JPS5844741A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS5844741A
JPS5844741A JP14294081A JP14294081A JPS5844741A JP S5844741 A JPS5844741 A JP S5844741A JP 14294081 A JP14294081 A JP 14294081A JP 14294081 A JP14294081 A JP 14294081A JP S5844741 A JPS5844741 A JP S5844741A
Authority
JP
Japan
Prior art keywords
cell
internal
region
wiring
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14294081A
Other languages
Japanese (ja)
Other versions
JPH0123943B2 (en
Inventor
Satoru Tanizawa
谷澤 哲
Hitoshi Omichi
大道 等
Katsuharu Mitono
水戸野 克治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14294081A priority Critical patent/JPS5844741A/en
Priority to DE8282304746T priority patent/DE3276284D1/en
Priority to EP82304746A priority patent/EP0074805B2/en
Priority to IE2221/82A priority patent/IE54169B1/en
Publication of JPS5844741A publication Critical patent/JPS5844741A/en
Priority to US06/769,800 priority patent/US4868630A/en
Publication of JPH0123943B2 publication Critical patent/JPH0123943B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To enhance the using efficiency of an internal cell region in a master and slice type gate array LSI by forming part of the logic circuit of an internal cell in an I/O cell. CONSTITUTION:Since an internal cell 1 is formed at a high speed and is highly integrated, it is disposed at the center of a chip in a small size, an I/O cell 3 has a high load drive capacity in a relatively large size at the outside. Accordingly, when the power wirings 6 become thick due to the high integration of the gate array LSI, the unused vacant region of the I/O cell region 4 is increased. Accordingly, the logic function of the stationary structure formed by utilizing the conventional internal cell is incorporated in the I/O cell which increases in the exclusive area as the power source wirings increases in thickness. In other words, the logic function of the original stationary structure is incorporated in the I/O cell 3 which is nearly fixed with low degree of freedom of wiring, and the logic function required for the further degree of freedom is formed in the internal cell region 2. According to this structure, the unused region of the region 4 can be activated, thereby improving the using efficiency of the internal cell region.

Description

【発明の詳細な説明】 本発明は、使用者の目的に応じてあらかじめ準備された
回路素子を半導体製造工程中にたとえば金属スパッタ等
によって結線するセンカスタム半導体集積回路(IC)
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a custom semiconductor integrated circuit (IC) in which circuit elements prepared in advance according to a user's purpose are connected by metal sputtering or the like during a semiconductor manufacturing process.
Regarding.

たとえば、マスタースライスr−ドアレイLSIは、基
本セルを多数アレイ状に並べ九ノ量ルクを有し、これら
の基本セル内及び基本セル間を結線する配線層の設計を
コンビ、−夕等を使用して自動的に行なって多品種の製
品を1種類のバルクで構成することが可能なICである
For example, a master slice r-dore array LSI has a large number of basic cells arranged in an array and has a maximum resistance of 900 nm, and uses combinations of wiring layer designs to connect within and between these basic cells. This is an IC that can automatically perform this process to configure a wide variety of products in one type of bulk.

第11囚は、f−)プレイLSIを1チツグ上に構成し
たもので、第1図03)はそのコーナ部を拡大したもの
である。かかるf−)アレイLSIは内部セル1のアレ
イ1−1と内部セル1間を相互に自動配線する丸めのセ
ル間自動配線領域(チャネル領域)2−1とより構成さ
れ論理回路を構成する内部セル領域2と、内部セル領域
2の外側に設けられ内部セル1とICチッ!外部との電
気的インターフェイスを目的とするl10(入出力)ノ
々ツファ用I/l)セル3よ〕なるl7t)セル領域4
と、I10セル領域4の上面に平面状に形成されたチッ
プ周辺部のvcc電源、およびグランドツイン6−1と
内部セル領域2に対して図において縦方向に渡設さ′ 
れた線状のグランドライン(一種の電源)6−2と横方
向に渡設された線状のVCC電源ライン6−3とよりな
る電源配@6および電源ノ譬、ドロー4と、I10セル
3に接続される偏号纏ノ譬、ド5とよpなる。なお、第
11囚では、電源配線6の周辺部6−1、グランドライ
ン6−2、Vcc電源ツイン6−3は図面の明瞭化のた
めに図示を省略した。
Figure 11 shows the f-) play LSI constructed one size above the other, and Figure 1 (03) shows an enlarged corner portion of the LSI. This f-) array LSI is composed of an array 1-1 of internal cells 1 and a rounded inter-cell automatic wiring area (channel area) 2-1 for automatically wiring the internal cells 1 to each other, and an internal area forming a logic circuit. The cell area 2 and the internal cell 1 provided outside the internal cell area 2 and the IC chip! l7t) cell area 4 consisting of I/l) cell 3 for l10 (input/output) nototsufa for the purpose of electrical interface with the outside
and a VCC power supply at the chip periphery formed in a planar shape on the upper surface of the I10 cell region 4, as well as a ground twin 6-1 and an internal cell region 2, which are provided vertically in the figure.
A power supply wiring @6 and power source consisting of a linear ground line (a type of power supply) 6-2 and a horizontally laid linear VCC power line 6-3, draw 4, and I10 cell. In the parable of the eccentric code connected to 3, it becomes do 5 and p. In the eleventh prisoner, the peripheral portion 6-1 of the power supply wiring 6, the ground line 6-2, and the Vcc power supply twin 6-3 are omitted from illustration for clarity of the drawing.

一般にダートアレイは、主にX方向の配線を形成する第
1の配線層と、主にY方向の配線を形成する1li2の
配線層と、それらを導通するピアホール等よシ内部セル
やI/l)セルの回路素子間を接続している。そして内
部セル領域はチップの中央部に設けられ、内部セル領域
2と・fヅド5との関に外部セル領域4が設けられてい
る。tた電源用配線6−1は外部セル領域4上の第2の
配線層によ〕設けられそこ、Q)ら内部セル領域への細
い電源用配線6−2.6−3がそれぞれ第2.第1の配
線層にて形成される。従ってI10セル領域4は主に周
囲の電源用配線6−1の形状に制限される。
In general, a dirt array consists of a first wiring layer that mainly forms wiring in the X direction, a 1li2 wiring layer that mainly forms wiring in the Y direction, and internal cells and I/I wiring layers that connect them through holes such as peer holes. ) connects the circuit elements of the cell. The internal cell area is provided in the center of the chip, and the external cell area 4 is provided between the internal cell area 2 and the f. The narrow power supply wiring 6-1 is provided in the second wiring layer on the external cell region 4, and the thin power supply wiring 6-2 and 6-3 from Q) to the internal cell region are provided in the second wiring layer, respectively. .. It is formed in the first wiring layer. Therefore, the I10 cell region 4 is mainly limited by the shape of the surrounding power supply wiring 6-1.

内部セル、I10セルはトランジスタ、ダイオード、抵
抗、キヤ・母シタ等の回路素子の集合体で、セル内でそ
れらの回路素子を接続することKよシ基本的な論理回路
を構成することができるものである。
The internal cell, I10 cell, is a collection of circuit elements such as transistors, diodes, resistors, capacitors, etc., and by connecting these circuit elements within the cell, a basic logic circuit can be constructed. It is something.

これらのセルは基本セルと称される。These cells are called basic cells.

これらのセル内及びセル間は第11第2の配線層により
接続される。内部セル間は第1、第2の配線層を利用し
て接続される丸め、その配線の自由度は大である。一方
、!沖セル領域4上の第2の配線層はすでに電源配線6
0周辺部6−1として使用されているので、I/bセル
の素子は主に第1の配線層で接続される。すなわち配線
の自由度社内部セルに比してきわめて小で従東はほとん
ど固定的であり九。
Connections are made within these cells and between cells by eleventh and second wiring layers. Internal cells are connected using the first and second wiring layers, and the degree of freedom in wiring is large. on the other hand,! The second wiring layer on the Oki cell area 4 is already connected to the power supply wiring 6.
Since it is used as the 0 peripheral part 6-1, the elements of the I/b cell are mainly connected through the first wiring layer. In other words, the degree of freedom in wiring is extremely small compared to in-house cells, and the wiring is almost fixed.

また、内部セル1は高速、高集積度を満すため極力小形
に形成される。これに対して、I10セル3は高い負荷
駆動能力を有し比較的大形である。
Further, the internal cell 1 is formed as small as possible to satisfy high speed and high integration. On the other hand, the I10 cell 3 has a high load driving capability and is relatively large.

内部セルlは低消費電力とされる必要からI10セル3
に比べ電源電圧、しきい値電圧が低い、この丸め、!沖
セル3にはチップ外部と内部セル1とのし自い値電圧を
合わせるための電圧レベル変換機能が必要とである。こ
のように、I10セル3と内部セル1と社異なる機能と
セルサイズを有するので、両者を同一のセルとして、相
互に自動配線処理することはなかった。
Internal cell 1 is I10 cell 3 because it needs to have low power consumption.
Compared to the power supply voltage, the threshold voltage is lower, this rounding! The Oki cell 3 is required to have a voltage level conversion function to match the maximum voltage between the outside of the chip and the internal cell 1. In this way, since the I10 cell 3 and the internal cell 1 have different functions and cell sizes, they were not treated as the same cell and were not automatically interconnected.

一方、■Cチ、グ崗辺は前記セル1.3に電力を供給す
る電源配線60周辺部とI/llセル領域4とが多層構
造を形成しており、!沖七ル領域40面積はほぼ電源ラ
インによって決まっていた。すなわち、I10セル3の
必要とする藺積紘電渾ラインのそれよりも小であるので
、I10セル領域4と第11囚、(*表示した領域は使
用しない空領域を有していた。この空領域は、ゲートア
レイLSIの高集積化に伴なってまた電源配線6が太く
なるにつれて大となっていた。
On the other hand, in the case of ■C, the peripheral part of the power supply wiring 60 that supplies power to the cell 1.3 and the I/ll cell region 4 form a multilayer structure. The 40 area of Okishichiru area was almost determined by power lines. In other words, since it is smaller than that of the I10 cell area 4 and the 11th cell line required by I10 cell 3, (*The indicated area had an unused empty area. The empty area has become larger as the gate array LSI becomes more highly integrated and the power supply wiring 6 becomes thicker.

また、入力信号に対して、内部セル領域2における論理
回路が正相、逆相の両方を要求した場合、I10セル3
の外部信号に対する機能はパ、ファあるいはインバータ
機能のうちいずれか一方しか有していないので、前記I
10セル3の内部セル1に対する出力端に内部セル1を
2個接続し、一方を・譬、ファ機能として他方をインバ
ータ機能として使用しなければならなかった。すなわち
、第2図には、かかる従来例の回路図を示すもので、信
号線パッド5はI/l)セル3のバッファ8の入力9に
接続され、その出力10は内部セル領域2に設けられた
インバータl l 、/l vフチ12のそれぞれの入
力13.14に接続される。インノ々−夕11の出力1
5はインバータ16.17の入力18゜19に加えられ
、・肴ツファ12の出力20はインパー夕21.22の
入力23.24に加えられる。
In addition, if the logic circuit in internal cell area 2 requests both positive phase and negative phase for the input signal, I10 cell 3
Since the function for external signals of the above-mentioned I.
Two internal cells 1 had to be connected to the output terminals of the 10 cells 3 to the internal cells 1, and one had to be used for the F function and the other for the inverter function. That is, FIG. 2 shows a circuit diagram of such a conventional example, in which the signal line pad 5 is connected to the input 9 of the buffer 8 of the I/L cell 3, and its output 10 is provided in the internal cell area 2. The inverters l l , /l v are connected to respective inputs 13 , 14 of the edge 12 . Output 1 of Inno-Yu 11
5 is applied to the inputs 18, 19 of the inverter 16.17, and the output 20 of the appetizer 12 is applied to the input 23,24 of the inverter 21,22.

インバータ16.17,21.22の出力25〜28は
論理回路群29の入力30と31.32と33゜34と
35.36と37に接続される。パッド5を介してチ、
f内に入力された信号は、I10セル3内のバッファ8
に入って、チvf内の内部セルlO償号レベルに変換さ
れる。 /41778の出力はバッファ12、インバー
タ11に加えられて、その入力信号に対して正相信号と
逆相信号が形成される。これらの信号は、論理回路群2
90入力30〜37にインバータ16.17,21.2
2を介して入力される。前記論理回路群29は正相信号
および逆相信号を必要とするため、バッファ12、イン
/?−夕11の2個の内部セル1を論理回路群290入
力部とバッフ18関に必要としてい友。
Outputs 25-28 of inverters 16, 17, 21, 22 are connected to inputs 30, 31, 32, 33, 34, 35, 36 and 37 of logic circuit group 29. Chi via pad 5,
The signal input into f is sent to buffer 8 in I10 cell 3.
and is converted to the internal cell lO decoding level in the chip vf. The output of /41778 is applied to the buffer 12 and inverter 11, and a normal phase signal and a negative phase signal are formed with respect to the input signal. These signals are sent to logic circuit group 2.
Inverter 16.17, 21.2 for 90 inputs 30-37
2. Since the logic circuit group 29 requires a positive phase signal and a negative phase signal, the buffer 12, IN/? - Two internal cells 1 of 11 are required for the logic circuit group 290 input section and the buffer 18 section.

この丸め箋内部セル1の存在する内部セル領域2の使用
効率を低下させる。
This reduces the usage efficiency of the internal cell area 2 where the rounded note internal cell 1 exists.

また上述したような、1+ ?/ファ12とインバータ
11の2個の内部セルを、論理回路群29の入力部とI
10セルのバッファ8の間に設ける構成は・ダートアレ
イにおいてしばしば用いられるもので、そのような固定
的な構造を、配線自由度の高い内部セル領域で形成する
ことは、内部セルの使用効率を低下させるものである。
Also, as mentioned above, 1+? The two internal cells of /F 12 and inverter 11 are connected to the input part of logic circuit group 29 and I
The structure provided between the 10-cell buffers 8 is often used in dirt arrays, and forming such a fixed structure in the internal cell area with a high degree of freedom in wiring increases the efficiency of internal cell usage. It lowers the

本発明は上記従来の欠点に鑑みてなされ九もので、その
目的は・■カセル領域および内部セル領域の使用効率を
高めることにある。
The present invention has been made in view of the above-mentioned conventional drawbacks, and its objects are: (1) to improve the efficiency of use of the cassette area and the internal cell area;

本発明の目的は、従来内部セルを利用して構成されてい
た固定的な構造の論理機能を、電源配線が太く表るに伴
い専有面積が増えたI10セルに持たせることにある。
An object of the present invention is to provide an I10 cell, which has an increased area as a result of thicker power supply lines, with a logic function of a fixed structure, which has conventionally been constructed using internal cells.

すなわち配線自由度が低く、固定的に近いI10セルに
本来が固定的な構造の論理機◆持たせ、内部セル領域で
はよシ自由度を要する論理機能を構成するようにし九も
のである。
That is, the I10 cell, which has a low degree of freedom in wiring and is almost fixed, is provided with a logic function which originally has a fixed structure, and the internal cell area is configured to have a logic function that requires a greater degree of freedom.

本発明にかかる半導体集積回路装置の特徴とするところ
は、 基板表面の中央部に複数の回路素子を有する内部セルが
複数個プレイ状に配置されて内部セル領域を構成してな
)、 該基板表面の周辺部に複数の回路素子を有するI10セ
ルが複数個配置されてI/l)セル領域を構成してなり
 % 1m I10セル領域にて該内部セル領域と装置
外部との信号レベルの変換を行なうようにしてなシ、 諌基板上に前記回路素子間を接続する配線層が少なくと
も第1.第2の配線層を有し、該内部セルの回路素子が
少なくとも第1、第20配線層によ〉接続されて所定の
論理回路を構成し1 腋!沖セル領域上の第2の配線層の領域を電源配−とし
て使用してなる半導体集積回路装置において、前記論理
回路の1部を前記!沖セル領域内の各!沖セル内に形成
してなることである。
The semiconductor integrated circuit device according to the present invention is characterized in that a plurality of internal cells each having a plurality of circuit elements are arranged in a play shape in the center of the surface of the substrate to form an internal cell area. A plurality of I10 cells each having a plurality of circuit elements are arranged around the surface to form an I/l) cell area. % 1 m The I10 cell area converts the signal level between the internal cell area and the outside of the device. The wiring layer connecting the circuit elements on the substrate is at least the first. It has a second wiring layer, and the circuit elements of the internal cells are connected by at least the first and 20th wiring layers to form a predetermined logic circuit. In a semiconductor integrated circuit device in which a region of the second wiring layer on the Oki cell region is used as a power supply wiring, a part of the logic circuit is connected to the! Each in the Oki Cell area! It is formed within the Oki cell.

以下、本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

第3図は、本発明の一実施例を示し、!沙セル40内に
レベル変換用のΔ、ソファ1を配置する。
FIG. 3 shows an embodiment of the present invention. A sofa 1 for level conversion is placed in the sand cell 40.

入力信号線パッド5はバッファ41の入力42に接続さ
れ、その出力43は同じ!沖セル4o内に配置されたイ
ンバータ44、バッファ45のそれぞれの入力46.4
7に接続される。前記インバータ44、Δソファ45の
それぞれの出力48゜49はI10七ル40よシ出力さ
れる。第4図には、第3図の!沖セル40を1つのシン
Iルであられし、相互出力を有する相反信号出力回路5
0を示す・ 第5図は、第2図に示し九従来の回路構成を本発明を用
いて実施した構成を示すものである。Δ、ド5は相反出
力回路50の入力に接続され、相反出力回路50のイン
バート出力52はインバータ16.17へ、正相出力5
3はインバータ2′1゜22に接続される。そして、イ
ンバータ16,17゜21.22および論理回路群29
がチ、グの内部領域に形成される。
Input signal line pad 5 is connected to input 42 of buffer 41, whose output 43 is the same! Inputs 46.4 of the inverter 44 and buffer 45 arranged in the Oki cell 4o
Connected to 7. The respective outputs 48° and 49 of the inverter 44 and the Δ sofa 45 are output from the I107 circuit 40. Figure 4 shows the figure 3! A reciprocal signal output circuit 5 which includes the Oki cell 40 in one single circuit and has mutual outputs.
FIG. 5 shows a configuration in which the conventional circuit configuration shown in FIG. 2 is implemented using the present invention. Δ, 5 is connected to the input of the reciprocal output circuit 50, and the inverted output 52 of the reciprocal output circuit 50 is connected to the inverter 16.17, and the positive phase output 5 is connected to the input of the reciprocal output circuit 50.
3 is connected to the inverter 2'1°22. Inverters 16, 17° 21.22 and logic circuit group 29
is formed in the internal area of the chip.

第3図乃至#I5図に示した本発明の実施例よシ明らか
な様にI10七ル40内に相反出力機能を有することに
よシ、従来、内部セル領域2で行なりてい九相反機能す
なわち、バッファとインバータ用の内部セルが不要とな
る。第3図に示すように!沖セル40内に配設したイン
バータ44とバッファ45社、電源ラインと多層構造と
し、電源ラインに対応する部分で、!沖セル領域4の空
き領域を利用できる。このため、本発明が適用されるチ
ップは従来と同一面積でかつ、内部セル領域2内を従来
よシ有効利用できる。さらに、内部セル領域2内におけ
る電流分枝も減少できることは明らかである。
As is clear from the embodiments of the present invention shown in FIGS. 3 to #I5, by having a reciprocal output function in the I107 cell 40, nine reciprocal functions that were conventionally performed in the internal cell area 2 can be used. That is, internal cells for buffers and inverters are not required. As shown in Figure 3! The inverter 44 and buffer 45 installed in the Oki cell 40 have a multilayer structure with the power line, and the part corresponding to the power line! Free space in Oki cell area 4 can be used. Therefore, the chip to which the present invention is applied has the same area as the conventional chip, and the inside of the internal cell region 2 can be used more effectively than the conventional chip. Furthermore, it is clear that current branches within the internal cell region 2 can also be reduced.

第6図は本発明の第2の実施例を示すもので、!沖セル
40に加えられる入力信号に対して2個の逆相信号を出
力する例である。すなわち、入力信号線/fツP5はノ
童ソファ54の入力55に接続される。バッファ54の
出力56はインバータ57.88のそれぞれの入力59
.60に加えられる。インバータ57.58のそれぞれ
の出力61.62は■カセル4oより出力される。第7
図は第6図の!沖セ々を示めすシンールで入力信号に対
して2個の逆相信号を出力する回路63を示す、#!8
図は第6図の!カセルを同様に示めすシンゲルで、入力
信号に対し、て2個の正相信号を出力する回路64を示
す。
FIG. 6 shows a second embodiment of the present invention. This is an example in which two opposite phase signals are output with respect to the input signal applied to the Oki cell 40. That is, the input signal line /fts P5 is connected to the input 55 of the children's sofa 54. The output 56 of the buffer 54 is connected to the respective input 59 of the inverter 57.88.
.. Added to 60. The respective outputs 61 and 62 of the inverters 57 and 58 are outputted from the cassette 4o. 7th
The diagram is in Figure 6! #! shows a circuit 63 that outputs two anti-phase signals with respect to the input signal with a signal indicating the offset. 8
The diagram is in Figure 6! A circuit 64 which outputs two normal-phase signals in response to an input signal is shown in a singel similar to the cassette.

上記のように、逆相出力あるいは正相出力を2つ有する
ことは、従来の1つの出方を有する場合に比べて九とえ
ば2倍の負荷を駆動することができるわけで、第1の実
施例と同様の効果を奏する。
As mentioned above, having two negative phase outputs or two positive phase outputs can drive, for example, twice as much load as the conventional case of having one output. The same effects as in the embodiment are achieved.

第9図は、I10セル4o内にレベル変換用バッファ4
1とインバータ44並びにバッファ45を設けた第3図
図示の実施例の詳細な回路図を示す。
FIG. 9 shows a level conversion buffer 4 in the I10 cell 4o.
3 is a detailed circuit diagram of the embodiment shown in FIG. 3, which is provided with an inverter 44 and a buffer 45.

どペル変換部すなわちバッファ4◆は抵抗8.#ダイオ
ードQl 、Q・ eQl、トランジスタQ。
The dopel converter, that is, the buffer 4◆ is connected to the resistor 8. #Diode Ql, Q・eQl, transistor Q.

よシなる。イン・守−夕44は抵抗R,,R,。It's okay. In-shu-yu 44 has a resistance R,,R,.

R4、ダイオードQs−Q・ 、Q・、トランジスタQ
ssQ4よシなる。バッファ45は抵抗Rν。
R4, diode Qs-Q・, Q・, transistor Q
It's ssQ4. The buffer 45 is a resistor Rv.

R1’sR4’、ダイオードQs’ e Q@’ a 
Qe’、トランジスタQll *Q*sよシなる。前記
レベル変換用ノ・寸ソファ44Fの入力はトランジスタ
Q、のペースであり、その出力社ダイオードQm−Q・
が接続されている点70である。インノ青−夕44なら
びにパ、7ア45の入力は共にトランジスタQlOt−
ス67であシ、それぞれの出力はダイオードQs とQ
seQi’とQs’がトランジスタQ4 。
R1'sR4', diode Qs' e Q@' a
Qe' is the transistor Qll *Q*s. The input of the level conversion converter 44F is the pace of the transistor Q, and its output is the diode Qm-Q.
is the point 70 where the two are connected. The inputs of the input circuit 44 and the pins and pins 7a 45 are both transistors QlOt-
67, and the respective outputs are connected to diodes Qs and Q
seQi' and Qs' are transistor Q4.

Qlに接続している点68.73である。なお1ノ4ツ
フア41の電源VCCライン71にはグランドライン7
3に対してたとえば5vが印加され、インバータ44,
45の電源Vccライン72にはたとえば2.3vが印
加されているので、バッファ41は異なる動作電圧のレ
ベル変換を行なう。
The point 68.73 is connected to Ql. In addition, the ground line 7 is connected to the power supply VCC line 71 of the 1/4 power supply 41.
For example, 5V is applied to the inverter 44,
For example, 2.3V is applied to the power supply Vcc line 72 of the buffer 45, so the buffer 41 performs level conversion of different operating voltages.

上述し九ように、本発明によれば電源配1II6下OI
/l)セル領域4の空領域に、セル間自動配線は行なえ
ないからセル内の配線を用いて、1セル内のトラン、ジ
スタ、抵抗等を接続して論理機能を行なわせたことを特
徴とするものである。従来は内部セルを用いて、たとえ
ば、相反2出力信号を得ていたが、本発明によれば内部
セルを用いずにI10セル内にたとえばバッファやイン
バータを構成しているので、内部セルの利用効率が向上
し、内部セルにおいて一層複雑な論理構成を可能とする
As described above, according to the present invention, the power distribution 1II6 lower OI
/l) Because automatic wiring between cells cannot be performed in the empty area of cell area 4, the wiring within the cell is used to connect transformers, transistors, resistors, etc. within one cell to perform logic functions. That is. Conventionally, internal cells were used to obtain, for example, two contradictory output signals, but according to the present invention, for example, buffers and inverters are configured within the I10 cell without using internal cells, so the use of internal cells is simplified. Efficiency is improved and allows for more complex logic configurations in internal cells.

【図面の簡単な説明】[Brief explanation of drawings]

第11囚は半導体チ、fの構成図、同図俤)はその一部
拡大図、第2図は従来の半導体集積回路の回路構成図、
第3図は本発明の第1の実施例を示す回路構成図、第4
図は第3図の回路を1つのシンゲルで示した図、第5図
は本発明を実施した回路構成図、第6図は本発明のR2
の実施例を示す回路構成図、第7図は第6図の回路を1
つのシンゲルで示めした図、第8図は第6図の回路の変
形例を1つのシンゲルで示めした図、第9図は第3図に
示した実施例の回路図である・ l・・・内部セル、2・・・内部セル領域、3.40・
・・I10セル、4・・・■浄セル領域、5.−・・Δ
、ド、41.45#54・・・/ぐソファ、44,57
,58・・・インノ量−タ 青2図 一*′3図 0 青5図 ちフ
The 11th prisoner is a block diagram of the semiconductor chip and f, Figure 2) is a partially enlarged diagram, and Figure 2 is a circuit block diagram of a conventional semiconductor integrated circuit.
FIG. 3 is a circuit configuration diagram showing the first embodiment of the present invention;
The figure shows the circuit of Figure 3 in one singel, Figure 5 is a circuit configuration diagram implementing the present invention, and Figure 6 is the R2 of the present invention.
FIG. 7 is a circuit configuration diagram showing an example of the circuit shown in FIG. 6.
8 is a diagram showing a modification of the circuit in FIG. 6 using one singel, and FIG. 9 is a circuit diagram of the embodiment shown in FIG. 3.・Internal cell, 2 ・Internal cell area, 3.40・
... I10 cell, 4...■ Clean cell area, 5. −・・Δ
, Do, 41.45#54.../gusofa, 44,57
, 58... Inno quantity - ta blue 2 figure 1*' 3 figure 0 blue 5 figure chifu

Claims (1)

【特許請求の範囲】 1基板表面の中央部に複数の回路素子を有する内部セル
が複数個アレイ状に配置されて内部セル領域を構成して
な〕、 該基板s面の周辺部に複数の回路素子を有するI10セ
ルが複数個配置されてx7oセル領域を構成して& ’
p s t;Ii I10セル領域にて該内部セル領域
と装置外部との信号レベルの変換を行なうようにしてな
)、 該基板上に前記回路素子間を接続する配線層が少なくと
も第11第2の配゛線層を有し、該内部セルの回路素子
が少なくとも第1、第2の配一層に19接続されて所定
の論理回路を構成し、 鋏!沖セル領域上の第2の配線層の領域を電源配線とし
て使用してなる半導体集積回路装置において、 前記内部セルの論理回路の1部を前記!沖セル領域内の
各I10セル内に形成してなることを特徴とする半導体
集積回路。 2、前記I/′0セル領域は複数のI/lJセルよ)な
り各I10セルはチ、f外よシの入力信号に対して複数
の出力を有する特許請求の範囲第1項記載の半導体集積
回路、。 3、前記1/bセルのチッ!外よ〕の入力信号に対する
複数の出力はそれぞれ正相および/または逆相である特
許請求の範囲第2項記載の半導体集積回路。 46前記I10セル領域のl/l)セルはセル内配線に
よって前記論理回路の一部を形成してなる特許請求の範
囲第1項記載の半導体集積回路。
[Claims] A plurality of internal cells each having a plurality of circuit elements are arranged in an array in the center of the surface of one substrate to form an internal cell area. A plurality of I10 cells having circuit elements are arranged to form an x7o cell area &'
p s t; Ii I10 cell region converts the signal level between the internal cell region and the outside of the device), on the substrate there are at least 11th and 2nd wiring layers connecting the circuit elements. wiring layer, the circuit elements of the internal cells are connected to at least 19 of the first and second wiring layers to form a predetermined logic circuit, and scissors! In a semiconductor integrated circuit device in which a region of a second wiring layer on an Oki cell region is used as a power supply wiring, a part of the logic circuit of the internal cell is connected to the! A semiconductor integrated circuit formed in each I10 cell in an Oki cell region. 2. The semiconductor according to claim 1, wherein the I/'0 cell area is a plurality of I/lJ cells, and each I10 cell has a plurality of outputs in response to input signals outside of integrated circuit,. 3. Check the 1/b cell above! 3. The semiconductor integrated circuit according to claim 2, wherein the plurality of outputs in response to an input signal from the outside are each in a positive phase and/or a negative phase. 46. The semiconductor integrated circuit according to claim 1, wherein the l/l) cell in the I10 cell region forms a part of the logic circuit by intra-cell wiring.
JP14294081A 1981-09-10 1981-09-10 Semiconductor integrated circuit Granted JPS5844741A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14294081A JPS5844741A (en) 1981-09-10 1981-09-10 Semiconductor integrated circuit
DE8282304746T DE3276284D1 (en) 1981-09-10 1982-09-09 Semiconductor integrated circuit comprising a semiconductor substrate and interconnecting layers
EP82304746A EP0074805B2 (en) 1981-09-10 1982-09-09 Semiconductor integrated circuit comprising a semiconductor substrate and interconnecting layers
IE2221/82A IE54169B1 (en) 1981-09-10 1982-09-10 Semiconductor integrated circuit comprising a semiconductor substrate and interconnecting layers
US06/769,800 US4868630A (en) 1981-09-10 1985-08-27 Gate array semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14294081A JPS5844741A (en) 1981-09-10 1981-09-10 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS5844741A true JPS5844741A (en) 1983-03-15
JPH0123943B2 JPH0123943B2 (en) 1989-05-09

Family

ID=15327177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14294081A Granted JPS5844741A (en) 1981-09-10 1981-09-10 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS5844741A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59220948A (en) * 1983-05-31 1984-12-12 Toshiba Corp Semiconductor device
JPS6022356A (en) * 1983-07-19 1985-02-04 Nec Corp Large scale integrated circuit
JPS6022336A (en) * 1983-07-19 1985-02-04 Toshiba Corp Master slice type semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493376A (en) * 1977-12-30 1979-07-24 Fujitsu Ltd Semiconductor integrated circuit device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493376A (en) * 1977-12-30 1979-07-24 Fujitsu Ltd Semiconductor integrated circuit device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59220948A (en) * 1983-05-31 1984-12-12 Toshiba Corp Semiconductor device
JPS6022356A (en) * 1983-07-19 1985-02-04 Nec Corp Large scale integrated circuit
JPS6022336A (en) * 1983-07-19 1985-02-04 Toshiba Corp Master slice type semiconductor device

Also Published As

Publication number Publication date
JPH0123943B2 (en) 1989-05-09

Similar Documents

Publication Publication Date Title
JPH01289138A (en) Master slice type semiconductor integrated circuit
JPH02219254A (en) Semiconductor integrated circuit device
JPS5844741A (en) Semiconductor integrated circuit
JPH03272166A (en) Semiconductor integrated circuit
JPS60169150A (en) Integrated circuit
JPH023279A (en) Standard cell of complementary mis master slice lsi
JPS59220948A (en) Semiconductor device
JPH04336812A (en) Digital circuit device
JPH0221145B2 (en)
JPH04127556A (en) Semiconductor integrated circuit
JPS6012751A (en) Semiconductor integrated circuit
JPH06101521B2 (en) Semiconductor integrated circuit device
JPS643055B2 (en)
JPH01152642A (en) Semiconductor integrated circuit
JPS61187249A (en) Semiconductor integrated circuit device
JPH0817205B2 (en) Semiconductor integrated circuit
JPS6159865A (en) Large-scale integrated circuit device
JPH0416945B2 (en)
JPH04742A (en) Semiconductor integrated circuit
JPH0493047A (en) Semiconductor integrated circuit device
JPS6127654A (en) Master slice type integrated circuit device
JPS6132456A (en) Manufacture of standard cell ic
JPH05167045A (en) Semiconductor integrated circuit device
JPS62122234A (en) Gate array
JPH0438869A (en) Master slice semiconductor integrated circuit