JPS61287171A - Insulated gate field-effect type semiconductor device and manufacture thereof - Google Patents
Insulated gate field-effect type semiconductor device and manufacture thereofInfo
- Publication number
- JPS61287171A JPS61287171A JP12723785A JP12723785A JPS61287171A JP S61287171 A JPS61287171 A JP S61287171A JP 12723785 A JP12723785 A JP 12723785A JP 12723785 A JP12723785 A JP 12723785A JP S61287171 A JPS61287171 A JP S61287171A
- Authority
- JP
- Japan
- Prior art keywords
- gate electrode
- electrode material
- gate
- source
- nitride film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、高密度に集積し得るMO8ff1等絶縁ゲー
ト電界効果形半導体製置とその製造方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an insulated gate field effect semiconductor device such as MO8ff1 that can be integrated at high density and a manufacturing method thereof.
第3図は従来のMO8型半導体装置を示すもので、(a
)は従来方法によpLOCO8構造を形成した断面図で
あシ、1は基板、2はLOGO8で選択酸化された非能
動(フィールド)領域上の例えば3000〜10000
Aの厚い酸化膜、3は基板1と反射層の不純物を102
0〜1 (p1/−ドープされた第1ポリシリコン層で
ある。このポリシリコン層はソース・ドレインの拡散源
となりかつ、ゲート領域下には拡散されることを防ぐた
め、例えば図示のように基板1に接触しない上層のAと
、基板1に接触する下層■Bとに分け、上層のみに不純
物をドープしておく。なお、上層Aの不純物のドープ拡
インプラで行ない、その層厚はポリシリコン層3を30
0 OAとした場合、上層Aは1000λ以内、ドープ
する不純物はAs、Pであるが拡散係数の遅いAsが有
利である。Figure 3 shows a conventional MO8 type semiconductor device, (a
) is a cross-sectional view of a pLOCO8 structure formed by the conventional method.
Thick oxide film A, 3 impurities in substrate 1 and reflective layer 102
0 to 1 (p1/- is the doped first polysilicon layer. This polysilicon layer serves as a source/drain diffusion source and prevents it from being diffused under the gate region. For example, as shown in the figure, Separate the upper layer A, which does not contact the substrate 1, and the lower layer B, which contacts the substrate 1, and dope only the upper layer with impurities.The impurity doping of the upper layer A is carried out using an implanter, and the layer thickness is the same as that of polyethylene. silicon layer 3 to 30
In the case of 0 OA, the upper layer A is within 1000λ, and the impurities to be doped are As and P, but As has a slow diffusion coefficient and is advantageous.
第3図缶)はソース・ドレインとなる領域を含んでフィ
ールドsio、上に延在する形でノ七ターン形成された
基板1と反射層の不純物をドープしたソースeドレイン
電極4.5を拡散源として例えば900〜1000℃で
10〜60分熱処理によりソース・ドレイン拡散層6,
7を形成し、その後全面に酸化膜8,9を形成したもの
である。ここで、8は第1ポリシリコン層が除去された
ゲート領域上く形成される例えば100〜5ooAのゲ
ート酸化膜であり、9は不純物をドープしたソース・ド
レイン電極4.5上に形成される酸化膜で、熱酸化で形
成する場合第1ポリシリコン層中の10!0〜1021
/−の不純物ドープ量、酸化温度SOO〜1000℃
、ドライおよびウェット雰囲気によ1[化膜8と9の膜
厚比t 9 =1 、2〜4.5ぐらいまで取シ得る。Figure 3) shows a field sio including the source/drain regions, a substrate 1 formed with seven turns extending over it, and a source/drain electrode 4.5 doped with impurities of a reflective layer diffused. As a source, for example, the source/drain diffusion layer 6,
7 is formed, and then oxide films 8 and 9 are formed on the entire surface. Here, 8 is a gate oxide film of, for example, 100 to 5 ooA, which is formed on the gate region from which the first polysilicon layer has been removed, and 9 is a gate oxide film formed on the impurity-doped source/drain electrodes 4.5. 10!0 to 1021 in the first polysilicon layer when the oxide film is formed by thermal oxidation.
/- impurity doping amount, oxidation temperature SOO~1000℃
Depending on the dry and wet atmospheres, the film thickness ratio t 9 of the films 8 and 9 can be increased to about 1, 2 to 4.5.
その後、導電性を有するゲート電極材10を酸化膜8,
9全面に被着し、ホトレジスト11を電極材10上に塗
布する。電極材10線第2ポリシリコン、す7ラクトリ
メタル、シリサイドまたはポリサイドであってよい。か
くしてゲートとなる領域12以外のホトレジストを通常
の露光現像によシ除去しく第3図(イ))、その後、領
域12をマスク材としてダート電極材10をパターンニ
ングしてゲート電極13を形成し、領域12を除去する
(第3図(e))。その後は通常の製造方法により絶縁
膜を施こし、接触孔、メタル配線、ハツシペーションを
得て完成する。Thereafter, the conductive gate electrode material 10 is applied to the oxide film 8,
9, and a photoresist 11 is applied on the electrode material 10. The electrode material may be 10-wire second polysilicon, 7-wire metal, silicide or polycide. Thus, the photoresist other than the region 12 that will become the gate is removed by normal exposure and development (FIG. 3(a)), and then the dirt electrode material 10 is patterned using the region 12 as a mask material to form the gate electrode 13. , area 12 is removed (FIG. 3(e)). After that, an insulating film is applied using normal manufacturing methods, and contact holes, metal wiring, and hashing are completed.
しかしながら上記の製造方法ではゲート電極13がソー
ス−ドレイン電極4,5と位置合わせの余裕が必要であ
シ、(e)図に示すようにソース・ドレインとのオーバ
ラップが生ずる。このためソース・ドレインとのオーバ
ラップ容量ができてMO8素子の性能を劣化させると共
に、オーツ々ラップ部で不必要な表面段差が生ずる問題
があった。However, the above manufacturing method requires a margin for alignment of the gate electrode 13 with the source-drain electrodes 4, 5, and overlap with the source-drain occurs as shown in FIG. This causes an overlap capacitance with the source and drain, degrading the performance of the MO8 element, and creating unnecessary surface steps at the overlapped portions.
この発明は、以上述べたようにゲート電極とソース拳ド
レイン電極とのオーツ々ラップを解消し、オーバラップ
容量、オーツ々ラップによる表面段差を除去し、高密度
で高性能のMO3半導体装置とその製造方法を提供する
ものである。As described above, this invention eliminates the automatic overlap between the gate electrode and the source and drain electrodes, eliminates the overlap capacitance and the surface level difference caused by the automatic overlap, and provides a high-density and high-performance MO3 semiconductor device. A manufacturing method is provided.
この発明は上記問題点を解決するためKP、縁ゲート電
界効果形半導体装置は、ゲート電極をソース・ドレイン
電極となる第1ポリシリコンおよび厚い酸化膜で囲まれ
た領域内に埋込むようにしたものである。In order to solve the above-mentioned problems, the present invention provides an edge-gate field effect semiconductor device in which a gate electrode is buried in a region surrounded by a first polysilicon serving as a source/drain electrode and a thick oxide film. It is something.
また、上記半導体装置の製造方法は、第1ポリシリコン
と酸化膜で囲まれたゲート領域上にホトレジストを埋込
み塗布し、ドライエツチング法でゲート電極上のみに自
己整合的にゲート電極材を残留させたものである。In addition, in the method for manufacturing the semiconductor device described above, a photoresist is buried and coated on the gate region surrounded by the first polysilicon and the oxide film, and the gate electrode material is left in a self-aligned manner only on the gate electrode using a dry etching method. It is something that
また、ゲート電極接触孔の開孔方法に関して社、ゲート
電極がシリサイドまたはポリシリコンの場合、その上に
窒化膜を形成し、これをマスクとして全面酸化し、ゲー
ト電極材の厚さを越えないまでに選択酸化しその後マス
クとした窒化膜を除去しゲート電極の接触孔としたもの
である。In addition, regarding the method of opening the gate electrode contact hole, if the gate electrode is made of silicide or polysilicon, a nitride film is formed on it, and the entire surface is oxidized using this as a mask until the thickness of the gate electrode material is not exceeded. Then, the nitride film used as a mask was removed to form a contact hole for the gate electrode.
本発明によれば、以上のように第1ポリシリコンおよび
厚い酸化膜で囲まれた電極領域内にゲート電極材を自己
整合的に埋込むようにしたので、ケート電極材とソース
・ドレインとのオーバラップが解消でき、表面段差のな
い高密度で高性能の半導体装置が得られる。According to the present invention, as described above, the gate electrode material is embedded in the electrode region surrounded by the first polysilicon and the thick oxide film in a self-aligned manner, so that the gate electrode material and the source/drain Overlapping can be eliminated and a high-density, high-performance semiconductor device with no surface steps can be obtained.
また、ゲート電極接触孔の開孔においては、ゲート電極
上に窒化膜を形成し、これをマスクとして選択酸化し、
マスクとした窒化膜をエツチングによシ除去して電極接
触孔としたもので、エツチングに用いるガスによるドラ
イエツチングが電極材のポリシリコンと窒化膜のエツチ
ングレートが略同じため電極材上に部分的に窒化膜を残
すことができ、この窒化膜を除去することで電極接触孔
が形成できる。In addition, when opening the gate electrode contact hole, a nitride film is formed on the gate electrode, and selective oxidation is performed using this as a mask.
The nitride film used as a mask is removed by etching to form an electrode contact hole.Dry etching with the gas used for etching partially etches the electrode material because the etching rate of the polysilicon electrode material and the nitride film are approximately the same. A nitride film can be left behind, and electrode contact holes can be formed by removing this nitride film.
以下この発明の実施例を第1図−ン〜α)について説明
する。この発明では先に従来の半導体裏遣方法で説明し
た第3図伽)までは同一工程であシ、第1図−)から従
来の製造工程と異なる。すなわち第1図−)において、
まず比較的粘度の低い(15cp以下)ホトレジストを
高速(3000rpm以上)で回転塗布することKより
酸化膜8,9上のゲート電極材10表面にホトレジスト
層14が形成される。その後、ホトレジスト層14の全
面を反応性イオンエツチング法によりホトレジスト層1
4よシゲート電極材10のエッチングレートカ同シか速
い条件で全面エツチングして電極材表面が出fよしめ、
最も低いゲート領域の電極材表面上のみにホトレジスト
15が残る(第1図伽))。さらにエツチングを続けて
ゲート領域上以外の電極材が除去された電極材16が形
成される(第1図(C))。Embodiments of the present invention will be described below with reference to FIGS. In the present invention, the steps up to FIG. 3(a) which were previously explained in connection with the conventional semiconductor lining method are the same, but the steps starting from FIG. 1(-) are different from the conventional manufacturing steps. In other words, in Figure 1-),
First, a photoresist layer 14 is formed on the surface of the gate electrode material 10 on the oxide films 8 and 9 by spin-coating a photoresist having a relatively low viscosity (15 cp or less) at high speed (3000 rpm or more). Thereafter, the entire surface of the photoresist layer 14 is etched using a reactive ion etching method.
4) Etch the entire surface of the gate electrode material 10 at the same or faster etching rate to expose the surface of the electrode material,
The photoresist 15 remains only on the surface of the electrode material in the lowest gate region (FIG. 1). Further etching is continued to form an electrode material 16 in which the electrode material other than the area on the gate region is removed (FIG. 1(C)).
このようにして酸化膜8.9で囲まれたゲート領域上に
ゲート電極材16を自己整合的に埋込むことでオーバラ
ップのない構造が製作できる。その後は通常の方法によ
シ中間絶縁膜17を全面に被覆し、ゲート、ソース、ド
レイン電極からの接触孔18.19.20を開孔する(
第1図(d))。In this way, by embedding the gate electrode material 16 in a self-aligned manner onto the gate region surrounded by the oxide film 8.9, a structure without overlap can be manufactured. Thereafter, the entire surface of the intermediate insulating film 17 is covered by the usual method, and contact holes 18, 19, and 20 from the gate, source, and drain electrodes are opened (
Figure 1(d)).
そして上記のゲート、ソース、ドレイン電極上にメタル
配線層21を形成し、全面にパッシベーション絶縁膜2
2を形成する(第1図(e))。Then, a metal wiring layer 21 is formed on the gate, source, and drain electrodes, and a passivation insulating film 2 is formed on the entire surface.
2 (Fig. 1(e)).
第2図は本発明の他の実施例で、上記の実施例と同様に
第1図(c)の工程から異なる。すなわち、まず上記実
施例に対し導電性を有するポリシリコンまたはメタルシ
リサイドからなる電極材10上に比較的薄い(100〜
100o1)窒化膜23を全面に被着し、その上に第1
図侃)と同様にホトレジスト14を形成する(第2図(
a))。その後第1図(b)と同様に部分的にホトレジ
スト15を残しく第2図伽))、ゲート領域上以外の電
極材10および窒化膜23をエツチングで除去する(第
2図(C))。一般にエツチングに用いる7ツ化炭素系
のガスによるドライエツチングはポリシリコンと窒化膜
のエツチングレートが略同じため(C)のように部分的
に窒化膜23を残すことができる。この点がこの実施例
の特徴となる。その後、全面をゲート領域上のゲート電
極材10の窒化膜23に覆われていない部分が膜厚方向
に全部酸化されない条件で酸化する。これは領域上での
ゲート電極材10の窒化膜23をマスクとした選択酸化
で1、ゲート電極材の部分的選択酸化部24が形成され
る。FIG. 2 shows another embodiment of the present invention, which differs from the process shown in FIG. 1(c) in the same way as the embodiment described above. That is, first, in the above embodiment, a relatively thin film (100 ~
100o1) A nitride film 23 is deposited on the entire surface, and a first
Photoresist 14 is formed in the same manner as in Figure 2 (Figure 2).
a)). Thereafter, as in FIG. 1(b), the photoresist 15 is left partially (see FIG. 2)), and the electrode material 10 and nitride film 23 other than on the gate area are removed by etching (see FIG. 2(C)). . Dry etching using a carbon heptide-based gas, which is generally used for etching, has substantially the same etching rate for polysilicon and nitride film, so nitride film 23 can be left partially as shown in (C). This point is a feature of this embodiment. Thereafter, the entire surface is oxidized under conditions such that the portion of the gate electrode material 10 on the gate region that is not covered with the nitride film 23 is not entirely oxidized in the film thickness direction. This is done by selective oxidation using the nitride film 23 of the gate electrode material 10 as a mask on the region 1, and a partial selective oxidation portion 24 of the gate electrode material is formed.
また、ソース・ドレイン電極4,5上もさらに酸化が加
わシ酸化膜9よシも厚い膜25となる(第2図(d))
。かくして、窒化膜23を7ツ化炭素系ガスによるドラ
イエツチングまたは熱りン駿によシ除去し、ゲート電極
材10の接触孔26が露出する。その後は通常の工程に
よりソース・ドレイン電極取出孔19,20を開孔し、
メタル配線21を形成し、ノ々ツシペーション22を形
成する(第2図(e))。このようにこの実施例ではゲ
ート電極材を選択酸化してゲート電極接触孔26を自己
整合的に形成することができ、微細素子構造に対し有効
な手段となる。Further, the source/drain electrodes 4 and 5 are further oxidized, and the silicon oxide film 9 becomes a thick film 25 (FIG. 2(d)).
. In this way, the nitride film 23 is removed by dry etching using a carbon heptide-based gas or by hot rinsing, and the contact hole 26 of the gate electrode material 10 is exposed. After that, the source/drain electrode extraction holes 19 and 20 are opened by the usual process,
A metal wiring 21 is formed, and a notch 22 is formed (FIG. 2(e)). As described above, in this embodiment, the gate electrode contact hole 26 can be formed in a self-aligned manner by selectively oxidizing the gate electrode material, which is an effective means for fine device structures.
以上詳細に説明したように本発明によれば、ゲート電極
をソース・ドレイン電極となるポリシリコンおよび酸化
膜で囲まれた領域内に残留させ埋込まれるようにしたの
で、ゲート電極とソース・ドレイン電極のオーツクラッ
プを解消し、オーツ々ラップ容量訃よびオーバラップ段
差をなくすことができる。またゲート電極材を導電性の
ポリシリコンまたはシリサイドとすることで、ゲート電
極上の接触孔を自己整合的に形成できる。これによって
高性能でかつ高密度化の半導体装置が得られる。As explained in detail above, according to the present invention, the gate electrode remains and is embedded in the region surrounded by the polysilicon and oxide film that will become the source/drain electrodes, so that the gate electrode and the source/drain It is possible to eliminate autoclap of electrodes, eliminate autolap capacitance and overlap level difference. Further, by using conductive polysilicon or silicide as the gate electrode material, the contact hole on the gate electrode can be formed in a self-aligned manner. As a result, a high-performance and high-density semiconductor device can be obtained.
さらに本発明ではMO8型半導体素子に限らずLS I
、VLSI全般に広く適用可能である。Furthermore, the present invention is not limited to MO8 type semiconductor devices, but also applies to LSI
, it is widely applicable to VLSI in general.
第1図(a)〜(e)はこの発明の半導体装置の製造工
程を示す工程図、第2図ω〜(e)はこの発明の他の実
施例を示す製造工程図、第3図蓮)〜(・)は従来の半
導体製造工程図である。
1・・・基板、2・・・フィールド酸化膜、4,5・・
・ソース・トレインtffl、 6 、7・・・ソース
拳ドレイン拡散層、8,9・・・酸化膜、10・・・ゲ
ート電極材、14.15・・・ホトレジスト、16・・
・ゲート電極材、23・・・窒化膜、24.25・・・
酸化膜、26・・・接触孔。
第151
$−字ン針明上メ樺イネトg&」髪1工程図第1図
第2vA
卆11−萌M!Let>實施例の舊危r鑵図第2図1(a) to (e) are process diagrams showing the manufacturing process of the semiconductor device of the present invention, FIGS. 2(a) to (e) are manufacturing process diagrams showing other embodiments of the present invention, and FIG. ) to (·) are conventional semiconductor manufacturing process diagrams. 1...Substrate, 2...Field oxide film, 4, 5...
- Source train tffl, 6, 7... Source fist drain diffusion layer, 8, 9... Oxide film, 10... Gate electrode material, 14.15... Photoresist, 16...
・Gate electrode material, 23... Nitride film, 24.25...
Oxide film, 26... contact hole. No. 151 $-Aji N Needle Akame Kaba Ineto G&'Hair 1 Step Diagram Figure 1 Figure 2 vA Volume 11-Moe M! Let> Actual Example Diagram 2
Claims (3)
なる第1ポリシリコンおよび厚い酸化膜で囲まれた電極
領域内に導電性を有するゲート電極材を自己整合的に残
留させ埋込まれるようにしたことを特徴とする絶縁ゲー
ト電界効果形半導体装置。(1) A conductive gate electrode material is left in a self-aligned manner and embedded in the electrode region surrounded by the first polysilicon and thick oxide film formed on the semiconductor substrate to become the source/drain electrodes. An insulated gate field effect semiconductor device characterized by:
ート電極材上で、ソースおよびドレイン電極を自己整合
的に形成し、フィールド上に延在するソース・ドレイン
電極とフィールド酸化膜で囲まれたゲート領域上に流動
性の高いホトレジストを埋込み塗布し、かつホトレジス
トとゲート電極材のエッチング比が略等しいかホトレジ
ストの方が遅いドライエッチング方法で全面エッチバッ
クし、ゲート領域上のみに自己整合的にゲート電極材を
残留させたことを特徴とする絶縁ゲート電界効果形半導
体の製造方法。(2) In a MOS semiconductor device, source and drain electrodes are formed in a self-aligned manner on a conductive gate electrode material, and the gate is surrounded by a field oxide film and source and drain electrodes extending over the field. A highly fluid photoresist is buried and coated on the area, and the entire surface is etched back using a dry etching method in which the etching ratio of the photoresist and the gate electrode material is approximately equal, or the photoresist is slower, and the gate is self-aligned only on the gate area. A method for manufacturing an insulated gate field effect semiconductor, characterized in that an electrode material remains.
シリサイドとし、ゲート電極材全面に窒化膜を被着し、
その後、窒化膜上にホトレジストを塗布してドライエッ
チング法で全面エッチバックし、ゲート領域上のみ自己
整合的に形成されたゲート電極領域上のゲート電極接触
孔となるべき領域上のみ窒化膜を残留させ、この窒化膜
をマスクとして全面酸化し、ゲート電極材の厚さを越え
ないまでに選択酸化し、しかる後、マスクとした窒化膜
を除去し、ゲート電極の接触孔とすることを特徴とする
絶縁ゲート電界効果形半導体の製造方法。(3) The gate electrode material is made of conductive polysilicon or silicide, and a nitride film is deposited on the entire surface of the gate electrode material,
After that, a photoresist is applied on the nitride film and the entire surface is etched back using a dry etching method, leaving the nitride film only on the area that should become the gate electrode contact hole on the gate electrode area that was formed in a self-aligned manner on the gate area. The nitride film is then used as a mask to oxidize the entire surface, selectively oxidize until the thickness does not exceed the thickness of the gate electrode material, and then the nitride film used as the mask is removed to form a contact hole for the gate electrode. A method for manufacturing an insulated gate field effect semiconductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12723785A JPH0831597B2 (en) | 1985-06-13 | 1985-06-13 | Method for manufacturing insulated gate field effect semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12723785A JPH0831597B2 (en) | 1985-06-13 | 1985-06-13 | Method for manufacturing insulated gate field effect semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61287171A true JPS61287171A (en) | 1986-12-17 |
JPH0831597B2 JPH0831597B2 (en) | 1996-03-27 |
Family
ID=14955103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12723785A Expired - Lifetime JPH0831597B2 (en) | 1985-06-13 | 1985-06-13 | Method for manufacturing insulated gate field effect semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0831597B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0289323A (en) * | 1988-09-27 | 1990-03-29 | Nec Corp | Manufacture of mis field-effect transistor |
US5171698A (en) * | 1991-04-09 | 1992-12-15 | Oki Electric Industry Co., Ltd. | Method of fabrication of MOS transistor |
-
1985
- 1985-06-13 JP JP12723785A patent/JPH0831597B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0289323A (en) * | 1988-09-27 | 1990-03-29 | Nec Corp | Manufacture of mis field-effect transistor |
US5171698A (en) * | 1991-04-09 | 1992-12-15 | Oki Electric Industry Co., Ltd. | Method of fabrication of MOS transistor |
Also Published As
Publication number | Publication date |
---|---|
JPH0831597B2 (en) | 1996-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6324616A (en) | Manufacture of semiconductor device and the semiconductor device manufactured | |
JPH0817930A (en) | Semiconductor device structure using etching stop layer and its method | |
US5861673A (en) | Method for forming vias in multi-level integrated circuits, for use with multi-level metallizations | |
US6784097B2 (en) | Method of manufacturing a semiconductor device with a self-aligned contact | |
JP3479312B2 (en) | Manufacturing method of polysilicon embedded contact | |
JPS58116775A (en) | Method and device for producing mesfet device | |
US5589418A (en) | Method of forming a polysilicon buried contact | |
JPS598065B2 (en) | MOS integrated circuit manufacturing method | |
JPS61287171A (en) | Insulated gate field-effect type semiconductor device and manufacture thereof | |
JPS6272171A (en) | Semiconductor memory | |
JPS5848438A (en) | Semiconductor integrated circuit device | |
JPS6062163A (en) | Manufacture of semiconductor device for memory | |
JPH0715954B2 (en) | Method of manufacturing nonvolatile semiconductor memory device | |
JPH06151834A (en) | Manufacture of semiconductor device | |
JP2002198437A (en) | Semiconductor device and its fabricating method | |
JPH023242A (en) | Manufacture of semiconductor device | |
JPS6156448A (en) | Manufacture of complementary semiconductor device | |
KR100478495B1 (en) | Semiconductor device and fabricating method thereof | |
JP2907248B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS637667A (en) | Semiconductor memory device and manufacture thereof | |
JPS60121769A (en) | Manufacture of mis semiconductor device | |
JPS58102558A (en) | Semiconductor device and manufacture thereof | |
JPH08316475A (en) | Semiconductor device and manufacture thereof | |
JPS63170922A (en) | Wiring method | |
JPS5943832B2 (en) | Manufacturing method of semiconductor device |