JPS5848438A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS5848438A
JPS5848438A JP14676281A JP14676281A JPS5848438A JP S5848438 A JPS5848438 A JP S5848438A JP 14676281 A JP14676281 A JP 14676281A JP 14676281 A JP14676281 A JP 14676281A JP S5848438 A JPS5848438 A JP S5848438A
Authority
JP
Japan
Prior art keywords
layer
insulating layer
conductive
phosphorus
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14676281A
Other languages
Japanese (ja)
Inventor
Junji Kiyono
純司 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP14676281A priority Critical patent/JPS5848438A/en
Publication of JPS5848438A publication Critical patent/JPS5848438A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive improvement of humidity resistance property of the titled device by a method wherein a conductive layer, which is buried in an insulating layer in such a manner that the layer comes in contact with a reverse conductive region, is provided with its upper end positioned on the same level or above of the upper surface of the insulating layer in the constitution wherein the conductive layer is connected to a wiring layer. CONSTITUTION:The second insulating layer is formed by depositing a phosphor glass layer 34 containing low density of phosphorus in such a manner that the thickness of which will be in excess of that of a polycrystalline silicon layer 34. Then, photoresist 35 is applied in the thickness which exceeds that of the phosphur glass layer 34. The upper surface 36 of said photoresist layer 35 can be made close to a single plane by selecting a proper photoresist. Through these procedures, the structure wherein said conductive layers 32 and 33 are buried in the phosphorus glass layer 34, which is the second insulating layer, can be obtained. The upper ends 37 and 38 of the conductor layers 32 and 33 are made in such a structure that they are positioned on the same plane or upper of the surface 39 of the phosphorus glass layer, which is the second insulating layer.

Description

【発明の詳細な説明】 本発期は半導′体撫積回餡装置に係・す、特にi縁ゲー
ト復電算効果牛導体集積回路装置における素子間の接続
部分に関′す−る。゛゛ 絶縁ゲート蓋電界効果半導体(以下、MOS型と称す゛
)集積回路装置における素子間の接続の代表的な方法は
、層間絶縁膜を成゛長さ賃、該層間絶縁膜に開孔をもう
“け金属配線層産月いて行なう。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit device, and in particular to a connection portion between elements in a semiconductor integrated circuit device with an i-edge gate recovery effect. A typical method for connecting elements in an insulated gate lid field effect semiconductor (hereinafter referred to as MOS type) integrated circuit device is to increase the length of an interlayer insulating film and to make holes in the interlayer insulating film. “The metal wiring layer is then produced.

ごの開孔部における従来の構”造及び製造方法゛を以下
に示す。まず、第゛IWJ(a)に示すよ、うに半導体
基板l上にリンガラス層2を気相法により成長させ写真
蝕刻の技術を用いて前記リンガラス層2に一縁部3,4
をもつ開孔5を形成する−0そして不活性雰囲気中での
高温熱処理、たとえば高温の窒素雰囲気中での熱処理t
−佇うことにより前記端縁部゛3,4のリンガラス層を
フi−させも一第1WJ(b)のように、なだらかな傾
斜の端縁部′6.’7をもつ開口8を得る=その後益属
配線層、た表えif、アルミニ中ム層9をE−ガン法に
より蒸着することにより第1 (b)図め構造とな葛。
The conventional structure and manufacturing method for the apertures in each case are shown below. First, as shown in IWJ (a), a phosphor glass layer 2 is grown on a semiconductor substrate l by a vapor phase method. One edge portion 3, 4 is formed on the phosphor glass layer 2 using an etching technique.
-0 and high temperature heat treatment in an inert atmosphere, for example heat treatment in a high temperature nitrogen atmosphere t
- As shown in the first WJ (b), the phosphor glass layer of the edge portions ``3, 4'' is fixed by standing the edge portion ``6'' with a gentle slope. An opening 8 having a diameter of 7 is then obtained by depositing an aluminum layer 9 using an E-gun method to obtain the structure shown in FIG. 1(b).

゛ところで前記開口部BICおけるアルミニウム配線層
9′の十分なカバレッジを得るために紘、十分なだらか
な傾斜を持う端縁部6,7を形成する必要がある。従っ
て、前記リンガラス層2として、リン含有量の高いリン
ガラス層を用いる必要がある。しかし前記リンガラス層
2にリン含有量の高い二酸化ケイIC層を用いると素子
外部から水分が入った場合にリン醒が出来、それにより
前記アルミニウム層の腐食が起こり、耐湿性上・問題と
なる。
However, in order to obtain sufficient coverage of the aluminum wiring layer 9' in the opening BIC, it is necessary to form the edge portions 6 and 7 with a sufficiently gentle slope. Therefore, it is necessary to use a phosphorus glass layer with a high phosphorus content as the phosphorus glass layer 2. However, when a silicon dioxide IC layer with a high phosphorus content is used as the phosphorus glass layer 2, phosphorus oxidation occurs when moisture enters from the outside of the device, which causes corrosion of the aluminum layer, causing problems in terms of moisture resistance. .

こ8問題を回避するため、前記リンガラス層としてリン
含有風の低い。又はリンを含まない二酸化ケイ素〜を用
いる事が望ましい。しかるに、前述のように、眉間の絶
縁膜としてリン濃度の低い二酸化ケイ素層を用いると、
第1図(c)に示したごとくリンガラス層2の端縁部1
0,11での70−が不足するため、該、端縁部10.
11の上端12.13及び該端縁slo、11の下端1
4゜15で前記アルミニウム配1Ii1層9の断線が起
こるという欠点があった。
In order to avoid these eight problems, the phosphorus glass layer has a low phosphorus content. Alternatively, it is desirable to use silicon dioxide which does not contain phosphorus. However, as mentioned above, if a silicon dioxide layer with a low phosphorus concentration is used as the insulating film between the eyebrows,
As shown in FIG. 1(c), the edge 1 of the phosphor glass layer 2
Since 70- at 0 and 11 is insufficient, the edge portion 10.
11 upper end 12.13 and said edge slo, lower end 1 of 11
There was a drawback that the aluminum wiring 1Ii1 layer 9 broke at 4°15.

本発明は、この構造的な欠点を解決する事を目的とした
ものである。
The present invention aims to solve this structural drawback.

本発明の特徴は、−導を型半導体基板と、該半導体基板
に形成された反対導電型領域と、該半導体基板上に被着
された絶縁層と、該絶縁層上に被着された配線層とを含
んで構成される半導体集積回路装置に於いて、前記配線
層と前記反対導電型−域との接触をとるに当り、前記絶
縁層に埋没し前記反対導電型領域と接して形成された導
電層を設け、該導電層の上端が前記絶縁層の上面と同一
平面又はその上方に位置し、該導電層の上端が、前記配
線層と接続されている構造を有する半導体集積回路装置
にある。
The features of the present invention include a - conductivity type semiconductor substrate, an opposite conductivity type region formed on the semiconductor substrate, an insulating layer deposited on the semiconductor substrate, and a wiring deposited on the insulating layer. In a semiconductor integrated circuit device comprising a layer, in order to make contact between the wiring layer and the region of the opposite conductivity type, the wiring layer is buried in the insulating layer and is formed in contact with the region of the opposite conductivity type. A semiconductor integrated circuit device having a structure in which a conductive layer is provided, an upper end of the conductive layer is located on the same plane as or above the upper surface of the insulating layer, and an upper end of the conductive layer is connected to the wiring layer. be.

次Kj12mを参照して1本発明゛の構造に関する説明
を行なう。半導体基板16上の該半導体基板と、反対導
電躯の一純物が導入された導電領域41と、開孔17を
通して接続し、前記半導体基板16上に成長された絶縁
層1Bに埋没した導電層19を有する。該導電層19の
上端20が前記絶縁層18の上端21と同一平面又は上
方に位置し前記導電層19O上端20が配線層22と接
続している構造としたものである。
Next, the structure of the present invention will be explained with reference to Kj12m. A conductive layer is connected to the semiconductor substrate 16 on the semiconductor substrate 16 and the conductive region 41 into which a pure substance of the opposite conductivity is introduced through the opening 17, and is buried in the insulating layer 1B grown on the semiconductor substrate 16. It has 19. The upper end 20 of the conductive layer 19 is located on the same plane as or above the upper end 21 of the insulating layer 18, and the upper end 20 of the conductive layer 19O is connected to the wiring layer 22.

構造的に前記絶縁層18に開孔をもうける必要がなく、
従って、該絶縁層の材質として、リン濃度の低い二酸化
ケイ素層ダ使用でき、十分な耐湿性を得ることが可能、
となる。
Structurally, there is no need to provide an opening in the insulating layer 18,
Therefore, a silicon dioxide layer with a low phosphorus concentration can be used as the material for the insulating layer, and sufficient moisture resistance can be obtained.
becomes.

さらに本発明により素子間の接材、をpU記導電層19
と、呻記配線層2?蜀通(て行うため、従来。
Furthermore, according to the present invention, a contact material between elements is formed in the pU conductive layer 19.
And groan wiring layer 2? Shu Tong (to do it, traditionally.

必要不可欠であった、リンクラス層にもうけたljH口
の端縁M3.4(第1図(a))でのリンガラス層の7
0−が不用となる。したがって高温の熱処理が省は構造
的に前記配線層22のカバレッジに対する配慮鵞無用と
なる。       〜以下、#!3図(a)〜(d)
に従って1本発明Ω実施例を示す。本実施例はMO8g
O8−路装置に本発明を一用したもので、第4図に示し
た平面図のA人′方向の断面図が第3図(Φに対応する
。第3図(a)は、半導体基板23に窒化ケイ素層をマ
スクとした選択醸化の方法によりNO8型電昇効果トラ
ンジスタの絶縁分離領域24を形成する。その後前記マ
スク窒化ケイ素層を除去し前記半導体基板23を高温酸
素!匣気中で、熱酸化する事により肉薄のゲート絶縁膜
を形成する。、次にゲート電極を構成する多結晶ケイ素
層を気相法で成長する。
7 of the phosphorus glass layer at the edge M3.4 of the ljH opening (Fig. 1(a)), which was indispensable.
0- becomes unnecessary. Therefore, since high-temperature heat treatment is not required, there is no need to consider structurally the coverage of the wiring layer 22. ~below,#! Figure 3 (a) to (d)
Accordingly, one embodiment of the present invention will be described. In this example, MO8g
The present invention is applied to an O8-path device, and the cross-sectional view in the direction A of the plan view shown in FIG. 4 corresponds to FIG. 3 (Φ). 23, an insulating isolation region 24 of an NO8 type electrophoresis effect transistor is formed by a selective fermentation method using a silicon nitride layer as a mask.Then, the mask silicon nitride layer is removed and the semiconductor substrate 23 is exposed to high temperature oxygen! Then, a thin gate insulating film is formed by thermal oxidation.Next, a polycrystalline silicon layer constituting the gate electrode is grown by a vapor phase method.

該多結晶ケイ素層に不純物を高温での拡散により導入後
写真食刻の技術を用いて、ニジ08型電界効果トランジ
スタのゲート電極25を形成する。次に全面をHF系の
薬品により、前記ゲート絶縁膜とした二酸化ケイ素膜を
除去する。さらに酸化することにより前記ゲー勲電極の
周囲及び露出した前記半導体基板表面に肉薄の第1の二
酸化ケイ素層46.27を形成する。±の後、イオイ注
入による不純物ドー(ンダ技術を用いて1M08型電、
界効呆トランジスタのソース、ドレイン領域28を形成
する。前記イオン注入により導入した不純物は、前記半
導体基板に食まれるものとは反対導電型である。該不純
物の活性化のため、高湿菫素雰囲気中での熱処理を行う
。以上の工程で、MO8型電1%勢巣)う/ジスタのゲ
ート電極25及びソース・ドレイン領域28が形成され
た。次に、写真食刻の技術を用いて、二酸化ケイ素層2
6.27上の所望の個所に、開口29.30を形成する
After impurities are introduced into the polycrystalline silicon layer by diffusion at high temperature, a gate electrode 25 of a rainbow 08 type field effect transistor is formed using a photolithography technique. Next, the silicon dioxide film serving as the gate insulating film is removed from the entire surface using an HF-based chemical. Further oxidation forms a thin first silicon dioxide layer 46, 27 around the gate electrode and on the exposed surface of the semiconductor substrate. After ±, impurity doping by sulfur implantation (1M08 type electric
The source and drain regions 28 of the field effect transistor are formed. The impurities introduced by the ion implantation are of a conductivity type opposite to those introduced into the semiconductor substrate. In order to activate the impurities, heat treatment is performed in a high humidity phosphorus atmosphere. Through the above steps, the gate electrode 25 and source/drain regions 28 of the MO8 type 1% conductive transistor were formed. Next, using the photo-etching technique, the silicon dioxide layer 2 is
6. Form an opening 29.30 at a desired location on 27.

その後全面に気相法によす、導電層を形成する、ための
多結晶ケイ素層31を堆積する。膜厚は該多結晶ケイ素
層310表面420最低鞍部における高さが前記半導体
基板23上に構成された前記MO8型電界効果トランジ
スタのゲー)[i25の位置する高さを上まわるように
選ぶ。適当な導電性を得るため、該導電層を形成するた
めの多結晶ケイ素層31に、熱拡散により不純物を導入
する。次に、第3b図に示したように、写真食刻の技術
を用いて前記導電層を形成するための多結晶ケイ素層3
1−を前記第1の二酸化ケイ素層26゜27上にもうけ
た開孔29.30を完全におおう適当な柱状の導電性の
領域F2,33に分離し、導電層を形成する。エツチン
グ方法は黒方向性の反応性スパッタエツチングの技術に
よる。その後第3c図に示したように第2の絶縁層とし
て、低濃度のリンを含むリンガラス層34を堆積する。
Thereafter, a polycrystalline silicon layer 31 for forming a conductive layer is deposited over the entire surface by a vapor phase method. The film thickness is selected so that the height at the lowest saddle portion of the surface 420 of the polycrystalline silicon layer 310 exceeds the height at which the gate 25 of the MO8 field effect transistor formed on the semiconductor substrate 23 is located. In order to obtain appropriate conductivity, impurities are introduced into the polycrystalline silicon layer 31 for forming the conductive layer by thermal diffusion. Next, as shown in FIG. 3b, a polycrystalline silicon layer 3 for forming the conductive layer is formed using a photolithography technique.
1- is separated into suitable columnar conductive regions F2, 33 that completely cover the openings 29, 30 made on the first silicon dioxide layer 26, 27 to form a conductive layer. The etching method is a black directional reactive sputter etching technique. Thereafter, as shown in FIG. 3c, a phosphorus glass layer 34 containing a low concentration of phosphorus is deposited as a second insulating layer.

膜厚は前記多結晶ケイ素層34を上まわるように選ぶ。The film thickness is selected so as to exceed the thickness of the polycrystalline silicon layer 34.

さらに、フォトレジスト層35を前記リンガラス層34
を上まわる厚さに塗布する。適当なフォFレジスFを選
択することにより、該フォトレジスト層35の上面36
は単一平面に近い形状にすることができる。次に、前記
フォトレジスト層35と前記リンガラス層のエツチング
速度がほぼ同等となるように条件を設定した、異方向性
の反応性スパッタエツチングの技術を用いて、全面をエ
ツチングする。以上の工程をへて前記導電層32.33
が第2の絶縁層であるリンガラス層34に埋没している
構造を得る。該導電層32.33の上端37.38は前
記jl12の絶縁層であるリンガラス層34の表面39
と同一平面もしくは上方に位置する構造となっている。
Further, the photoresist layer 35 is applied to the phosphorus glass layer 34.
Apply to a thickness greater than . By selecting an appropriate photoresist F, the upper surface 36 of the photoresist layer 35 can be
can have a shape close to a single plane. Next, the entire surface is etched using a non-directional reactive sputter etching technique in which conditions are set so that the etching rates of the photoresist layer 35 and the phosphor glass layer are approximately the same. After the above steps, the conductive layer 32, 33
is buried in the phosphorus glass layer 34 which is the second insulating layer. The upper end 37.38 of the conductive layer 32.33 is connected to the surface 39 of the phosphor glass layer 34 which is the insulating layer of the jl12.
The structure is located on the same plane or above.

前記フォトレジスト層35を塗布した後のエツチング方
法として、エツチングレートが被エツチング材料依存性
の少ない異方向性エツチング方法であるイオンシリング
の技術を用いることも好ましい。
As the etching method after coating the photoresist layer 35, it is also preferable to use ion silling, which is an anisotropic etching method in which the etching rate is less dependent on the material to be etched.

さらに、表面にE−ガンによるアルミニウムの蒸着技術
及び写真蝕刻の技術を用いて、配線層4゜を形成した。
Furthermore, a wiring layer of 4° was formed on the surface using aluminum vapor deposition technology using an E-gun and photolithography.

(jI31図(d)) 以上の製造方法を用いて、実現された素子間の接続部に
関する構造を、MO8型集積回路装置等に適用すること
により、前記第2の絶縁層であるリンガラス層34の低
リン温度化が実現でき、耐湿性向上を計ることが可能と
なる。さらに、従来構造的にさけられない第1図(a)
におけるリンガラス層2にもうけた関口5の部分でのア
ルミニウム配線層9のカバレッジに対する配慮が鎧用と
なる等少なからぬ効果がある。
(Fig. jI31(d)) By applying the structure related to the connection between elements realized using the above manufacturing method to an MO8 type integrated circuit device, etc., the phosphor glass layer which is the second insulating layer It is possible to achieve a lower phosphorus temperature of 34 degrees, and it is possible to improve moisture resistance. Furthermore, Fig. 1(a), which cannot be avoided structurally in the past,
The consideration given to the coverage of the aluminum wiring layer 9 at the portion of the gate 5 provided in the phosphor glass layer 2 has considerable effects, such as making it suitable for armor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(c)は、素子間の接続部分に関する従
来の構造及び製造方法、第2図は本発明による素子間の
療絞部分に関する構’m、縁s、図(a)〜(d)は本
発明をMO8型集積回路装置に適用した場合の構造及び
実現方法、第4図は第3図(d)に対応する平面図を示
す。 図中、1は半導体基板、2はリンガラス層、3゜4はリ
ンガラス層2にもうけた開、孔の焔縁部、5はリンガラ
ス層2にもうけた開孔、6.7はなだらかな傾斜をもつ
開孔の端縁部、8は端縁部6゜7をもつ開孔、9はアル
1=ウム層、10.11は急な傾斜をもつ開孔の端縁部
、12.13は端縁部10,11の上端、14,15は
端縁部10゜11の下端、16は半導体基板、17拡開
孔、18は絶縁層、19は絶縁層18に埋没した導電層
%20は導電層19の上端、21れ絶縁層18の上端、
22は配線層、23は半導体基板、24はMO8電界効
果トランジスタの絶縁分離領域、25はMO8電界効果
トランジスタの多結晶ケイ素ゲート電極、26.27杜
熱−化膜、28はMO8電界効果トランジスタのソース
、ドレインを形成する不純物導入領域、、29.30は
熱酸化膜26,27にもうけた開孔、31は導電層を形
成するために堆積した多結晶ケイ素層、32.33は多
結晶ケイ素よりなる導電層、34は第2の絶縁層である
リンガラス層、35はフォトレジスト層、36はフォト
レジスト層35の上面、37゜38は導電層32.33
の上面、39はリンガラス層34の表面、40は配線層
としてのアル2ニウム層、41は半導体基板16と反対
導電型の不純物が導入された導電領域、42は多結晶ケ
イ素層31の表面、を各々表わす。 jPtI!1 ((1) ′(b) (C) ? 〜 拳 、   #3図
FIGS. 1(a) to (c) show the conventional structure and manufacturing method for the connecting part between elements, and FIG. 2 shows the structure and edge s of the connecting part between elements according to the present invention. -(d) show the structure and implementation method when the present invention is applied to an MO8 type integrated circuit device, and FIG. 4 is a plan view corresponding to FIG. 3(d). In the figure, 1 is the semiconductor substrate, 2 is the phosphor glass layer, 3° 4 is the opening made in the phosphor glass layer 2, the flame edge of the hole, 5 is the opening made in the phosphor glass layer 2, and 6.7 is the slope. 8 is an aperture with an edge 6°7; 9 is an aluminum layer; 10.11 is an edge of an aperture with a steep slope; 12. 13 is the upper end of the edge parts 10 and 11, 14 and 15 are the lower ends of the edge parts 10 and 11, 16 is a semiconductor substrate, 17 is an expanded hole, 18 is an insulating layer, and 19 is a conductive layer buried in the insulating layer 18. 20 is the upper end of the conductive layer 19; 21 is the upper end of the insulating layer 18;
22 is a wiring layer, 23 is a semiconductor substrate, 24 is an insulation isolation region of an MO8 field effect transistor, 25 is a polycrystalline silicon gate electrode of an MO8 field effect transistor, 26.27 is a thermally cured film, and 28 is an insulation layer of an MO8 field effect transistor. Impurity introduced regions forming sources and drains, 29.30 are openings made in the thermal oxide films 26 and 27, 31 is a polycrystalline silicon layer deposited to form a conductive layer, 32.33 is polycrystalline silicon. 34 is a phosphor glass layer which is a second insulating layer, 35 is a photoresist layer, 36 is the upper surface of the photoresist layer 35, 37° 38 is a conductive layer 32.33
39 is the surface of the phosphorus glass layer 34; 40 is the aluminum layer as a wiring layer; 41 is a conductive region doped with an impurity of the opposite conductivity type to that of the semiconductor substrate 16; 42 is the surface of the polycrystalline silicon layer 31; , respectively. jPtI! 1 ((1) ′(b) (C) ? ~ Fist, Figure #3

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板・と、該半導体基板に形成され・た
反対導電型領域と、該半導体基板上に彼着きれた絶縁層
と、該゛絶縁層上に被着された配線層とを含んで構成さ
れる゛半導体集積回路装置に於いて前記配線・層と前記
反対導電型領域との接触をとネ゛に当り、前記絶縁層に
埋没し前記反対導電型領域と接−して形成された導電層
を一設台、′該導電層の上°′端が前記絶縁−の上面と
同一平面又はその上方に:位置し、該導電層の上端が前
記配−′層と搬゛続されてい゛る構造を有するこ゛とを
特許とする牛*体集積″回路装置。         
パ、   =
It includes a semiconductor substrate of one conductivity type, a region of the opposite conductivity type formed on the semiconductor substrate, an insulating layer completely deposited on the semiconductor substrate, and a wiring layer deposited on the insulating layer. In a semiconductor integrated circuit device comprising: A base is provided with a conductive layer, the upper end of the conductive layer is located on the same plane as or above the upper surface of the insulating layer, and the upper end of the conductive layer is connected to the wiring layer. This is a patented "Cow*Body Integrated" circuit device that has a structure that
Pa, =
JP14676281A 1981-09-17 1981-09-17 Semiconductor integrated circuit device Pending JPS5848438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14676281A JPS5848438A (en) 1981-09-17 1981-09-17 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14676281A JPS5848438A (en) 1981-09-17 1981-09-17 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS5848438A true JPS5848438A (en) 1983-03-22

Family

ID=15414987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14676281A Pending JPS5848438A (en) 1981-09-17 1981-09-17 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS5848438A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130144A (en) * 1983-12-15 1985-07-11 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method of forming stud structure for mutually connecting
JPS60246630A (en) * 1984-05-21 1985-12-06 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS6215834A (en) * 1985-07-15 1987-01-24 Nec Corp Multilayer interconnection
JPS6447049A (en) * 1987-04-01 1989-02-21 Fairchild Semiconductor Levelling of metal pillar on non-flat substrate
JPH01102937A (en) * 1987-10-16 1989-04-20 Nec Corp Manufacture of semiconductor device
JPH04280455A (en) * 1991-03-08 1992-10-06 Nkk Corp Manufacture of semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130144A (en) * 1983-12-15 1985-07-11 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method of forming stud structure for mutually connecting
JPS60246630A (en) * 1984-05-21 1985-12-06 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS6215834A (en) * 1985-07-15 1987-01-24 Nec Corp Multilayer interconnection
JPS6447049A (en) * 1987-04-01 1989-02-21 Fairchild Semiconductor Levelling of metal pillar on non-flat substrate
JPH01102937A (en) * 1987-10-16 1989-04-20 Nec Corp Manufacture of semiconductor device
JPH04280455A (en) * 1991-03-08 1992-10-06 Nkk Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JPS6126261A (en) Vertical mosfet and manufacture thereof
KR910005384A (en) Method of manufacturing coplanar self-aligned contact structure in semiconductor device
JPS60254659A (en) Field effect transistor element and method of producing same
GB2080024A (en) Semiconductor Device and Method for Fabricating the Same
JPS5848438A (en) Semiconductor integrated circuit device
JPS61502925A (en) Manufacturing method of MIS type integrated circuit
US4216573A (en) Three mask process for making field effect transistors
JPH0415619B2 (en)
JPH05121727A (en) Semiconductor device and manufacturing method thereof
JPS5836505B2 (en) Method for manufacturing semiconductor memory device
JPH01114042A (en) Manufacture of semiconductor device
JPS61204979A (en) Manufacture of insulated gate fe device
JPH04368125A (en) Semiconductor device and manufacture thereof
JPS58197882A (en) Manufacture of semiconductor device
JPH03163832A (en) Semiconductor device
JPS6118350B2 (en)
JPS58170030A (en) Manufacture of semiconductor device
KR20000041397A (en) Method of forming gate electrode of high integrated memory device
KR19980058438A (en) Silicide Formation Method of Semiconductor Device
JPS62213141A (en) Manufacture of semiconductor device
JPS5975667A (en) Manufacture of semiconductor device
JPS6188543A (en) Manufacture of semiconductor device
JPS6163057A (en) Manufacture of misfet
JPS59186374A (en) Manufacture of semiconductor device
JPS61287171A (en) Insulated gate field-effect type semiconductor device and manufacture thereof