JPS6127654A - Master slice type integrated circuit device - Google Patents

Master slice type integrated circuit device

Info

Publication number
JPS6127654A
JPS6127654A JP14890484A JP14890484A JPS6127654A JP S6127654 A JPS6127654 A JP S6127654A JP 14890484 A JP14890484 A JP 14890484A JP 14890484 A JP14890484 A JP 14890484A JP S6127654 A JPS6127654 A JP S6127654A
Authority
JP
Japan
Prior art keywords
circuit
area
internal
transistor
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14890484A
Other languages
Japanese (ja)
Inventor
Tsutomu Hatano
波田野 勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14890484A priority Critical patent/JPS6127654A/en
Publication of JPS6127654A publication Critical patent/JPS6127654A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11801Masterslice integrated circuits using bipolar technology

Abstract

PURPOSE:To build a required circuit block into a compact construction without an increase in cell areas by a method wherein a plurality of elements, to be put into use as necessary, in a junction region between an internal circuit region and a buffer circuit region. CONSTITUTION:The device of this design is composed of an internal circuit region 1 constituting a logic circuit, a buffer circuit region 2 driving an external load, and a framework region 4 provided with bonding pads 3, and has a plurality of elements 6 installed in a junction region 5 positioned between the internal circuit region 1 and the buffer circuit region 2. In a 3-state control circuit of an output buffer, a transistor Q in the junction region 5 divides the current flowing from the output buffer to an output transistor Q0 in the internal circuit, thereby preventing the transistor Q0 from saturation. Only one internal cell is used for the control circuit, and the transistor Q in this circuit design may be smaller in size than a transistor in a different circuit design wherein a buffer zone transistor is made use of to construct a control circuit.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はマスタスライス方式集積回路装置(二関し、特
(=内部回路領域とバッファ回路領域の間の接続領域(
二内部回路の一部あるいはバッファ回路の一部として使
用することのできる素子を設けた半導体集積回路装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a master slice integrated circuit device (particularly a connection area between an internal circuit area and a buffer circuit area).
2. The present invention relates to a semiconductor integrated circuit device provided with an element that can be used as part of an internal circuit or part of a buffer circuit.

〔従来技術〕[Prior art]

第2図は従来例に係るマスタスライス方式集積回路装置
の構成を示す概略上面図であり、論理回路を構成する内
部回路領域1.外部負荷を駆動するバッファ回路領域2
及びポンディングパッド6を有する組立領域4から成っ
ている。このうち内部回路領域1には複数個の素子から
成る回路単位(以下セルと称する)が行列状に置かれ、
これらセル複数個から回路ブロックが構成される。なお
、5は内部回路素子とバッファ回路とを接続するための
領域である。論理回路の構成は、回路接続情報C二基づ
いて前記回路ブロックを配置された後、各ブロックの入
出力端子間を結線することによってなされる。この回路
ブロックの配置と回路ブロック間結線は、コンピュータ
を利用して自動的に処理されるのが普通である。
FIG. 2 is a schematic top view showing the configuration of a master slice type integrated circuit device according to a conventional example, and shows an internal circuit area 1 configuring a logic circuit. Buffer circuit area 2 that drives external loads
and an assembly area 4 having a bonding pad 6. Of these, in the internal circuit area 1, circuit units (hereinafter referred to as cells) consisting of a plurality of elements are arranged in a matrix.
A circuit block is composed of a plurality of these cells. Note that 5 is a region for connecting the internal circuit element and the buffer circuit. The configuration of the logic circuit is performed by arranging the circuit blocks based on the circuit connection information C2 and then connecting the input and output terminals of each block. The arrangement of circuit blocks and the connections between circuit blocks are usually automatically processed using a computer.

ところでマスタスライス方式集積回路においては内部回
路セル内の素子の種類と数(二制限があるため、これら
素子を用いて回路ブロックな構成する際、一般にブロッ
ク構成が冗長になるという問題点がある。この事情を第
6図の例を示して説明する。第6図(a)はセルの八本
回路を表わし、TTL (Tran@1stor −T
ransistor Logic )の3人力NAND
機能を有している。11 、 I2 ! Isが入力、
δUTが出力で点線はセルの境界を表わしており、1セ
ルはマルチエミッタトランジスタQm +  出力トラ
ンジスタ(ショットキダイオードクランプ付)Qo。
However, in a master slice type integrated circuit, there are two restrictions on the type and number of elements in an internal circuit cell, so when these elements are used to configure a circuit block, there is a problem that the block configuration generally becomes redundant. This situation will be explained with reference to the example of Fig. 6. Fig. 6(a) shows an eight cell circuit, and TTL (Tran@1stor -T
ransistor Logic)'s three-person NAND
It has a function. 11, I2! Is input,
δUT is the output, and the dotted line represents the cell boundary, where one cell is a multi-emitter transistor Qm + output transistor (with Schottky diode clamp) Qo.

ダイオードD、抵抗R1+ R2+ R1の計5ヶの素
子から成っている。このような基本セルによって3人力
ANDをht成しようとすると1セルでは構成できず、
第6図(b)に示す様に2セルを必要とする。
It consists of a total of five elements: a diode D and resistors R1+R2+R1. If you try to create a 3-person AND using such a basic cell, it will not be possible to create it with just one cell.
Two cells are required as shown in FIG. 6(b).

内部基本セル内にあらかじめRx = Q6分の素子が
余分に用意されていれば3人力ANDは1セルで構成す
ることができ、1fツブ内に搭載できる回路ブロック数
が実質的に増加するという利点があるのだが、それらの
素子増加分だけ単位セルの面積が余計に必要となるので
結果的にチップ面積の増大を招き好ましくない。
If extra elements for Rx = Q6 are prepared in advance in the internal basic cell, a 3-man AND can be configured with one cell, which has the advantage of substantially increasing the number of circuit blocks that can be installed in a 1f tube. However, the area of the unit cell is increased by the increase in the number of elements, which is undesirable as it results in an increase in the chip area.

一方、実際のマスタスライス方式集積回路では回路ブロ
ックの配置と回路ブロック間配線を能率よく行なう必要
上、内部回路領域内の全セルな使用するのは極めてまれ
なケースであり、多くは相当数の未使用のセルが存在す
る。これら未使用セルの素子をバッファ回路の一部とし
て使用することができればチップ内素子の効率的使用の
面から望ましく、ひいてはチップ面積の縮小を計ること
ができる。しかしながら内部回路内の素子は近年高集積
化が進む中でますます小面積化される反面、バッファ回
路内の素子は外部負荷を十分なスピードで充放電するた
めに大きい駆動能力が要求される。このため内部回路内
素子に比して大きい面積が必要とされ、内部回路内の素
子をバッファ回路の一部として使用することはますます
難しくなる方向にある。
On the other hand, in actual master slice type integrated circuits, it is extremely rare that all cells in the internal circuit area are used due to the need to efficiently arrange circuit blocks and wire between circuit blocks, and in many cases a considerable number of cells are used. There are unused cells. It is desirable to use the elements of these unused cells as part of the buffer circuit from the standpoint of efficient use of the elements within the chip, and as a result, it is possible to reduce the chip area. However, while the area of elements in internal circuits has become smaller and smaller due to recent advances in high integration, elements in buffer circuits are required to have large driving capabilities in order to charge and discharge external loads at a sufficient speed. Therefore, a larger area is required than the internal circuit elements, and it is becoming increasingly difficult to use the internal circuit elements as part of a buffer circuit.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来例の問題点に鑑み提案されたものであ
り、セル面積を増大させることなく所定の回路ブロック
をコンパクト(;構成することを可能とするマスタスラ
イス方式集積回路装置の提供を目的とする。
The present invention has been proposed in view of the problems of the conventional example described above, and an object of the present invention is to provide a master slice type integrated circuit device that enables a predetermined circuit block to be configured compactly without increasing the cell area. shall be.

〔発明の構成〕[Structure of the invention]

本発明は、半導体チップ内に論理回路を構成する内部回
路領域と外部負荷を駆動するバッファ回路領域を備える
マスタスライス方式集積回路において、前記内部回路領
域と前記バッファ回路領域の間の接続領域に複数個の素
子を設け、必要(二応じて内部回路の一部あるいはバッ
ファ回路の一部として前記複数個の素子を使用できるよ
うにしたことを特徴とする。
The present invention provides a master slice integrated circuit comprising an internal circuit area that constitutes a logic circuit in a semiconductor chip and a buffer circuit area that drives an external load, in which a plurality of connection areas between the internal circuit area and the buffer circuit area are provided. The present invention is characterized in that a plurality of elements are provided, and the plurality of elements can be used as part of an internal circuit or a part of a buffer circuit depending on necessity.

〔実施例〕〔Example〕

以下図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

第1図は本発明の実施例に係るマスタスライス方式集積
回路装置の構成を示す概路上面因である。
FIG. 1 is a schematic top view showing the configuration of a master slice type integrated circuit device according to an embodiment of the present invention.

第2図の従来の構成との相違は、内部回路領域1とバッ
ファ回路領域2の間の接続領域5において、素子6を設
置していることである。
The difference from the conventional configuration shown in FIG. 2 is that an element 6 is provided in a connection area 5 between the internal circuit area 1 and the buffer circuit area 2.

第4図は第6図(a)と同じセル構造をもつTTL回路
に本発明を適用した例である。第4図における一点鎖線
は内部回路領域と接続領域(内部回路とバッファ回路の
接続のための領域)との境界(第4図(al 、 (b
) )、あるいは接続領域とバッファ領域の境界を表わ
す(他の記号は第6図と同じであるo)a接続領域C−
はトランジスタQ及び抵抗Rが設置されている(S4図
0)。第4図(a)は3人力A N D <sy2能を
もつ回路ブロックで、従来例(第3図(b))が内部セ
ル2ケで構成されていたのに対し、接続領域の素子を利
用することによって1セルで同一機能を有することがで
きる。この様に接続領域の素子を内部の回路ブロックの
一部として用いることによって1ブロツクあたりの必要
セル数を減らすことができ、特に使用ブロック数の多い
論理回路の設計に対して有利になる。
FIG. 4 shows an example in which the present invention is applied to a TTL circuit having the same cell structure as FIG. 6(a). The one-dot chain line in FIG. 4 indicates the boundary between the internal circuit area and the connection area (area for connecting the internal circuit and the buffer circuit) (
)) or represents the boundary between the connection area and the buffer area (other symbols are the same as in Figure 6 o) a connection area C-
A transistor Q and a resistor R are installed (S4 Figure 0). Figure 4(a) shows a circuit block with a three-person power A N D <sy2 capability, and whereas the conventional example (Figure 3(b)) was composed of two internal cells, the elements in the connection area were By using this, one cell can have the same function. By using elements in the connection area as part of internal circuit blocks in this way, the number of cells required per block can be reduced, which is particularly advantageous for designing logic circuits that use a large number of blocks.

一方第4図(b)は出力バッファの3ステ一トコントロ
ール回路に本発明を適用した例である。まずはじめに接
続部領域5のトランジスタQがない場合を考える。出力
バッファ回路の出力OUTが内部回路からの入力14の
レベルにかかわらずハイインピーダンス状態になる時、
即ちコントロール回路の出力トランジスタQoがON状
態の時には出力バッファからQoへ電流が流れ込む。こ
の電流の大きさは出カバソファが外部負荷C二対して大
きな駆動能力を要求される関係上、第4図(b)の抵抗
R4が比較的小さい抵抗値で設計されるので相当大きい
ものになる。そのためこの電流を受ける出力トランジス
タQoもある程度大きくしてコレクタ抵抗を下げ、また
ショットキクランプ能力を大きくしないと、最悪の場合
トランジスタQoが飽和に追い込まれ、カットオフする
の(二非常に長い時間を要してしまう。しかしながら内
部セル面積は高集積化に伴って増々小さくなる方向にあ
り、上記のトランジスタの飽和を防ぐため(二はもはや
内部セル1ケでコントロール回路を構成することは不可
能である。
On the other hand, FIG. 4(b) shows an example in which the present invention is applied to a three-state control circuit for an output buffer. First, consider the case where there is no transistor Q in the connection region 5. When the output OUT of the output buffer circuit is in a high impedance state regardless of the level of input 14 from the internal circuit,
That is, when the output transistor Qo of the control circuit is in the ON state, current flows from the output buffer to Qo. The magnitude of this current is quite large because the output sofa is required to have a large driving capacity for the external load C2, and the resistor R4 in Fig. 4(b) is designed with a relatively small resistance value. . Therefore, unless the output transistor Qo that receives this current is increased to some extent to lower the collector resistance and the Schottky clamp capacity is increased, in the worst case, the transistor Qo will be driven to saturation and cut off (which will take a very long time). However, the area of internal cells is becoming smaller and smaller as integration becomes higher, and in order to prevent saturation of the transistors mentioned above (secondly, it is no longer possible to construct a control circuit with one internal cell). .

この場合、例えば内部セル複数個でコントロール回路を
構成し、内部セルの出力トランジスタ複数個を並列液−
続して上記トランジスタの飽和を防ぐ方法が考えられる
。しかし、この方法は内部論理回路の設計において実質
的な使用可能ブロック数の減少をきたし、本質的な解決
策とはならない。
In this case, for example, a control circuit is configured with multiple internal cells, and multiple output transistors of the internal cells are connected in parallel.
Next, a method of preventing the saturation of the above transistor can be considered. However, this method results in a substantial decrease in the number of usable blocks in designing the internal logic circuit, and is not an essential solution.

従って内部回路素子を用いてコントロール回路を形成す
ることは断念せざるを得す、バッファ回路領域で形成す
る必要が生ずる。しかし、この方法はコントロール回路
の面積骨だけチップ面積が大きくなる不利をまぬがれな
い。以上の欠点を補うのが第4図(b)の接続領域のト
ランジスタQである。
Therefore, it is necessary to give up on forming the control circuit using internal circuit elements, and it becomes necessary to form it in the buffer circuit area. However, this method has the disadvantage that the chip area increases by the area of the control circuit. The transistor Q in the connection region shown in FIG. 4(b) compensates for the above drawbacks.

このトランジスタは出力バッファから内部回路の出力ト
ランジスタQoへの電流を分流し、Qoが飽和(二追い
込まれるのを防ぐ役割を果たしている。
This transistor plays the role of diverting the current from the output buffer to the output transistor Qo of the internal circuit and preventing Qo from becoming saturated.

第4図(b)かられかるように、この場合のコントロー
ル回路は内部セルを1ケしか使用せず:またバッファ領
域のトランジスタを利用してコントロール回路を形成す
る場合に比して、トランジスタQの大きさも小さい。
As can be seen from Fig. 4(b), the control circuit in this case uses only one internal cell; The size is also small.

次に′?45図によって本発明の別の適用例を示す。next'? Another application example of the present invention is shown in FIG.

一般に内部回路ブロック間の信号のスピードは・出力イ
ンピーダンスROと、配線容量Cwと次段入力の入力容
量C!の和の容量との積t Ro×(Cm + CI)
で決まるから、著しく配線が長くなりあるいはファンア
ウトが多くなると、スピードが遅くなる(第5図(a)
参照)。論理回路の設計においては、回路ブロック出力
毎(二上記BOX (Cw + Ct )値を推定して
おく必要があるが、特にコンピュータを利用して回路ブ
ロック間結線を行なう場合、あらかじめ配線容ffi 
Cwを見積ることは一般に難しい。このため配線容量の
違いによる各回路ブロック出力毎のスピードのほらつき
を小さくするために、結線の結果としての配線容New
とファンアウト数(次段入力の入力谷it Ct )に
応じて出力インピーダンスを切り換える方法がとられて
いる。出力インピーダンスの変化は、例えば第5図(b
)のような抵抗を出力抵抗に用いることによってなされ
る。第5図(b)において8及び9は抵抗層を表わし、
通常は7の配線金属パタンによって抵抗層8と9の直列
抵抗として使用するが、Cw + CBが大きくなると
10の配線金属パタンを付加して抵抗層8のみの抵抗と
して用いる(第5図(b)において、11は配線金属と
のオーミックコンタクトをとるための高濃度不純物層、
12はチップ表面絶縁膜の開孔を表わす。)。各回路ブ
ロック出力毎の配線容量によるスピードのばらつきを抑
えるためには、出力インピーダンス切換え用の抵抗を数
多く用意しておくことが望ましい。しかしそれはセル面
積の増大につながり好ましくない。そこで第5図(C)
に示す様に、接続領域5に過当な抵抗を置き、出力OU
T +ニ一つながる配線容量とファンアウトに応じて配
線16の接続、断線を行なえば、セル面積を大きくする
ことなく各出力毎のスピードのバラツキを小さくするこ
とができるとともに、セル面積の増大を防ぐことができ
る。
In general, the speed of signals between internal circuit blocks is: - Output impedance RO, wiring capacitance Cw, and input capacitance C of the next stage input! The product of the sum of the capacitance and the capacitance t Ro×(Cm + CI)
Since it is determined by
reference). When designing a logic circuit, it is necessary to estimate the (BOX (Cw + Ct) value for each circuit block output, but especially when using a computer to connect circuit blocks, it is necessary to estimate the wiring capacity ffi in advance.
It is generally difficult to estimate Cw. Therefore, in order to reduce variations in speed for each circuit block output due to differences in wiring capacity, the wiring capacity New
A method is adopted in which the output impedance is switched according to the fan-out number (input valley it Ct of the next stage input). Changes in output impedance can be seen, for example, in Figure 5 (b).
) is used as the output resistance. In FIG. 5(b), 8 and 9 represent resistance layers,
Normally, 7 wiring metal patterns are used as a series resistor for resistance layers 8 and 9, but when Cw + CB becomes large, 10 wiring metal patterns are added and used as a resistor for only resistance layer 8 (see Fig. 5 (b). ), 11 is a high concentration impurity layer for making ohmic contact with the wiring metal;
12 represents an opening in the chip surface insulating film. ). In order to suppress variations in speed due to wiring capacitance for each circuit block output, it is desirable to prepare a large number of resistors for output impedance switching. However, this leads to an increase in the cell area, which is undesirable. Therefore, Figure 5 (C)
As shown in , an excessive resistance is placed in the connection area 5, and the output OU
By connecting or disconnecting the wiring 16 according to the wiring capacitance and fan-out, it is possible to reduce the variation in speed for each output without increasing the cell area, and also to reduce the increase in the cell area. It can be prevented.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、本発明(=よれば内部回路領
域とバッファ回路領域の間の接続領域にあらかじめ複数
個の素子を設け、必要に応じて内部回路の一部として使
用し、あるいはバッファ回路の一部として適宜使用でき
るので、内部セル面積を増やすこともまたバッファ回路
専有面積を増やすこともなく有効に回路素子を利用でき
る。従ってチップ面積の縮小を図ることができる。
As explained above, according to the present invention, a plurality of elements are provided in advance in the connection area between the internal circuit area and the buffer circuit area, and are used as part of the internal circuit as necessary, or as part of the buffer circuit. Since it can be used as a part of the circuit, the circuit elements can be used effectively without increasing the internal cell area or the area occupied by the buffer circuit.Therefore, the chip area can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係るマスタスライス方式集積
回路装置の構成を示す概路上面図、第2図は従来例に係
るマスタスライス方式集積回路装置の構成を示す部分的
概略上面図である。第6図は従来例の問題点を説明する
ための図であり、(a)はTTL3人力NAND基本セ
ル、(b)は基本セルによって構成された3人力AND
回路の回路ブロックである。第4図、第5図はそれぞれ
本発明の実施例に係るマスタスライス方式集積回路装置
によって回路構成をした3ステ一トコントロール回路と
3人力NAND回路である。 1・・・内部回路領域、2・・・バッファ回路領域、6
・・・ポンディングパッド、4・・・朝立領域、5・・
・内部回路とバッファ回路の接続領域、6・・・素子、
7゜10・・・配線金属バタン、8,9・・丁抵抗層、
11・・・高濃度不純物層、12・・・チップ表面絶縁
膜の開孔、16・・・配線、Qm・・・マルチエミッタ
トランジスタ、Qo・・・出力トランジスタ、Q・・・
トランジスタ、D・・・ダイオード、Rs + Rt 
* Rs r R4+ Ro + R”’抵抗、RO・
・・出力インピーダンス、11 + It + is+
 I4・・・入力端子、OUT・・・出力端子、VCC
・・・電源、GND・・・接地、CW・・・配線容置、
CI・・・次段入力の入力容量。 特許出願人  日本電気株式会社 第1図 第2図   − (a) (b) 第3図 (a) (b) 第4図 (a) (b) (C) 第5図
FIG. 1 is a schematic top view showing the configuration of a master slice type integrated circuit device according to an embodiment of the present invention, and FIG. 2 is a partial schematic top view showing the configuration of a master slice type integrated circuit device according to a conventional example. be. FIG. 6 is a diagram for explaining the problems of the conventional example, in which (a) is a TTL 3-man-powered NAND basic cell, and (b) is a 3-man-powered AND configured by the basic cell.
It is a circuit block of a circuit. FIG. 4 and FIG. 5 show a three-state control circuit and a three-manpower NAND circuit, respectively, which are constructed using a master slice type integrated circuit device according to an embodiment of the present invention. 1... Internal circuit area, 2... Buffer circuit area, 6
...Pounding pad, 4...Asadate area, 5...
・Connection area between internal circuit and buffer circuit, 6... element,
7゜10... Wiring metal button, 8,9... D resistance layer,
11... High concentration impurity layer, 12... Opening in chip surface insulating film, 16... Wiring, Qm... Multi-emitter transistor, Qo... Output transistor, Q...
Transistor, D...diode, Rs + Rt
*Rs r R4+ Ro + R'''Resistance, RO・
・・Output impedance, 11 + It + is+
I4...Input terminal, OUT...Output terminal, VCC
...power supply, GND...grounding, CW...wiring storage,
CI: Input capacity of next stage input. Patent applicant NEC Corporation Figure 1 Figure 2 - (a) (b) Figure 3 (a) (b) Figure 4 (a) (b) (C) Figure 5

Claims (1)

【特許請求の範囲】[Claims]  半導体チップ内に論理回路を構成する内部回路領域と
外部負荷を駆動するバッファ回路領域を備えるマスタス
ライス方式集積回路において、前記内部回路領域と前記
バッファ回路領域の間の接続領域に複数個の素子を設け
、必要に応じて内部回路の一部あるいはバッファ回路の
一部として前記複数個の素子を使用できるようにしたこ
とを特徴とするマスタスライス方式集積回路装置。
In a master slice integrated circuit comprising an internal circuit area that constitutes a logic circuit in a semiconductor chip and a buffer circuit area that drives an external load, a plurality of elements are provided in a connection area between the internal circuit area and the buffer circuit area. A master slice type integrated circuit device, characterized in that the plurality of elements can be used as part of an internal circuit or a part of a buffer circuit as required.
JP14890484A 1984-07-18 1984-07-18 Master slice type integrated circuit device Pending JPS6127654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14890484A JPS6127654A (en) 1984-07-18 1984-07-18 Master slice type integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14890484A JPS6127654A (en) 1984-07-18 1984-07-18 Master slice type integrated circuit device

Publications (1)

Publication Number Publication Date
JPS6127654A true JPS6127654A (en) 1986-02-07

Family

ID=15463265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14890484A Pending JPS6127654A (en) 1984-07-18 1984-07-18 Master slice type integrated circuit device

Country Status (1)

Country Link
JP (1) JPS6127654A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102553867B1 (en) * 2022-12-21 2023-07-11 복정수 Conveyor belt lifting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102553867B1 (en) * 2022-12-21 2023-07-11 복정수 Conveyor belt lifting apparatus

Similar Documents

Publication Publication Date Title
JPH0650761B2 (en) Semiconductor device
EP0563973B1 (en) Master slice integrated circuit having a reduced chip size and a reduced power supply noise
JPS63310136A (en) Complementary mis master slice logic integrated circuit
JP2682397B2 (en) Cell-based design semiconductor integrated circuit device
JPS6127654A (en) Master slice type integrated circuit device
JPH0770596B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS6380622A (en) Semiconductor integrated circuit device
JPH06101521B2 (en) Semiconductor integrated circuit device
JPH0262062A (en) Master slice type semiconductor device
JPS5844741A (en) Semiconductor integrated circuit
JPH04336812A (en) Digital circuit device
JPH04326575A (en) Integrated circuit device
JPS641052B2 (en)
JPH0416946B2 (en)
JPH0210582B2 (en)
JPH0793356B2 (en) Logic integrated circuit
JPH01152642A (en) Semiconductor integrated circuit
JPS624343A (en) Master-slice-type semiconductor integrated circuit device
JPS61187249A (en) Semiconductor integrated circuit device
JPS6366059B2 (en)
JPH0536948A (en) Semiconductor device
JPH05166932A (en) Semiconductor integrated circuit device
JPS621244A (en) Master slice type semiconductor device
JPH065715B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH0513582A (en) Power source wiring of semiconductor device