patent/JP2005159121A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable laminated ceramic capacitor for preventing solder explosion, and for suppressing any crack at the time of surface mounting on a wiring board. <P>SOLUTION: Thick film conductor layers 5a and 6a electrically connected to internal electrode layers 3 and 4 are formed on the side face of a laminate 1 constituted by laminating a plurality of rectangular dielectric layers 2 with internal electrode layers 3 and 4 interposed, and metallic plating layers 5b to 6b are formed on thick film conductor layers 5a and 6a so that a laminated ceramic electronic component 10 can be configured. The surfaces of the thick conductor layers 5a and 6a are formed with a plurality of recesses X, and the metallic plating layers 5b to 6c are selectively formed on the surfaces of the thick film conductor layers 5a and 6a on which any recess X is not formed so that a plurality of through-holes Y can be formed in the metallic plating layers 5b to 6c. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、積層セラミック電子部品に関するものである。   The present invention relates to a multilayer ceramic electronic component.

代表的な積層セラミック電子部品として、積層セラミックコンデンサを用いて説明する。   A typical multilayer ceramic electronic component will be described using a multilayer ceramic capacitor.

図2(a)は、従来の積層セラミックコンデンサを示す縦断面図であり、図2(b)は、従来の積層セラミックコンデンサを配線基板に実装した状態を示す断面図である。図3は、従来の積層セラミックコンデンサの外部電極周辺を拡大して示す縦断面図である。   2A is a longitudinal sectional view showing a conventional multilayer ceramic capacitor, and FIG. 2B is a sectional view showing a state in which the conventional multilayer ceramic capacitor is mounted on a wiring board. FIG. 3 is an enlarged longitudinal sectional view showing the periphery of an external electrode of a conventional multilayer ceramic capacitor.

図2(a)において、積層セラミックコンデンサ20は、矩形状をなす複数個の誘電体層22と内部電極層23、24とが交互に積層された積層体21の側面に、内部電極層23、24に電気的に接続される外部電極25、26が形成されている。外部電極25、26は、金属成分及びガラス成分を含む導電性ペーストを焼き付けて形成された厚膜導体層25a、26aと、厚膜導体層25a、26a上に湿式メッキ法により形成されたNiメッキ層25b、26bと、Niメッキ層25b、26bの表面に湿式メッキ法により形成されたSnメッキ層25c、26cとから構成される。   In FIG. 2A, a multilayer ceramic capacitor 20 includes a plurality of rectangular dielectric layers 22 and internal electrode layers 23, 24 on the side surfaces of a multilayer body 21 alternately laminated with internal electrode layers 23, External electrodes 25, 26 electrically connected to 24 are formed. The external electrodes 25 and 26 are thick film conductor layers 25a and 26a formed by baking a conductive paste containing a metal component and a glass component, and Ni plating formed on the thick film conductor layers 25a and 26a by a wet plating method. The layers 25b and 26b, and the Sn plating layers 25c and 26c formed on the surfaces of the Ni plating layers 25b and 26b by a wet plating method.

このような積層セラミックコンデンサ20は、図2(b)に示すように、配線基板11上の配線パターン12に半田13により表面実装される。このとき、Snメッキ層25c、26cは半田13に溶融するが、Niメッキ層25b、26bは半田13に溶融しないため、半田13は、Snメッキ層25c、26cを溶融し、概略Niメッキ層25b、26bと接触する。
特開2000−331866号公報(4−9頁、図2) 特開2002−246262号公報(3−5頁、図1)
Such a multilayer ceramic capacitor 20 is surface-mounted by solder 13 on a wiring pattern 12 on a wiring board 11 as shown in FIG. At this time, the Sn plating layers 25c and 26c are melted into the solder 13, but the Ni plating layers 25b and 26b are not melted into the solder 13. Therefore, the solder 13 melts the Sn plating layers 25c and 26c, and approximately the Ni plating layer 25b. , 26b.
JP 2000-331866 A (page 4-9, FIG. 2) JP 2002-246262 (page 3-5, FIG. 1)

しかしながら、上記実施の形態によれば、図3に示すように、Ni、Snメッキ工程において、厚膜導体層25a、26aの内部にメッキ液が浸入し、厚膜導体層25a、26a内の空隙中にメッキ液中の水分やメッキ水和物(メッキ液中の塩化物イオンや硫酸イオンが水に溶解したものを言う。以下同じ。)が残留した場合、これらの水分やメッキ水和物が半田付けなどの熱で気化膨張し、水分ガスが厚膜導体層25a、26a内の空隙の開口から噴出することにより、半田13が吹き飛ばされる(以下、半田爆ぜという)という問題点があった。特に、隣接する積層セラミックコンデンサ20の外部電極25、26間の距離mが200μm以下と小さい場合、図2(b)に示すように、ショート14の原因となっていた。   However, according to the above embodiment, as shown in FIG. 3, in the Ni and Sn plating process, the plating solution penetrates into the thick film conductor layers 25a and 26a, and the voids in the thick film conductor layers 25a and 26a. If moisture in the plating solution or plating hydrate (which means that chloride ions or sulfate ions in the plating solution are dissolved in water; the same applies hereinafter) remains in the plating solution. There is a problem in that the solder 13 is blown away (hereinafter referred to as solder explosion) by vaporizing and expanding by heat such as soldering and the moisture gas being ejected from the opening of the gap in the thick film conductor layers 25a and 26a. In particular, when the distance m between the external electrodes 25 and 26 of adjacent multilayer ceramic capacitors 20 is as small as 200 μm or less, as shown in FIG.

上記問題点を解決するために、Ni、Snメッキ工程において、厚膜導体層25a、26aの内部にメッキ液が浸入及び残留しないように、厚膜導体層25a、26aの金属成分及びガラス成分の面積占有率を大きくする方法が考えられるが、このとき、配線基板11上に表面実装した状態で、配線基板11が膨張・収縮した際に、積層セラミックコンデンサにクラックが発生するという問題点があった。   In order to solve the above problems, in the Ni and Sn plating process, the metal component and the glass component of the thick film conductor layers 25a and 26a are prevented from entering and remaining in the thick film conductor layers 25a and 26a. A method of increasing the area occupancy is conceivable. At this time, however, there is a problem that a crack is generated in the multilayer ceramic capacitor when the wiring board 11 expands and contracts in a state of being surface-mounted on the wiring board 11. It was.

本発明は、上述の問題点に鑑みて案出されたものであり、その目的は、半田爆ぜを防止できるとともに、配線基板上に表面実装時のクラックを抑制できる、信頼性の高い積層セラミック電子部品を提供することにある。   The present invention has been devised in view of the above-mentioned problems, and its purpose is to prevent the occurrence of solder explosion and to suppress cracks during surface mounting on a wiring board, and to provide a highly reliable multilayer ceramic electronic. To provide parts.

本発明は、矩形状をなす複数個の誘電体層を間に内部電極層を介して積層してなる積層体の側面に、前記内部電極層に電気的に接続される厚膜導体層を形成するとともに、該厚膜導体層上に金属メッキ層を形成してなる積層セラミック電子部品において、前記厚膜導体層の表面に多数の凹部を有しており、且つ前記金属メッキ層を前記凹部の存在しない厚膜導体層の表面に選択的に形成して前記金属メッキ層に多数の貫通孔を設けたことを特徴とするものである。   According to the present invention, a thick film conductor layer electrically connected to the internal electrode layer is formed on a side surface of a laminate formed by laminating a plurality of rectangular dielectric layers with an internal electrode layer interposed therebetween. In addition, in the multilayer ceramic electronic component formed by forming a metal plating layer on the thick film conductor layer, the surface of the thick film conductor layer has a large number of recesses, and the metal plating layer is formed on the recesses. A large number of through holes are provided in the metal plating layer selectively formed on the surface of the thick film conductor layer which does not exist.

また、前記凹部の平均開口径が5μm〜10μmであり、且つこれら凹部の開口面積の合計が前記厚膜導体層の表面積全体の8%〜40%を占めることを特徴とするものである。   Moreover, the average opening diameter of the said recessed part is 5 micrometers-10 micrometers, and the sum total of the opening area of these recessed parts occupies 8%-40% of the whole surface area of the said thick film conductor layer, It is characterized by the above-mentioned.

本発明によれば、厚膜導体層の表面に多数の凹部を有しており、且つ金属メッキ層を凹部の存在しない厚膜導体層の表面に選択的に形成して金属メッキ層に多数の貫通孔を設けているため、厚膜導体層内の凹部中にメッキ液中の水分やメッキ水和物が残留した場合も、メッキ層形成後に、加熱などの方法でこれらの水分やメッキ水和物を容易に除去することができることから、半田爆ぜを防止できる。さらに、厚膜導体層内に凹部が存在するため、配線基板上に表面実装した状態で、配線基板が膨張・収縮した際に、積層セラミックコンデンサにクラックが発生することも防止できる。   According to the present invention, the metal plating layer has a large number of recesses on the surface of the thick film conductor layer, and the metal plating layer is selectively formed on the surface of the thick film conductor layer without the recesses. Since the through-holes are provided, even if moisture in the plating solution or plating hydrate remains in the recesses in the thick film conductor layer, such moisture or plating hydration can be achieved by heating after the plating layer is formed. Since the object can be easily removed, solder explosion can be prevented. Further, since the concave portion exists in the thick film conductor layer, it is possible to prevent the multilayer ceramic capacitor from being cracked when the wiring substrate expands and contracts in a state of being surface-mounted on the wiring substrate.

また本発明によれば、凹部の平均開口径が5μm〜10μmであり、且つこれら凹部の開口面積の合計が厚膜導体層の表面積全体の8%〜40%を占めるようにしたことから、外部電極の形状や電気的特性に影響を与えることがなく有効に半田爆ぜを防止できるとともに、配線基板上への表面実装時のクラックをより効果的に抑制し信頼性の向上を可能とすることができる。   According to the present invention, the average opening diameter of the recesses is 5 μm to 10 μm, and the total opening area of these recesses occupies 8% to 40% of the entire surface area of the thick film conductor layer. It is possible to effectively prevent solder explosion without affecting the shape and electrical characteristics of the electrodes, and more effectively suppress cracks during surface mounting on the wiring board, thereby improving reliability. it can.

以下、本発明の積層セラミック電子部品を図面に基づいて説明する。   The multilayer ceramic electronic component of the present invention will be described below with reference to the drawings.

代表的な積層セラミック電子部品として、積層セラミックコンデンサを用いて説明する。   A typical multilayer ceramic electronic component will be described using a multilayer ceramic capacitor.

図1は、本発明の積層セラミックコンデンサを示す図であり、(a)は外観斜視図、(b)は縦断面図、(c)は(b)の外部電極周辺を拡大して示す図である。   FIG. 1 is a view showing a multilayer ceramic capacitor of the present invention, in which (a) is an external perspective view, (b) is a longitudinal sectional view, and (c) is an enlarged view of the periphery of an external electrode of (b). is there.

図において、10は積層セラミックコンデンサ、1は積層体、2は誘電体層、3、4は内部電極層、5、6は外部電極である。   In the figure, 10 is a multilayer ceramic capacitor, 1 is a multilayer body, 2 is a dielectric layer, 3 and 4 are internal electrode layers, and 5 and 6 are external electrodes.

誘電体層2は、チタン酸バリウム(BaTiO)などを主成分とする非還元性誘電体材料からなり、その厚みは高容量化のために1〜5μmとしている。この誘電体層2は、その形状は0.6mm×0.3mmなどであり、図上、上方向に積層して積層体1が構成される。なお、誘電体層2の形状、厚み、積層数は容量値によって任意に変更することができる。 The dielectric layer 2 is made of a non-reducing dielectric material mainly composed of barium titanate (BaTiO 3 ) or the like, and has a thickness of 1 to 5 μm for increasing the capacity. The dielectric layer 2 has a shape of 0.6 mm × 0.3 mm or the like, and is laminated in the upward direction in the figure to form the laminate 1. The shape, thickness, and number of layers of the dielectric layer 2 can be arbitrarily changed depending on the capacitance value.

内部電極層3、4は、Cu、Niを主成分とする材料から構成され、その厚みは0.5〜2μmとしている。そして、誘電体層2の積層方向に隣接しあう2つの内部電極層3、4は、互いに積層体1の異なる端面側に延出し、各々異なる外部電極5、6に接続されている。   The internal electrode layers 3 and 4 are made of a material mainly composed of Cu and Ni and have a thickness of 0.5 to 2 μm. The two internal electrode layers 3 and 4 adjacent to each other in the stacking direction of the dielectric layer 2 extend to different end face sides of the stacked body 1 and are connected to different external electrodes 5 and 6, respectively.

外部電極5、6は、Cu、Cu−Niなどの金属成分、及びガラス成分を含む導電性ペーストを焼き付けて形成された厚膜導体層5a、6aと、厚膜導体層5a、6a上に形成されたNiメッキ層5b、6bと、Niメッキ層5b、6b上に形成されたSnメッキ層5c、6cとから構成される。   The external electrodes 5 and 6 are formed on the thick film conductor layers 5a and 6a formed by baking a conductive paste containing a metal component such as Cu and Cu-Ni and a glass component, and the thick film conductor layers 5a and 6a. Ni plating layers 5b and 6b, and Sn plating layers 5c and 6c formed on the Ni plating layers 5b and 6b.

ここで厚膜導体層5a、6aは、Niメッキ層5b、6bとの界面に多数の凹部Xを有しており、且つNiメッキ層5b、6b及びSnメッキ層5c、6cを凹部Xの存在しない厚膜導体層5、6の表面に選択的に形成して、Niメッキ層5b、6b及びSnメッキ層5c、6cに多数の貫通孔Yを設けれている。このため、図1(c)に示すように、厚膜導体層5a、6a内の凹部X中にメッキ液中の水分やメッキ水和物(図中、Hで示す)が残留した場合も、Niメッキ層5a、6a及びSnメッキ層5b、6b形成後に、加熱などの方法でこれらの水分やメッキ水和物を容易に除去することができることから、半田爆ぜを防止できる。さらに、厚膜導体層内5a、6aに凹部Xが存在するため、配線基板11上に表面実装した状態で、配線基板11が膨張・収縮した際に、積層セラミックコンデンサ10にクラックが発生することも防止できる。   Here, the thick film conductor layers 5a and 6a have a large number of recesses X at the interfaces with the Ni plating layers 5b and 6b, and the Ni plating layers 5b and 6b and the Sn plating layers 5c and 6c exist in the presence of the recesses X. A large number of through holes Y are provided in the Ni plating layers 5b and 6b and the Sn plating layers 5c and 6c. For this reason, as shown in FIG. 1 (c), when the moisture in the plating solution and the plating hydrate (indicated by H in the figure) remain in the recesses X in the thick film conductor layers 5a and 6a, After forming the Ni plating layers 5a and 6a and the Sn plating layers 5b and 6b, these moisture and plating hydrates can be easily removed by a method such as heating, so that solder explosion can be prevented. Further, since the concave portions X exist in the thick film conductor layers 5a and 6a, when the wiring board 11 expands and contracts in a state of being surface-mounted on the wiring board 11, a crack is generated in the multilayer ceramic capacitor 10. Can also be prevented.

厚膜導体層5a、6aは、特に、凹部Xの平均開口径rが5μm〜10μmであり、且つこれら凹部Xの開口面積の合計が厚膜導体層5、6のNiメッキ層5b、6b側表面積全体の8%〜40%を占めるようにすることが好ましい。この場合、凹部Xの平均開口径rが5μm以上であるため、厚膜導体層5a、6a上にNiメッキ層5b、6bを形成する際に、Niメッキ層5b、6bが凹部Xを完全に塞ぐように成長することなく、Niメッキ層5b、6bを凹部Xの存在しない厚膜導体層5a、6aの表面に選択的に形成して、Niメッキ層5b、6b及びSnメッキ層5c、6cに多数の貫通孔Yを設けることができ、半田爆ぜを防止できる。一方、凹部Xの平均開口径rが10μm以下であるため、厚膜導体層5a、6aの厚みtaが小さくなった場合も、外部電極5、6の形状や電気的特性に影響を与えることがない。   In the thick film conductor layers 5a and 6a, in particular, the average opening diameter r of the recesses X is 5 μm to 10 μm, and the total opening area of these recesses X is the Ni plating layers 5b and 6b side of the thick film conductor layers 5 and 6 It is preferable to occupy 8% to 40% of the entire surface area. In this case, since the average opening diameter r of the recess X is 5 μm or more, when forming the Ni plating layers 5b and 6b on the thick film conductor layers 5a and 6a, the Ni plating layers 5b and 6b completely form the recess X. The Ni plating layers 5b and 6b are selectively formed on the surfaces of the thick film conductor layers 5a and 6a where the concave portion X does not exist without growing so as to close the Ni plating layers 5b and 6b and the Sn plating layers 5c and 6c. A large number of through-holes Y can be provided in the solder, and solder explosion can be prevented. On the other hand, since the average opening diameter r of the concave portion X is 10 μm or less, even when the thickness ta of the thick film conductor layers 5a and 6a is reduced, the shape and electrical characteristics of the external electrodes 5 and 6 may be affected. Absent.

さらに、凹部Xの開口面積の合計が厚膜導体層5a、6aのNiメッキ層5b、6b側表面積全体の8%以上であるため、上記配線基板11上に表面実装時のクラックをさらに効果的に抑制できる。一方、凹部Xの開口面積の合計が厚膜導体層5a、6aのNiメッキ層5b、6c側表面積全体の40%以下であるため、湿中負荷試験などの信頼性の低下を抑制できる。   Furthermore, since the total opening area of the recesses X is 8% or more of the total surface area on the Ni plating layers 5b and 6b of the thick film conductor layers 5a and 6a, cracks during surface mounting are more effective on the wiring board 11. Can be suppressed. On the other hand, since the total opening area of the recesses X is 40% or less of the entire surface area on the Ni plating layers 5b and 6c of the thick film conductor layers 5a and 6a, it is possible to suppress a decrease in reliability such as a humidity load test.

Niメッキ層5b、6bの厚みは、厚膜導体層5a、6aの凹部Xの開口を塞がないように、粘度との関係で任意に調整すれば良く、例えば、10μm以下とすれば良い。   The thickness of the Ni plating layers 5b and 6b may be arbitrarily adjusted in relation to the viscosity so as not to block the opening of the concave portion X of the thick film conductor layers 5a and 6a, and may be, for example, 10 μm or less.

ここで、積層セラミックコンデンサ10の長さ方向の寸法をL、Niメッキ層5b、6bの厚みをtbとした場合、0.01≦ta/L≦0.05、1μm≦tb≦4μmの範囲にあることが望ましい。すなわち、厚膜導体層25a、26aの厚みtaが大きくなると、厚膜導体層25a、26a表面から内部に向かって複雑に入り組んでいる凹部Xが多くなるが、ta/L≦0.05の範囲にあるため、上記複雑に入り組んでいる凹部Xは少なく、このことによっても、Niメッキ層5a、6a及びSnメッキ層5b、6b形成後に、加熱などの方法で水分やメッキ水和物を容易に除去しやすい。また、Niメッキ層25b、26bの厚みtbが大きくなると、図3に示すように、凹部X上にもまたがるように形成されるが、tb≦4μmの範囲にあるため、凹部Xの存在しない厚膜導体層5a、6a上に選択的に形成される。さらに、ta/L≧0.01の範囲にあるため、金属成分及びガラス成分を含む導電性ペーストを塗布後焼き付けるという簡単且つ安価な方法で、均一な厚膜導体層5a、6aを形成することができる。一方、tb≧1μmの範囲にあるため、積層体1のエッジ部にも均一にNiメッキ層5b、6bを形成することができ、実装性が良好になる。   Here, when the dimension in the length direction of the multilayer ceramic capacitor 10 is L and the thickness of the Ni plating layers 5b and 6b is tb, the range is 0.01 ≦ ta / L ≦ 0.05, 1 μm ≦ tb ≦ 4 μm. It is desirable to be. That is, as the thickness ta of the thick film conductor layers 25a and 26a increases, the concave portions X that are intricately complicated from the surfaces of the thick film conductor layers 25a and 26a increase, but the range of ta / L ≦ 0.05. Therefore, there are few intricately indented recesses X, and this also makes it easy to remove moisture and hydrated plating by a method such as heating after forming the Ni plating layers 5a and 6a and the Sn plating layers 5b and 6b. Easy to remove. Further, when the thickness tb of the Ni plating layers 25b and 26b is increased, the Ni plating layers 25b and 26b are formed so as to straddle the concave portion X as shown in FIG. 3. However, since the thickness tb ≦ 4 μm, the thickness without the concave portion X exists. It is selectively formed on the film conductor layers 5a and 6a. Furthermore, since it is in the range of ta / L ≧ 0.01, the uniform thick film conductor layers 5a and 6a are formed by a simple and inexpensive method of baking after applying a conductive paste containing a metal component and a glass component. Can do. On the other hand, since it exists in the range of tb> = 1 micrometer, the Ni plating layers 5b and 6b can be uniformly formed also in the edge part of the laminated body 1, and mountability becomes favorable.

以下、本発明の積層セラミックコンデンサ10の製造方法について説明する。なお、各符号は焼成の前後で区別しないことにする。   Hereinafter, a method for manufacturing the multilayer ceramic capacitor 10 of the present invention will be described. Each symbol is not distinguished before and after firing.

まず、誘電体層となるセラミックグリーンシート2の所定の領域に、導電性ペーストをスクリーン印刷により塗布後乾燥し、内部電極層となる導体パターン3、4を形成する。   First, a conductive paste is applied by screen printing to a predetermined region of the ceramic green sheet 2 to be a dielectric layer and then dried to form conductor patterns 3 and 4 to be internal electrode layers.

そして、このようなセラミックグリーンシートを、導体パターン3、4が互いに対向するように所定の積層枚数重ねた後、切断して積層体1とし、所定の雰囲気、温度、時間を加えて焼成する。これにより、積層体1の一対の端面には、内部電極層3、4が露出している。   Then, after stacking a predetermined number of laminated layers such that the conductor patterns 3 and 4 face each other, such ceramic green sheets are cut to form a laminated body 1 and fired by adding a predetermined atmosphere, temperature and time. Thereby, the internal electrode layers 3 and 4 are exposed at the pair of end faces of the multilayer body 1.

次に、上記積層体1の両端面に外部電極5、6を形成する。具体的には、まず積層体1の表面に厚膜導体層5a、6aを形成する。   Next, external electrodes 5 and 6 are formed on both end faces of the laminate 1. Specifically, first, thick film conductor layers 5 a and 6 a are formed on the surface of the multilayer body 1.

厚膜導体層5a、6aは、Cu、Cu−Niなどの金属成分、ホウケイ酸系ガラス粉末、アクリル系有機バインダ樹脂、及びテルピネオールなどの有機溶剤とを混合した導電性ペーストを積層体1の両端にディップ法、スクリーン印刷法などにより塗布後100℃〜150℃で乾燥し、厚膜導体層5a、6aとなる導体膜を得る。   The thick film conductor layers 5a and 6a are formed by using a conductive paste in which a metal component such as Cu or Cu-Ni, a borosilicate glass powder, an acrylic organic binder resin, and an organic solvent such as terpineol is mixed. After coating by a dipping method, a screen printing method or the like, it is dried at 100 ° C. to 150 ° C. to obtain a conductor film to be the thick film conductor layers 5a and 6a.

このとき、凹部Xの開口面積の合計が厚膜導体層5a、6aのNiメッキ層5b、6b側表面積全体の8%以上になるようにするために、例えば、Cu粉末及びNi粉末の平均粒径は、3μm以上のものを用いれば良い。また、導電性ペースト中の固形分の比率は、例えば、60wt%〜90wt%とする。   At this time, in order to make the total opening area of the recesses X be 8% or more of the entire surface area of the Ni plating layers 5b and 6b of the thick film conductor layers 5a and 6a, for example, average grains of Cu powder and Ni powder A diameter of 3 μm or more may be used. Further, the ratio of the solid content in the conductive paste is, for example, 60 wt% to 90 wt%.

そして、導体膜5a、6aを窒素雰囲気中で700℃〜900℃で焼き付けることにより、厚膜導体層5a、6aが形成される。   And the thick film | membrane conductor layers 5a and 6a are formed by baking the conductor films 5a and 6a at 700 to 900 degreeC in nitrogen atmosphere.

以上のように形成した厚膜導体層5a、6aの表面には、多数の凹部Xが存在している。   Many concave portions X exist on the surfaces of the thick film conductor layers 5a and 6a formed as described above.

上記厚膜導体層5a、6aの表面に、Niメッキ層5b、6bを電解メッキ法などの湿式メッキ法により形成する。このとき、メッキ条件を調節することにより、Niメッキ層5b、6bを凹部Xの存在しない厚膜導体層5a、6aの表面に選択的に形成する。   Ni plating layers 5b and 6b are formed on the surfaces of the thick film conductor layers 5a and 6a by a wet plating method such as an electrolytic plating method. At this time, the Ni plating layers 5b and 6b are selectively formed on the surfaces of the thick film conductor layers 5a and 6a where the concave portion X does not exist by adjusting the plating conditions.

そして、Niメッキ層5b、6bの表面に、Snメッキ層5c、6cを電解メッキなどなどの湿式メッキ法により形成する。このとき、Snメッキ層5c、6cをNiメッキ層5b、6bの表面に選択的に形成することにより、Niメッキ層5b、6b及びSnメッキ層5c、6cに多数の貫通孔Yが設けられる。   Then, the Sn plating layers 5c and 6c are formed on the surfaces of the Ni plating layers 5b and 6b by a wet plating method such as electrolytic plating. At this time, by selectively forming the Sn plating layers 5c and 6c on the surfaces of the Ni plating layers 5b and 6b, a large number of through holes Y are provided in the Ni plating layers 5b and 6b and the Sn plating layers 5c and 6c.

このようにして、図1に示すような積層セラミックコンデンサ10が得られる。   In this way, a multilayer ceramic capacitor 10 as shown in FIG. 1 is obtained.

ここで、Snメッキ層5c、6cを形成した後、積層セラミックコンデンサ10を純水などの洗浄水中に浸漬し、超音波洗浄や煮沸などの処理を行うことにより、残留したメッキ水和物を除去するようにしても良い。すなわち、厚膜導体層5a、6a中に水分のみが残留した場合、100℃以下の加熱状態で除去することができる。   Here, after forming the Sn plating layers 5c and 6c, the multilayer ceramic capacitor 10 is immersed in cleaning water such as pure water, and ultrasonic plating and boiling are performed to remove the remaining plating hydrate. You may make it do. That is, when only moisture remains in the thick film conductor layers 5a and 6a, it can be removed in a heating state of 100 ° C. or less.

なお、本発明は上記の実施の形態例に限定されるものではなく、本発明の要旨を逸脱しない範囲内での種々の変更や改良などは何ら差し支えない。   It should be noted that the present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the scope of the present invention.

例えば、上記実施の形態では、厚膜導体層5a、6aの表面にNiメッキ層5b、6b、Snメッキ層5c、6cを形成したが、その他あらゆるメッキ層を用いることができ、あるいは3層以上のメッキ層を形成するようにしても良い。   For example, in the above embodiment, the Ni plating layers 5b and 6b and the Sn plating layers 5c and 6c are formed on the surfaces of the thick film conductor layers 5a and 6a, but any other plating layer can be used, or three or more layers can be used. The plating layer may be formed.

本発明者は、チタン酸バリウムを主成分とする誘電体層2を積層してなるとともに、一対の端面に内部電極層3、4が露出している焼成後の積層体1を形成した。次に、ディップ法により、積層体1の端面に厚膜導体層となる導体膜5a、6aを形成した後、導体膜5a、6aを850℃で焼き付け、夫々内部電極層3、4と接続する厚膜導体層5a、6aを形成した。次に、厚膜導体層5a、6aの表面に電解メッキ法により、Niメッキ膜5b、6b、Snメッキ膜5c、6cを順次形成し、図1に示すような0603型(L=0.6mm)の積層セラミックコンデンサ10を作製した。さらに、得られた積層セラミックコンデンサ10を80℃に加熱した。   The inventor formed a laminated body 1 after firing in which the dielectric layer 2 containing barium titanate as a main component was laminated and the internal electrode layers 3 and 4 were exposed on a pair of end faces. Next, after forming conductor films 5a and 6a to be thick film conductor layers on the end face of the laminate 1 by dipping, the conductor films 5a and 6a are baked at 850 ° C. and connected to the internal electrode layers 3 and 4, respectively. Thick film conductor layers 5a and 6a were formed. Next, Ni plating films 5b and 6b and Sn plating films 5c and 6c are sequentially formed on the surfaces of the thick film conductor layers 5a and 6a by electrolytic plating, and the 0603 type (L = 0.6 mm) as shown in FIG. 1) was produced. Further, the obtained multilayer ceramic capacitor 10 was heated to 80 ° C.

このとき、表1に示すように、導電性ペースト中の金属成分の平均粒径、固形分の比率、厚膜導体層5a、6aの厚みtaを制御することにより、凹部Xの平均開口径r、厚膜導体層5a、6aのNiメッキ層5b、6b側表面積全体の内の凹部Xの開口面積の合計が占める割合を調節した。また、Niメッキ層5b、6bの厚みtbを制御することにより、Niメッキ層5b、6b及びSnメッキ層5c、6cに貫通孔Yが形成されない比較例も作製した。   At this time, as shown in Table 1, by controlling the average particle diameter of the metal component in the conductive paste, the solid content ratio, and the thickness ta of the thick film conductor layers 5a and 6a, the average opening diameter r of the recess X The ratio of the total opening area of the recesses X in the entire surface area of the Ni plating layers 5b and 6b on the thick film conductor layers 5a and 6a was adjusted. Further, by controlling the thickness tb of the Ni plating layers 5b and 6b, a comparative example in which the through hole Y was not formed in the Ni plating layers 5b and 6b and the Sn plating layers 5c and 6c was also produced.

得られた積層セラミックコンデンサ10について、半田爆ぜの発生率、たわみ強度、静電容量、湿中負荷試験を評価した。   The obtained multilayer ceramic capacitor 10 was evaluated for the rate of occurrence of solder explosion, deflection strength, capacitance, and wet load test.

貫通孔Yの有無、凹部Xの平均開口径r、厚膜導体層5a、6aのNiメッキ層5b、6b側表面積全体の内の凹部Xの開口面積の合計が占める割合は、積層セラミックコンデンサ10の断面のSEM像から求めた。   The presence or absence of the through hole Y, the average opening diameter r of the recess X, the Ni plating layer 5b of the thick film conductor layers 5a and 6a, and the ratio of the total opening area of the recess X in the entire surface area on the 6b side are It was determined from the SEM image of the cross section.

半田爆ぜの発生率は、隣接する積層セラミックコンデンサ10の外部電極5、6間の距離mが200μmとなるように、ガラスエポキシ基板(配線基板)11上の配線パターン12に半田13付けし、270℃に加熱後、金属顕微鏡で観察することにより、半田13が吹き飛ばされた割合を求めた。   The rate of occurrence of solder explosion was determined by applying solder 13 to the wiring pattern 12 on the glass epoxy substrate (wiring substrate) 11 so that the distance m between the external electrodes 5 and 6 of the adjacent multilayer ceramic capacitor 10 was 200 μm. The ratio of the solder 13 blown off was determined by observing with a metal microscope after heating to ° C.

たわみ強度試験は、積層セラミックコンデンサ10を1.6mm厚のガラスエポキシ基板(配線基板)11上の配線パターン12に、半田13付けにより表面実装した。そして、外部電極5、6の中央において、ガラスエポキシ基板が上方に2.0mm移動するようにガラスエポキシ基板11をたわませた後、金属顕微鏡で観察し、クラックが発生しなかった場合を良品として○印、クラックが発生した場合を不良品として×印とした。   In the bending strength test, the multilayer ceramic capacitor 10 was surface-mounted by soldering 13 on a wiring pattern 12 on a glass epoxy substrate (wiring substrate) 11 having a thickness of 1.6 mm. Then, after bending the glass epoxy substrate 11 so that the glass epoxy substrate moves 2.0 mm upward at the center of the external electrodes 5 and 6, the sample is observed with a metal microscope and no crack is generated. As a ○ mark and a case where a crack occurred as a defective product.

静電容量は、インピーダンスアナライザーで側定し、公称容量の95%以上である場合を良品として○印、95%未満である場合を不良品として×印とした。   The capacitance was determined by an impedance analyzer, and a case where the capacitance was 95% or more of the nominal capacitance was marked as “good”, and a case where it was less than 95% was marked as “defective”.

湿中負荷試験は、温度85℃、相対湿度85%の条件で1000時間保持し、絶縁抵抗値が40mΩを超えるものを良品、40mΩ以下であるものを不良品とし、試料100個の内、不良品の割合を測定した。   The humidity load test is held for 1000 hours under the conditions of a temperature of 85 ° C. and a relative humidity of 85%. A sample having an insulation resistance value exceeding 40 mΩ is regarded as a non-defective product and a sample having a resistance of 40 mΩ or less is regarded as a defective product. The proportion of non-defective products was measured.

判定方法として、半田爆ぜが発生した場合を不良品として×印とした。また、半田爆ぜが発生しなかった試料の内、たわみ強度試験におけるクラックが発生せず、静電容量が公称容量の95%以上であり、湿中負荷試験後の絶縁抵抗値が40mΩを超える場合を○印とした。   As a judgment method, a case where a solder explosion occurred was marked as x as a defective product. Also, among the samples where solder explosion did not occur, cracks in the flexural strength test did not occur, the capacitance was 95% or more of the nominal capacity, and the insulation resistance value after the moisture load test exceeded 40 mΩ Was marked with a circle.

結果を表1に示す。

Figure 2005159121
The results are shown in Table 1.
Figure 2005159121

表に示すように、Niメッキ層5a、6a及びSnメッキ層に貫通孔Yを設けた本実施例(試料番号2〜12)は、半田爆ぜが発生しなかった。特に、凹部Xの平均開口径が5μm〜10μmであり、且つこれら凹部Yの開口面積の合計が厚膜導体層5a、6aのNiメッキ層5b、6b側表面積全体の8%〜40%を占める場合(試料番号2〜4、7〜11)は、たわみ強度試験におけるクラックが発生せず、静電容量が公称容量の95%以上であり、湿中負荷試験後の絶縁抵抗値が40mΩより大きくなった。   As shown in the table, in this example (sample numbers 2 to 12) in which the through holes Y were provided in the Ni plating layers 5a and 6a and the Sn plating layer, no solder explosion occurred. In particular, the average opening diameter of the recesses X is 5 μm to 10 μm, and the total opening area of these recesses Y occupies 8% to 40% of the total surface area of the Ni plating layers 5b and 6b of the thick film conductor layers 5a and 6a. In the case (sample numbers 2 to 4 and 7 to 11), cracks in the deflection strength test did not occur, the capacitance was 95% or more of the nominal capacity, and the insulation resistance value after the moisture load test was larger than 40 mΩ. became.

これに対し、Niメッキ層5a、6a及びSnメッキ層に貫通孔Yを設けなかった比較例(試料番号1)は、半田爆ぜが2%発生した。   In contrast, in the comparative example (sample number 1) in which the through holes Y were not provided in the Ni plating layers 5a and 6a and the Sn plating layer, 2% solder explosion occurred.

これらの結果から、本発明の積層セラミックコンデンサ10は、厚膜導体層5a、6aは金属メッキ層5b、6bとの界面に多数の凹部Xを有しており、且つ金属メッキ層5b〜6cを凹部Xの存在しない厚膜導体層5a、6aの表面に選択的に形成して金属メッキ層5b〜6cに多数の貫通孔Yを設けたため、半田爆ぜを防止できることがわかった。   From these results, in the multilayer ceramic capacitor 10 of the present invention, the thick film conductor layers 5a and 6a have a large number of recesses X at the interfaces with the metal plating layers 5b and 6b, and the metal plating layers 5b to 6c are provided. It has been found that solder explosion can be prevented because the metal plating layers 5b to 6c are provided with a large number of through holes Y selectively formed on the surfaces of the thick film conductor layers 5a and 6a having no recess X.

本発明の積層セラミックコンデンサを示す図であり、(a)は外観斜視図、(b)は縦断面図、(c)は(b)の外部電極周辺を拡大して示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the multilayer ceramic capacitor of this invention, (a) is an external appearance perspective view, (b) is a longitudinal cross-sectional view, (c) is a figure which expands and shows the external electrode periphery of (b). (a)は、従来の積層セラミックコンデンサを示す縦断面図であり、(b)は、従来の積層セラミックコンデンサを配線基板に実装した状態を示す断面図である。(A) is a longitudinal cross-sectional view which shows the conventional multilayer ceramic capacitor, (b) is sectional drawing which shows the state which mounted the conventional multilayer ceramic capacitor in the wiring board. 従来の積層セラミックコンデンサの外部電極周辺を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the external electrode periphery of the conventional multilayer ceramic capacitor.

符号の説明Explanation of symbols

10・・・・積層セラミックコンデンサ(積層セラミック電子部品)
1・・・・・積層体
2・・・・・誘電体層
3、4・・・内部電極層
5、6・・・外部電極
5a、6a・厚膜導体層
5b、6b・Niメッキ層
5c、6c・Snメッキ層
X・・・・・凹部
Y・・・・・貫通孔
10 .... Multilayer ceramic capacitors (multilayer ceramic electronic components)
DESCRIPTION OF SYMBOLS 1 ... Laminated body 2 ... Dielectric layer 3, 4 ... Internal electrode layer 5, 6 ... External electrode 5a, 6a * Thick film conductor layer 5b, 6b * Ni plating layer 5c 6c · Sn plating layer X ··· concave portion Y · · · through hole

Claims (2)

矩形状をなす複数個の誘電体層を間に内部電極層を介して積層してなる積層体の側面に、前記内部電極層に電気的に接続される厚膜導体層を形成するとともに、該厚膜導体層上に金属メッキ層を形成してなる積層セラミック電子部品において、
前記厚膜導体層の表面に多数の凹部を有しており、且つ前記金属メッキ層を前記凹部の存在しない厚膜導体層の表面に選択的に形成して前記金属メッキ層に多数の貫通孔を設けたことを特徴とする積層セラミック電子部品。
A thick film conductor layer electrically connected to the internal electrode layer is formed on the side surface of the laminate formed by laminating a plurality of rectangular dielectric layers with the internal electrode layer interposed therebetween, In a multilayer ceramic electronic component formed by forming a metal plating layer on a thick film conductor layer,
A plurality of recesses are formed on the surface of the thick film conductor layer, and the metal plating layer is selectively formed on the surface of the thick film conductor layer without the recesses, and a plurality of through holes are formed in the metal plating layer. A multilayer ceramic electronic component characterized by comprising:
前記凹部の平均開口径が5μm〜10μmであり、且つこれら凹部の開口面積の合計が前記厚膜導体層の表面積全体の8%〜40%を占めることを特徴とする請求項1に記載の積層セラミック電子部品。 The average opening diameter of the said recessed part is 5 micrometers-10 micrometers, and the sum total of the opening area of these recessed parts occupies 8%-40% of the whole surface area of the said thick film conductor layer, The lamination | stacking of Claim 1 characterized by the above-mentioned. Ceramic electronic components.
JP2003397225A 2003-11-27 2003-11-27 Laminated ceramic electronic component Pending JP2005159121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003397225A JP2005159121A (en) 2003-11-27 2003-11-27 Laminated ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003397225A JP2005159121A (en) 2003-11-27 2003-11-27 Laminated ceramic electronic component

Publications (1)

Publication Number Publication Date
JP2005159121A true JP2005159121A (en) 2005-06-16

Family

ID=34722434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003397225A Pending JP2005159121A (en) 2003-11-27 2003-11-27 Laminated ceramic electronic component

Country Status (1)

Country Link
JP (1) JP2005159121A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049054A (en) * 2007-08-14 2009-03-05 Enrei Yu Structure of capacitor embedded in printed circuit board
JP2009158662A (en) * 2007-12-26 2009-07-16 Tdk Corp Electronic component and method of producing the same
JP2013110239A (en) * 2011-11-21 2013-06-06 Tdk Corp Electronic component
US20180108481A1 (en) * 2016-10-17 2018-04-19 Taiyo Yuden Co., Ltd. Ceramic Electronic Component and Method of Producing the Same
CN110880413A (en) * 2018-09-06 2020-03-13 三星电机株式会社 Multilayer ceramic electronic component
CN111105931A (en) * 2018-10-29 2020-05-05 三星电机株式会社 Capacitor assembly
KR20200081243A (en) * 2018-12-27 2020-07-07 티디케이가부시기가이샤 Electronic component
CN111383841A (en) * 2018-12-27 2020-07-07 Tdk株式会社 Electronic component
CN111540605A (en) * 2019-02-06 2020-08-14 Tdk株式会社 Electronic component
US11232895B2 (en) 2017-01-31 2022-01-25 Murata Manufacturing Co., Ltd. Coil component and method for manufacturing coil component

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049054A (en) * 2007-08-14 2009-03-05 Enrei Yu Structure of capacitor embedded in printed circuit board
JP2009158662A (en) * 2007-12-26 2009-07-16 Tdk Corp Electronic component and method of producing the same
JP4569784B2 (en) * 2007-12-26 2010-10-27 Tdk株式会社 Electronic component and manufacturing method thereof
JP2013110239A (en) * 2011-11-21 2013-06-06 Tdk Corp Electronic component
JP2018067569A (en) * 2016-10-17 2018-04-26 太陽誘電株式会社 Ceramic electronic component and method of manufacturing the same
CN107958784A (en) * 2016-10-17 2018-04-24 太阳诱电株式会社 Ceramic electronic components and its manufacture method
CN107958784B (en) * 2016-10-17 2021-11-09 太阳诱电株式会社 Ceramic electronic component and method for manufacturing same
US10468188B2 (en) * 2016-10-17 2019-11-05 Taiyo Yuden Co., Ltd. Ceramic electronic component and method of producing the same
US20180108481A1 (en) * 2016-10-17 2018-04-19 Taiyo Yuden Co., Ltd. Ceramic Electronic Component and Method of Producing the Same
TWI781115B (en) * 2016-10-17 2022-10-21 日商太陽誘電股份有限公司 Ceramic electronic part and its manufacturing method
US11232895B2 (en) 2017-01-31 2022-01-25 Murata Manufacturing Co., Ltd. Coil component and method for manufacturing coil component
CN110880413A (en) * 2018-09-06 2020-03-13 三星电机株式会社 Multilayer ceramic electronic component
CN111105931A (en) * 2018-10-29 2020-05-05 三星电机株式会社 Capacitor assembly
CN111105931B (en) * 2018-10-29 2023-05-23 三星电机株式会社 Capacitor assembly
KR20200081243A (en) * 2018-12-27 2020-07-07 티디케이가부시기가이샤 Electronic component
CN111383840B (en) * 2018-12-27 2021-12-07 Tdk株式会社 Electronic component
US11335505B2 (en) 2018-12-27 2022-05-17 Tdk Corporation Electronic component
KR102427210B1 (en) * 2018-12-27 2022-07-29 티디케이가부시기가이샤 Electronic component
CN111383841B (en) * 2018-12-27 2022-08-09 Tdk株式会社 Electronic component
CN111383840A (en) * 2018-12-27 2020-07-07 Tdk株式会社 Electronic component
CN111383841A (en) * 2018-12-27 2020-07-07 Tdk株式会社 Electronic component
CN111540605A (en) * 2019-02-06 2020-08-14 Tdk株式会社 Electronic component

Similar Documents

Publication Publication Date Title
JP3918851B2 (en) Multilayer electronic component and method of manufacturing multilayer electronic component
US7612983B2 (en) Monolithic ceramic electronic component and method for manufacturing the same
KR102076145B1 (en) Multi-layered ceramic electronic part, board for mounting the same and manufacturing method thereof
JP5271377B2 (en) Multilayer ceramic capacitor
JP2006186316A (en) Ceramic electronic component and laminated ceramic capacitor
JP5777179B2 (en) Multilayer ceramic electronic component for built-in substrate and printed circuit board with built-in multilayer ceramic electronic component
US9424989B2 (en) Embedded multilayer ceramic electronic component and printed circuit board having the same
JP2007281400A (en) Surface mounted ceramic electronic component
JP2007036003A (en) Laminated capacitor
JP2004259991A (en) Laminated ceramic component
JP2014216643A (en) Multilayer ceramic electronic component and board for mounting the same
JP2012227197A (en) Multilayer ceramic capacitor
JP2005159121A (en) Laminated ceramic electronic component
KR20140129611A (en) Multi-layered ceramic electronic part and board for mounting the same
JP2004235377A (en) Ceramic electronic component
JP5725678B2 (en) Multilayer ceramic electronic component, its manufacturing method and its mounting substrate
JP2006128385A (en) Ceramic electronic componentt and stacked ceramic capacitor
KR101496816B1 (en) Multi-layered ceramic electronic part and board for mounting the same
JP2023056764A (en) Multilayer ceramic electronic component and circuit board
US9196420B2 (en) Multilayer ceramic electronic component to be embedded in board and printed circuit board having multilayer ceramic electronic component embedded therein
JP4359919B2 (en) Conductive paste for external electrode formation and multilayer ceramic electronic component using the same
JP2016048803A (en) Multilayer ceramic capacitor
JP4051298B2 (en) Ceramic electronic components
JP4450176B2 (en) Dielectric paste for level difference elimination constituting laminated electronic parts and margins
US20230207213A1 (en) Multilayered electronic component