JPH023279A - Standard cell of complementary mis master slice lsi - Google Patents

Standard cell of complementary mis master slice lsi

Info

Publication number
JPH023279A
JPH023279A JP15181088A JP15181088A JPH023279A JP H023279 A JPH023279 A JP H023279A JP 15181088 A JP15181088 A JP 15181088A JP 15181088 A JP15181088 A JP 15181088A JP H023279 A JPH023279 A JP H023279A
Authority
JP
Japan
Prior art keywords
type
basic cell
type diffusion
mis transistor
diffusion region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15181088A
Other languages
Japanese (ja)
Other versions
JPH0828485B2 (en
Inventor
Hideki Fukuda
秀樹 福田
Masami Urano
正美 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63151810A priority Critical patent/JPH0828485B2/en
Publication of JPH023279A publication Critical patent/JPH023279A/en
Publication of JPH0828485B2 publication Critical patent/JPH0828485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To enable the stray capacitance of wiring to be made small and realize high speed operation of a gate by arranging the P-type diffusion area and the N-type diffusion area of a P-type MIS transistor in the transverse direction, and arranging the N-type diffusion area and the P-type diffusion area of an N-type MIS transistor in the lateral direction at the positions pointwise symmetrical with respect to the central position of a fundamental cell. CONSTITUTION:The array of an N-type diffusion area (i) which forms an electrode to apply voltage to an N-well and a P-type diffusion area (f) which forms a P-type MIS transistor, and at the positions pointwise symmetrical with respect to the central position of a fundamental cell, the array of a P-type diffusion area (j) which forms an electrode to apply voltage to a P-substrate and an N-type diffusion area (g) which forms an N-type MIS transistor are arranged, respectively, as shown in the figure. If the two-input NAND gate is constituted, the diffusion areas of a P-type MIS transistor and an N-type MIS transistor connected to an output terminal 3 are on the same wiring pitch, and the metallic wirings become straight, whereby the wiring length can be shortened, and the stray capacitance can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高機能、高集積性を有し、かつ設計。[Detailed description of the invention] [Industrial application field] The present invention has high functionality, high integration, and design.

製造のTAT (ターンアラウンドタイム)が短い相補
型MTSマスタスライスLSIに関する。
The present invention relates to a complementary MTS master slice LSI that has a short manufacturing TAT (turnaround time).

〔従来の技術〕[Conventional technology]

従来の相補型MISトランジスタを用いて構成したチャ
ネルレス型マスタスライスのチップの基本セル(Ba5
ic Ce1l )を例に説明する。第1図は本発明な
らびに従来の基本セルを適用するチャネルレス型マスタ
スライスLSIの概略図である。
The basic cell (Ba5) of a channelless master slice chip constructed using conventional complementary MIS transistors
ic Ce1l) will be explained as an example. FIG. 1 is a schematic diagram of a channelless master slice LSI to which the present invention and a conventional basic cell are applied.

図において、aは基本セル、bは周辺回路、Cは基本セ
ル配列領域、dは周辺回路配列領域である。
In the figure, a is a basic cell, b is a peripheral circuit, C is a basic cell array area, and d is a peripheral circuit array area.

チップ内部の基本セル配列領域Cは基本セルaをマトリ
ックス状にすきまなく敷き詰める領域で、周辺回路配列
領域dはパッド、110回路を含む周辺回路すを収容す
る領域である。
The basic cell array area C inside the chip is an area where the basic cells a are laid out in a matrix without gaps, and the peripheral circuit array area d is an area that accommodates pads and peripheral circuits including 110 circuits.

従来、基本セル配列領域Cに配置する基本セルaの構成
例として、第2図〜第5図の従来の第1〜第4基本セル
の図のものがある。図において、PはF)型MISトラ
ンジスタ、NはN型MISトランジスタ、Cはゲート電
極、iはN型拡散領域、「はP型拡散領域、jはP型拡
散領域、gはN型拡散領域、hは基本セルの外枠である
。N型拡散領域iはNウェルに電圧を印加する電極のた
めのもので、P型拡散領域fはP型MISトランジスタ
のソース電極と、ドレイン電極とを形成する。
Conventionally, examples of the configuration of the basic cell a arranged in the basic cell array area C include those shown in the diagrams of the conventional first to fourth basic cells shown in FIGS. 2 to 5. In the figure, P is an F type MIS transistor, N is an N type MIS transistor, C is a gate electrode, i is an N type diffusion region, " is a P type diffusion region, j is a P type diffusion region, and g is an N type diffusion region. , h is the outer frame of the basic cell.The N-type diffusion region i is for the electrode that applies voltage to the N-well, and the P-type diffusion region f is for the source electrode and drain electrode of the P-type MIS transistor. Form.

また、P型拡散領域jはP基板に電圧を印加する電極の
ためのもので、N型拡散領域gはN型MISトランジス
タのソース、ドレイン電極を形成する。図に示す第1基
本セル〜第4基本セルは2人カゲート、4人カゲートの
形式が使用されている。
Further, the P type diffusion region j is for an electrode for applying a voltage to the P substrate, and the N type diffusion region g forms the source and drain electrodes of the N type MIS transistor. In the first to fourth basic cells shown in the figure, two-person and four-person coverage formats are used.

第2図、第3図の構成例では基本セルを構成するP 型
M I S トランジスタのゲート電極と、N型MlS
トランジスタのゲート電極同士を予め分離しておき、ユ
ーザの要求する時にその機能を実現するため金属配線に
より両者を接続する形式である。
In the configuration examples shown in FIGS. 2 and 3, the gate electrode of the P type M I S transistor constituting the basic cell and the gate electrode of the N type M I S transistor
In this method, the gate electrodes of the transistors are separated from each other in advance, and the two are connected by metal wiring in order to realize the function when requested by the user.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、機能マクロセルのように複雑な機能を速
度、消費電力の性能と集積性を両立させて搭載しようと
すると、フルカスタムLSIと同様にファンアウト数な
どの負荷条件により駆動能力が異なったゲートを選択的
に設定できる設計の融通性が望まれる。第2図、第5図
の場合は基本セルaを構成するP型MISトランジスタ
、あるいはN型MTSトランジスタは一種類のチャネル
幅(W)で構成されているため、駆動能力を増やそうと
すると構成ゲートのチャネル幅(W)のきめ細かい調整
が困難である。そのため、第6図の第1基本セルを用い
たパワーゲートの構成図に示すように、コンタクトホー
ルmと第1層の金属配線にとスルーホールtを利用して
、隣接する基本セルのトランジスタを並列接続すること
により2倍の駆動能力のNANDゲート(パワーゲート
)を実現していた。第7図は第6図のパワーゲートの等
価回路図である。このような手法では占有面積が2倍に
増大するため、その適用領域には制限があった。
However, when attempting to incorporate complex functions such as functional macrocells while achieving both speed, power consumption performance, and integration, gates with different drive capacities are required depending on load conditions such as fan-out number, just like in a fully custom LSI. Flexibility in design that can be selectively configured is desired. In the case of Figures 2 and 5, the P-type MIS transistor or N-type MTS transistor that constitutes the basic cell a is configured with one type of channel width (W), so if you want to increase the driving capacity, the configuration gate It is difficult to finely adjust the channel width (W). Therefore, as shown in the configuration diagram of a power gate using the first basic cell in FIG. By connecting them in parallel, a NAND gate (power gate) with twice the driving capacity was realized. FIG. 7 is an equivalent circuit diagram of the power gate of FIG. 6. Since such a method doubles the occupied area, its applicable area is limited.

この欠点を補うため、従来の実施例として、第8図の従
来の第5基本セルの図、第9図の従来の第6基本セルの
図に示すように、チャネル幅(W)が小さいP型fM 
I S トランジスタUとチャネル幅(W)が小さいN
型MISトランジスタVとを使い、従来の大きいチャネ
ル幅(W)と小さいチャネル幅(w)とを組み合わせる
構成がある。しかし、この構成では使用できる大きいチ
ャネル幅(W)のトランジスタと小さいチャネル幅(V
V)のトランジスタの構成数の比率が固定であり、構成
する機能マクロによっては未使用のトランジスタが増え
、全体の集積度を低下させる要因となった。また、予め
用意されたトランジスタのチャネル幅が固定されている
欠点があった。
In order to compensate for this drawback, as a conventional example, as shown in the diagram of the conventional fifth basic cell in FIG. 8 and the diagram of the conventional sixth basic cell in FIG. type fM
I S Transistor U and N with small channel width (W)
There is a configuration in which a conventional large channel width (W) and a small channel width (w) are combined using a type MIS transistor V. However, in this configuration, transistors with large channel widths (W) and small channel widths (V
The ratio of the number of transistors configured in V) is fixed, and depending on the functional macro to be configured, the number of unused transistors increases, which causes a reduction in the overall degree of integration. Another drawback is that the channel width of the transistor prepared in advance is fixed.

〔課題を解決するための手段〕[Means to solve the problem]

縦方向をチャネル幅方向、横方向をチャネル長方向とし
、半分にP型MISトランジスタ、残りの半分にN型M
ISトランジスタを配置した相補型MISトランジスタ
で構成した基本セルよりなるチャネルレス型マスタスラ
イスLSIにおい、前記P型M■Sトランジスタのソー
ス電極とドレイン電極とを形成するP型拡散領域と、N
ウェルに電圧を印加する電極を形成するN型拡散領域を
横方向に配列し、ゲート電極をP型拡散領域の上面に設
けて基本セルの半分を構成し、前記基本セルの中心位置
を中心とした点対称の位置に、前記N型MISトランジ
スタのソース電極とドレイン電極とを形成するN型拡散
領域と、P基板に電圧を印加する電極を形成するP型拡
散領域を横方向に配列し、ゲート電極をN型拡散領域の
上面に設けて基本セルの残りの半分を構成した。
The vertical direction is the channel width direction, and the horizontal direction is the channel length direction, with P-type MIS transistors in half and N-type M in the other half.
In a channelless master slice LSI consisting of a basic cell composed of complementary MIS transistors in which IS transistors are arranged, a P-type diffusion region forming the source electrode and drain electrode of the P-type M■S transistor;
N-type diffusion regions forming electrodes for applying a voltage to the well are arranged horizontally, gate electrodes are provided on the upper surface of the P-type diffusion region to form half of a basic cell, and the center is centered at the center position of the basic cell. N-type diffusion regions forming the source electrode and drain electrode of the N-type MIS transistor and P-type diffusion regions forming an electrode for applying voltage to the P substrate are arranged laterally at positions symmetrical to the point, A gate electrode was provided on top of the N-type diffusion region to form the other half of the basic cell.

〔実施例〕〔Example〕

第10図は本発明の第7基本セルの図、第11図は本発
明の第8基本セルの図である。本実施例はNウェルに電
圧を印加する電極を形成するためのN型拡散碩域iとP
型MISトランジスタを形成するためのP型拡散領域f
の配列と、前記基本セルの中心位置を中心とした点対称
の位置にPi盤に電圧を印加する電極を形成するための
P型拡散領域jとN型MISトランジスタを形成するた
めのN型拡散領域gの配列とを図に示すように配置した
FIG. 10 is a diagram of the seventh basic cell of the present invention, and FIG. 11 is a diagram of the eighth basic cell of the present invention. In this example, an N-type diffusion region i and a P
P type diffusion region f for forming type MIS transistor
and a P-type diffusion region j for forming an electrode for applying a voltage to the Pi board and an N-type diffusion region for forming an N-type MIS transistor at points symmetrical positions with respect to the center position of the basic cell. The array of region g was arranged as shown in the figure.

第12図は第7基本セルを用いて構成した2人力NAN
Dゲート、第13図は第8基本セルを用いて構成した3
人力NANDゲートの構成図で、第14図は第12図の
等価回路図、第15図は第13図の等価回路図である。
Figure 12 shows a two-person NAN configured using the 7th basic cell.
D gate, Figure 13 shows 3 constructed using the 8th basic cell.
14 is an equivalent circuit diagram of FIG. 12, and FIG. 15 is an equivalent circuit diagram of FIG. 13.

それぞれの出力端子3.7に接続されるP型MISトラ
ンジスタとN型MISトランジスタの拡散領域が同一の
配線ピッチ上(図上に示す矢印)にあり、金属配線が真
直ぐに配線され、配線長を短くして、浮遊容量を低減で
きる傾向であることがわかる。
The diffusion regions of the P-type MIS transistor and the N-type MIS transistor connected to each output terminal 3.7 are on the same wiring pitch (arrows shown in the figure), and the metal wiring is routed straight and the wiring length is It can be seen that there is a tendency to reduce stray capacitance by shortening the length.

第16図は従来の第3基本セルを用いた構成図、第17
図は従来の第4基本セルを用いた構成図でそれぞれ、2
人力NANDゲート、3人力NANDゲートを示す。そ
れぞれの出力端子3.7に接続されるP型MISトラン
ジスタとN型MISトランジスタの拡散領域が同一の配
線ピッチ(図上に示す矢印)上にな(、金属配線が同一
直線上になく真直ぐに配線されないので、配線長を長く
なり、浮遊容量も増大する。また第17図の5で示すス
ルーホールは配線が密なため、0.5ピツチしか置けず
1ピツチの整数倍のピッチしか許さないとの規則に従っ
て配置することが困難である。これはゲート電極を形成
するポリシリコンを、図中のハツチで示したように拡張
して設けても、配線の融通性は必ずしも改善されず、第
10図、第11図の本発明の実施例に比べて配線の融通
性は劣る。
Figure 16 is a configuration diagram using the conventional third basic cell;
The figure shows a configuration diagram using a conventional fourth basic cell, with two
A human powered NAND gate and a three human powered NAND gate are shown. The diffusion regions of the P-type MIS transistor and the N-type MIS transistor connected to each output terminal 3.7 are on the same wiring pitch (arrows shown in the figure) (the metal wiring is not on the same straight line but straight). Since the wiring is not wired, the wiring length becomes long and the stray capacitance also increases.Also, the through hole shown by 5 in Fig. 17 has dense wiring, so it can only be placed at a pitch of 0.5, which is an integer multiple of 1 pitch. This is because even if the polysilicon that forms the gate electrode is expanded as shown by the hatch in the figure, the flexibility of the wiring will not necessarily be improved. The flexibility of wiring is inferior to the embodiments of the present invention shown in FIGS. 10 and 11.

第18図は本発明の基本セルの優位性を示した構成図で
ある。−例として図に示す金属配線50.51.52.
53.54を行うことにより、ゲート電極のポリシリコ
ンの一部をそれぞれ必要な部分を接続して必要とするチ
ャネル幅を得ることができ、かつ、他の金属配線55.
56.57.58と交叉しながら、横方向に配線できる
FIG. 18 is a configuration diagram showing the superiority of the basic cell of the present invention. - Metal wiring 50.51.52. shown as an example in the figure.
By performing steps 53 and 54, it is possible to connect the necessary portions of the polysilicon of the gate electrode to obtain the required channel width, and to connect other metal interconnections 55.
56, 57, and 58, and can be routed horizontally.

第19図は本発明の第9基本セルの図である。FIG. 19 is a diagram of the ninth basic cell of the present invention.

これは請求項1.2.3を同時に通用した第9基本セル
の実施例で、ソース電極とドレイン電極とを形成するP
型拡散領域とN型拡散領域とをチャネル幅方向に対して
2つに分割して、チャネル幅の小さいMISトランジス
タを2つ作成している。
This is an embodiment of the ninth basic cell that applies claim 1.2.3 at the same time.
The type diffusion region and the N type diffusion region are divided into two in the channel width direction to create two MIS transistors with small channel widths.

また、分割したMISトランジスを並列して使用するた
めゲート電極の接続用のポリシリコン配線を6備した。
Additionally, in order to use the divided MIS transistors in parallel, six polysilicon wirings for connecting gate electrodes were provided.

ポリシリコン配線2は隣接の基本セルの為に空いている
The polysilicon wiring 2 is vacant for an adjacent basic cell.

第20図は本発明の第9基本セルを用いた2人力NAN
Dゲートの構成図である。本構成例で2分割されたトラ
ンジスタ同士を金属配線で並列接続することによって、
小さなチャネル幅を合わせ、等価的にチャネル幅(W)
を拡大させている。ポリシリコン配線yは入力電極1.
2に接続された配線が電源配線VOO1GNDと交叉す
るためにも有効に使用されている。
Figure 20 shows a two-person NAN using the ninth basic cell of the present invention.
It is a block diagram of D gate. By connecting the two divided transistors in parallel with metal wiring in this configuration example,
Combine the small channel widths and equivalently channel width (W)
is expanding. Polysilicon wiring y is input electrode 1.
It is also effectively used because the wiring connected to VOO1GND intersects with the power supply wiring VOO1GND.

第21図は本発明の第9基本セルを用いた2人力NOR
ゲートの構成図である。
Figure 21 shows a two-person NOR using the ninth basic cell of the present invention.
It is a block diagram of a gate.

第22図は本発明の第9基本セルを用いた2人力NAN
Dゲートの他の構成図であるが、分割された小さいチャ
ネル幅(W)のトランジスタを用いて構成しているので
、占有面積、駆動能力とも小さい。
Figure 22 shows a two-person NAN using the ninth basic cell of the present invention.
This is another configuration diagram of the D gate, but since it is constructed using divided transistors with a small channel width (W), both the occupied area and the driving capacity are small.

第23図は本発明の第9基本セルを用いた2人力NOR
ゲートの他の構成図である。
Figure 23 shows a two-person NOR using the ninth basic cell of the present invention.
FIG. 3 is another configuration diagram of the gate.

次に本発明の基本セルaを用いて構成した機能マクロを
構成した例を示す。第24図はセレクタ回路の回路図、
第25図は本発明の第9基本セルを用いた第24図のセ
レクタ回路の構成図である。
Next, an example of a functional macro constructed using the basic cell a of the present invention will be shown. Figure 24 is a circuit diagram of the selector circuit,
FIG. 25 is a block diagram of the selector circuit of FIG. 24 using the ninth basic cell of the present invention.

本構成例はいずれの構成トランジスタも分割されたトラ
ンジスタを用いており、未使用のトランジスタ領域を、
セレクタ制御信号の配線領域として使用し占有面積の効
率化を図っている。
In this configuration example, all component transistors use divided transistors, and the unused transistor area is
It is used as a wiring area for selector control signals to increase the efficiency of occupied area.

第26図はデコーダ回路の回路図、第27図は本発明の
第9基本セルを用いた第26図デコーダ回路の構成図で
ある。インバータIVI、インバータlV2はファンア
ウト1と負荷が軽いため、小さなチャネル幅(W)で構
成し、アンドノアゲートADは負荷が大きい場合を想定
して大きいチャネル幅(W)で構成している。この構成
例のようにチャネル幅が異なるゲートを必要に応じて比
較的自由に構成することができる。
FIG. 26 is a circuit diagram of a decoder circuit, and FIG. 27 is a block diagram of a decoder circuit using the ninth basic cell of the present invention. Inverter IVI and inverter IV2 have a fanout of 1 and have a light load, so they are configured with a small channel width (W), and the ANDOR gate AD is configured with a large channel width (W) assuming a case where the load is large. As in this configuration example, gates having different channel widths can be configured relatively freely as necessary.

以上の説明は半導体の相補性から、基本セルのN型をP
型に、P型をN型に代えても成立する。
The above explanation is based on the complementarity of semiconductors, and the N type of the basic cell is changed to P.
This also holds true even if the P type is replaced with the N type.

〔発明の効果〕〔Effect of the invention〕

請求項1の基本セルでCMO3の基本単位であるNAN
Dゲート、NORゲートを構成する場合に、P型MIS
とN型MISのソース電極、ドレイン電極の間を接続す
る金属配線を短く、かつ真すぐに配線することができる
ので、配線の浮遊容星が小さくでき、第12図、第13
図に示すように構成したゲートの動作速度の高速化をは
かることができる。また、P型MISとN型MISのソ
ース電極、ドレイン電極の間を接続する金属配線の領域
を確保しながら、隣接するゲート電極同士を金属配線で
接続することができる。
NAN which is the basic cell of claim 1 and is the basic unit of CMO3
When configuring D gates and NOR gates, P-type MIS
Since the metal wiring connecting between the source electrode and the drain electrode of the N-type MIS can be short and straight, the stray capacitance of the wiring can be reduced, and as shown in Figures 12 and 13.
The operating speed of the gate configured as shown in the figure can be increased. Furthermore, adjacent gate electrodes can be connected to each other by metal wiring while ensuring a region for metal wiring to connect between the source electrode and drain electrode of the P-type MIS and the N-type MIS.

請求項2の相補型MISマスタスライスLSIの分割さ
れたMISトランジスタのソース電極、ドレイン電極あ
るいはゲート電極を金属配線で接続したり、あるいは接
続しないことによって、構成ゲートのチャネル幅(W)
を調整することができるため、機能マクロを構成する場
合は、構成ゲートの駆動能力を最適化して、機能マクロ
セルの高速化と占有面積の低減を図ることができる。
By connecting the source electrodes, drain electrodes, or gate electrodes of the divided MIS transistors of the complementary MIS master slice LSI of claim 2 with metal wiring or not connecting them, the channel width (W) of the constituent gates can be changed.
Therefore, when configuring a functional macro, it is possible to optimize the driving ability of the constituent gates, thereby increasing the speed of the functional macro cell and reducing the occupied area.

請求項4は請求項2を実現する場合に、分割されたゲー
ト電極間を接続するのに予めポリシリコン配線を配置し
ておけば、第25図、第26図に示すように、金属配線
と交叉しながら、ゲート電極同士を自由に配線すること
ができる。
Claim 4 provides that when claim 2 is realized, if polysilicon wiring is placed in advance to connect between the divided gate electrodes, metal wiring and metal wiring can be formed as shown in FIGS. Gate electrodes can be wired freely while crossing each other.

このように、本発明の基本セルを用いればチャネルレス
型マスタスライスLSIを用いれば、必要に応じてチャ
ネル幅(W)が異なるゲートを組み合わせて論理回路が
効率よ(構成できるので、機能マクロの設計においてフ
ァンアウト数など負荷条件に合わせた融通性ある回路設
計が可能となり、高速性、高集積性の改善が期待できる
In this way, if the basic cell of the present invention is used and a channelless master slice LSI is used, logic circuits can be configured efficiently by combining gates with different channel widths (W) as necessary, so that functional macros can be configured more efficiently. This makes it possible to design flexible circuits according to load conditions such as fan-out number, and is expected to improve speed and integration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明ならびに従来の基本セルを適用するチャ
ネルレス型マスタスライスLSIの概略図、第2図は従
来の第1基本セルの図、第3図は従来の第2基本セルの
図、第4図は従来の第3基本セルの図、第5図は従来の
第4基本セルの図、第6図は第1基本セルを用いたパワ
ーゲートの構成図、第7図は第6図のパワーゲートの等
価回路図、第8図は従来の第5基本セルの図、第9図は
従来の第6基本セルの図、第10図は本発明の第7基本
セルの図、第11図は本発明の第8基本セルの図、第X
2図は本発明の第7基本セルを用いて構成した2人力N
ORゲートの構成図、第13図は本発明の第8基本セル
を用いて構成した3人力NORゲートの構成図、第14
図は第12図の等価回路図、第15図は第13図の等価
回路図、第46図は従来の第3基本セルを用いた構成図
、第17図は従来の第4基本セルを用いた構成図、第1
8図は本発明の第7基本セルの優位性を示した構成図、
第19図は本発明の第9基本セルの図、第20図は本発
明の第9基本セルを用いた2人力NANDゲートの構成
図、第21図は本発明の第9基本セルを用いた2人力N
ORゲートの構成図、第22図は第9基本セルを用いた
2人力NANDゲートの構成図、第23図は2人力NO
Rゲートの構成図、第24図はセレクタ回路の回路図、
第25図は本発明の第9基本セルを用いた第24図のセ
レクタ回路の構成図、第26図はデコーダ回路の回路図
、第27図は本発明の第9基本セルを用いた第26図デ
コーダ回路の構成図である。 aは基本セル、bは周辺回路、Cは基本セル配列領域、
dは周辺回路配列領域、PはP型MISトランジスタ、
NはN型MISトランジスタ、eはゲート電極、iはN
型拡散領域、fはP型拡散領域、jはP型拡散領域、g
はN型拡散領域、11は基本セルの外枠、mはコンタク
トホール、kは第1層の金属配線、tはスルーホール、
Uはチャネル幅が小さいP型MISトランジスタ、■は
チャネル幅が小さいN型MISトランジスタ、(W)は
小さなチャネル幅、(W)は大きなチャネル幅、yは分
離されたゲート同士の接続のためのポリシリコン配線、
2は隣接の分離されたゲート同士の接続のためのポリシ
リコン配線。 特許出願人 日本電信電話株式会社
FIG. 1 is a schematic diagram of a channelless master slice LSI to which the present invention and a conventional basic cell are applied; FIG. 2 is a diagram of a conventional first basic cell; FIG. 3 is a diagram of a conventional second basic cell; Fig. 4 is a diagram of a conventional third basic cell, Fig. 5 is a diagram of a conventional fourth basic cell, Fig. 6 is a configuration diagram of a power gate using the first basic cell, and Fig. 7 is a diagram of a conventional fourth basic cell. 8 is a diagram of the conventional fifth basic cell, FIG. 9 is a diagram of the conventional sixth basic cell, FIG. 10 is a diagram of the seventh basic cell of the present invention, and FIG. The figure is a diagram of the eighth basic cell of the present invention, No.
Figure 2 shows a two-man power N constructed using the seventh basic cell of the present invention.
FIG. 13 is a configuration diagram of an OR gate; FIG. 13 is a configuration diagram of a three-man power NOR gate constructed using the eighth basic cell of the present invention;
The figure is an equivalent circuit diagram of Figure 12, Figure 15 is an equivalent circuit diagram of Figure 13, Figure 46 is a configuration diagram using the conventional third basic cell, and Figure 17 is a configuration diagram using the conventional fourth basic cell. Configuration diagram, 1st
Figure 8 is a configuration diagram showing the superiority of the seventh basic cell of the present invention.
Figure 19 is a diagram of the ninth basic cell of the present invention, Figure 20 is a configuration diagram of a two-man NAND gate using the ninth basic cell of the present invention, and Figure 21 is a diagram of the ninth basic cell of the present invention. 2 person power N
The configuration diagram of the OR gate, Figure 22 is the configuration diagram of the two-man powered NAND gate using the 9th basic cell, and Figure 23 shows the two-man powered NO gate.
The configuration diagram of the R gate, Figure 24 is the circuit diagram of the selector circuit,
25 is a block diagram of the selector circuit of FIG. 24 using the ninth basic cell of the present invention, FIG. 26 is a circuit diagram of the decoder circuit, and FIG. 27 is a block diagram of the selector circuit of FIG. 24 using the ninth basic cell of the present invention. FIG. 2 is a configuration diagram of a decoder circuit. a is a basic cell, b is a peripheral circuit, C is a basic cell array area,
d is a peripheral circuit array area, P is a P-type MIS transistor,
N is an N-type MIS transistor, e is a gate electrode, and i is N
type diffusion region, f is P type diffusion region, j is P type diffusion region, g
is the N-type diffusion region, 11 is the outer frame of the basic cell, m is the contact hole, k is the first layer metal wiring, t is the through hole,
U is a P-type MIS transistor with a small channel width, ■ is an N-type MIS transistor with a small channel width, (W) is a small channel width, (W) is a large channel width, and y is for connection between separated gates. polysilicon wiring,
2 is a polysilicon wiring for connecting adjacent separated gates. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (4)

【特許請求の範囲】[Claims] (1)縦方向をチャネル幅方向、横方向をチャネル長方
向とし、半分にP型MISトランジスタ、残りの半分に
N型MISトランジスタを配置した相補型MISトラン
ジスタで構成した基本セルよりなるチャネルレス型マス
タスライスLSIにおいて、 前記P型MISトランジスタのソース電極とドレイン電
極とを形成するP型拡散領域と、Nウェルに電圧を印加
する電極を形成するN型拡散領域を横方向に配列し、ゲ
ート電極をP型拡散領域の上面に設けて基本セルの半分
を構成し、 前記基本セルの中心位置を中心とした点対称の位置に、 前記N型MISトランジスタのソース電極とドレイン電
極とを形成するN型拡散領域と、P基板に電圧を印加す
る電極を形成するP型拡散領域を横方向に配列し、ゲー
ト電極をN型拡散領域の上面に設けて基本セルの残りの
半分を構成した。 ことを特徴とする相補型MISマスタスライスLSIの
基本セル。
(1) Channelless type consisting of a basic cell consisting of complementary MIS transistors, with the vertical direction being the channel width direction and the horizontal direction being the channel length direction, with a P-type MIS transistor in one half and an N-type MIS transistor in the other half. In a master slice LSI, a P-type diffusion region forming the source electrode and drain electrode of the P-type MIS transistor and an N-type diffusion region forming an electrode for applying a voltage to the N-well are arranged laterally, and the gate electrode are provided on the upper surface of the P-type diffusion region to constitute half of the basic cell, and the source electrode and drain electrode of the N-type MIS transistor are formed at positions symmetrical about the center position of the basic cell. A P-type diffusion region and a P-type diffusion region forming an electrode for applying a voltage to the P substrate were arranged laterally, and a gate electrode was provided on the upper surface of the N-type diffusion region to constitute the other half of the basic cell. A basic cell of a complementary MIS master slice LSI characterized by the following.
(2)前記ソース電極とドレイン電極とを形成するP型
拡散領域とN型拡散領域とをチャネル幅方向に対して分
割してチャネル幅の小さいMISトランジスタとして、 前記MISトランジスタを並列接続して大きい幅のMI
Sトランジスタを形成する請求項1記載の相補型MIS
マスタスライスLSIの基本セル。
(2) The P-type diffusion region and the N-type diffusion region that form the source electrode and the drain electrode are divided in the channel width direction to form an MIS transistor with a small channel width, and the MIS transistors are connected in parallel to form a large MIS transistor. Width MI
Complementary MIS according to claim 1, forming an S transistor.
Basic cell of master slice LSI.
(3)前記基本セルのN型をP型に、P型をN型に代え
て相補にした請求項1、および請求項2記載の相補型M
ISマスタスライスLSIの基本セル。
(3) The complementary type M according to claim 1 and claim 2, wherein the N type of the basic cell is replaced with a P type, and the P type is replaced with an N type.
Basic cell of IS master slice LSI.
(4)分割したMISトランジスタゲート電極の接続用
のポリシリコン配線を備えた請求項2記載の相補型MI
SマスタスライスLSIの基本セル。
(4) Complementary MI according to claim 2, comprising polysilicon wiring for connecting divided MIS transistor gate electrodes.
Basic cell of S master slice LSI.
JP63151810A 1988-06-20 1988-06-20 Basic cell of complementary MIS master slice LSI Expired - Fee Related JPH0828485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63151810A JPH0828485B2 (en) 1988-06-20 1988-06-20 Basic cell of complementary MIS master slice LSI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63151810A JPH0828485B2 (en) 1988-06-20 1988-06-20 Basic cell of complementary MIS master slice LSI

Publications (2)

Publication Number Publication Date
JPH023279A true JPH023279A (en) 1990-01-08
JPH0828485B2 JPH0828485B2 (en) 1996-03-21

Family

ID=15526805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63151810A Expired - Fee Related JPH0828485B2 (en) 1988-06-20 1988-06-20 Basic cell of complementary MIS master slice LSI

Country Status (1)

Country Link
JP (1) JPH0828485B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498876A (en) * 1990-08-17 1992-03-31 Kawasaki Steel Corp Cmos master slice
JPH0498877A (en) * 1990-08-17 1992-03-31 Kawasaki Steel Corp Cmos master slice
EP0523967A2 (en) * 1991-07-18 1993-01-20 Fujitsu Limited Transistor arrangement for forming basic cell of master-slice type semiconductor integrated circuit device and master-slice type semiconductor integrated circuit device
JP2010171243A (en) * 2009-01-23 2010-08-05 Sony Corp Semiconductor integrated circuit
JP2020072171A (en) * 2018-10-31 2020-05-07 セイコーエプソン株式会社 Semiconductor integrated circuit, electronic device, and mobile body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5897847A (en) * 1981-12-08 1983-06-10 Nec Corp Integrated circuit device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5897847A (en) * 1981-12-08 1983-06-10 Nec Corp Integrated circuit device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498876A (en) * 1990-08-17 1992-03-31 Kawasaki Steel Corp Cmos master slice
JPH0498877A (en) * 1990-08-17 1992-03-31 Kawasaki Steel Corp Cmos master slice
EP0523967A2 (en) * 1991-07-18 1993-01-20 Fujitsu Limited Transistor arrangement for forming basic cell of master-slice type semiconductor integrated circuit device and master-slice type semiconductor integrated circuit device
US5436485A (en) * 1991-07-18 1995-07-25 Fujitsu Limited Transistor arrangement for forming basic cell of master-slice type semiconductor integrated circuit device and master-slice type semiconductor integrated circuit device
JP2010171243A (en) * 2009-01-23 2010-08-05 Sony Corp Semiconductor integrated circuit
JP2020072171A (en) * 2018-10-31 2020-05-07 セイコーエプソン株式会社 Semiconductor integrated circuit, electronic device, and mobile body

Also Published As

Publication number Publication date
JPH0828485B2 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
CA2126479C (en) Symmetrical multi-layer metal logic array with continuous substrate taps and extension portions for increased gate density
TWI414149B (en) Integrated circuit with signal bus formed by cell abutment of logic cells
JP4036688B2 (en) Standard cell library for automatic placement and routing and semiconductor integrated device
JP2742052B2 (en) Complementary MIS master slice logic integrated circuit
KR100433025B1 (en) Semiconductor device, semiconductor circuit device, flip-flop circuit, exclusive-or circuit, multiplexer, and adder
JPS61100947A (en) Semiconductor integrated circuit device
JPH077143A (en) Double buffer base gate array cell
JPH02234469A (en) Gate isolating base cell structure which has off grid gate polysilicon pattern
JPH058585B2 (en)
JPH0480538B2 (en)
US4868630A (en) Gate array semiconductor integrated circuit
US5404035A (en) Multi-voltage-level master-slice integrated circuit
JPH023279A (en) Standard cell of complementary mis master slice lsi
JPH06509911A (en) Symmetrical multilayer metal logic array with continuous substrate taps
JPH06204438A (en) Semiconductor device
JPS63314847A (en) Master slice type semiconductor device
JPH03120743A (en) Semiconductor device
US5701021A (en) Cell architecture for mixed signal applications
JPH10173055A (en) Cell-based semiconductor device and standard cell
JPH0563944B2 (en)
JPH01152642A (en) Semiconductor integrated circuit
JPH07130972A (en) Semiconductor integrated circuit device
JPS59132144A (en) Manufacture of semiconductor integrated circuit device
JPH11265998A (en) Semiconductor device and its manufacture
JPH0316261A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees