JPS61210661A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61210661A
JPS61210661A JP60052125A JP5212585A JPS61210661A JP S61210661 A JPS61210661 A JP S61210661A JP 60052125 A JP60052125 A JP 60052125A JP 5212585 A JP5212585 A JP 5212585A JP S61210661 A JPS61210661 A JP S61210661A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
film
silicon film
oxide film
etched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60052125A
Other languages
Japanese (ja)
Inventor
Shigeaki Ide
繁章 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60052125A priority Critical patent/JPS61210661A/en
Publication of JPS61210661A publication Critical patent/JPS61210661A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To prevent the electric short circuit of a first polycrystalline silicon film and second polycrystalline silicon films and to prevent the short circuits between the second polycrystallaine silicon wiring circuits, by improving the shape of the side surface of the first polycrystalline silicon film. CONSTITUTION:A light sensitive resin is made to remain so that a desired pattern is formed by a conventional manufacturing method. With the patterned light sensitive resin 6 as a mask, first polycrystalline silicon film 5 is etched, and the light sensitive resin 6 is removed. Then, with the first polycrystalline silicon film 5 as a mask, etching is performed excessively so that an etched film 4 becomes concave-shaped. Thereafter, a polycrystalline silicon film 11, which is thinner than the first polycrystalline silicon film 5, is deposited. Then the polycrystalline silicon film 11 and the surface layer of the polycrystalline silicon film are oxidized, and a polycrystalline silicon oxide film 12 is formed on the entire surface. Then, the entire surface of the polycrystalline oxide film 12 is etched, and the polycrystalline silicon oxide film 12' at a part, where the first polycrystalline silicon film 5 is not present, is removed. Thereafter, the device is manufactured by the conventional method.

Description

【発明の詳細な説明】 〈産業」二の利用分野〉 この発明は、MO9LS+(モス集積回路)等の半導体
装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industry> Second Field of Application The present invention relates to a method of manufacturing a semiconductor device such as MO9LS+ (MOS integrated circuit).

〈従来の技術〉 従来、例えば、第2図(a)から第2図(g)までに示
すようなシリコンゲ−1−M OSグイナミソクメモリ
LSIの製造方法がある。まず、第2図(a)に示すよ
うに、半導体基板1上にロコス酸化法によりフィールド
酸化膜2を形成した後、第1ゲート酸化膀3およびヂノ
化膜4を形成し、さらに第1多結晶シリコン膜5を形成
して、通常の写真食刻技術を用いて、所望のパターンか
形成されろように感光性樹脂6を残置させろ。
<Prior Art> Conventionally, there is a method of manufacturing a silicon game 1-MOS memory LSI as shown in FIGS. 2(a) to 2(g), for example. First, as shown in FIG. 2(a), a field oxide film 2 is formed on a semiconductor substrate 1 by the Locos oxidation method, and then a first gate oxide film 3 and a diodide film 4 are formed, and then a first gate oxide film 3 and a diodide film 4 are formed. A polycrystalline silicon film 5 is formed, and a photosensitive resin 6 is left behind so that a desired pattern can be formed using a conventional photolithography technique.

次に、第2図(1))に示すように、パターンニングさ
れた感光性樹脂6をマスクに上記第1多結晶ノリコン膜
5、チン化膜4、第1ゲート酸化膜3を順次エツチング
した後、第2図(C)に示すように、上記半導体基板l
を熱酸化することににす、層間絶縁膜7を形成する。そ
の後、第2図(d)に示すように、第2多結晶シリコン
模8を被着し、最後に、第2図(e)に示すように、通
常の写真食刻技術を用い、第2多結晶シリコン膜8を所
定の形状にパターンニングしている。
Next, as shown in FIG. 2(1)), the first polycrystalline silicon film 5, the tinned film 4, and the first gate oxide film 3 were sequentially etched using the patterned photosensitive resin 6 as a mask. After that, as shown in FIG. 2(C), the semiconductor substrate l
An interlayer insulating film 7 is formed by thermal oxidation. Thereafter, as shown in FIG. 2(d), a second polycrystalline silicon pattern 8 is deposited, and finally, as shown in FIG. 2(e), a second Polycrystalline silicon film 8 is patterned into a predetermined shape.

〈発明が解決しようとする問題点〉 ところが、上記製造方法では、第2図(f)中に示され
る部分a、ずなわちチン化膜4の側面に形成される層間
絶縁膜7の部分aが局部的に薄くなるため、第1多結晶
ノリコン膜5と第2多結晶シリコン膜8とが第2図(f
)中の部分aで、電気的にショートする可能性が高くな
る問題がある。
<Problems to be Solved by the Invention> However, in the above manufacturing method, the portion a shown in FIG. 2 (f), the first polycrystalline silicon film 5 and the second polycrystalline silicon film 8 become thin locally.
) There is a problem in that there is a high possibility of electrical short-circuiting at part a.

また、上記第2多結晶シリコン膜8を異方性エツチング
でパターンニングする際、層間絶縁膜7が第2図(g)
に示すように層間絶縁膜7の薄くなる部分に隣接する部
分りでひさし状となっているため、この部分すに第2多
結晶シリコン膜8°がエツチングされずに残り、第2多
結晶ノリコン配線8同志でショートする可能性が高くな
り、期待される歩留が得られない問題がある。
Furthermore, when patterning the second polycrystalline silicon film 8 by anisotropic etching, the interlayer insulating film 7 is etched as shown in FIG. 2(g).
As shown in the figure, since the part adjacent to the thinner part of the interlayer insulating film 7 has an eave shape, 8 degrees of the second polycrystalline silicon film remains without being etched in this part, and the second polycrystalline silicon film 8 is left unetched. There is a problem that the possibility of short-circuiting between the wiring lines 8 becomes high, and the expected yield cannot be obtained.

そこで、この発明の目的は、層間絶縁膜の耐圧の向上と
、第1多結晶シリコン膜の側面の形状の改善を図って、
第1多結晶シリコン膜と第2多結晶シリコン膜とが電気
的にショートするのを防止し、かつ、第2多結晶シリコ
ン配線同志がショートするのを防止し、期待される歩留
が得られる半導体装置の製造方法を提供することにある
Therefore, an object of the present invention is to improve the breakdown voltage of the interlayer insulating film and the shape of the side surface of the first polycrystalline silicon film.
The expected yield can be obtained by preventing electrical short-circuiting between the first polycrystalline silicon film and the second polycrystalline silicon film, as well as preventing short-circuiting between the second polycrystalline silicon wirings. An object of the present invention is to provide a method for manufacturing a semiconductor device.

〈問題点を解決するための手段〉 上記目的を達成するため、この発明の半導体装置の製造
方法は、半導体基板上に第1ゲート酸化膜とチン化膜を
重ねて二層絶縁膜を形成し、上記二層絶縁膜上に第1多
結晶シリコン膜を形成し、上記第1多結晶シリコン膜を
所定の形状にパターンニングし、次に上記チン化膜を上
記所定の形状にパターンニングされて残っている第1多
結晶シリコン膜と第1ゲート酸化膜の間に存する端部ま
で過度にエツチングし、上記第1多結晶シリコン膜を覆
って上記半導体基板の全面上に上記第1多結晶シリコン
膜よりも薄い多結晶ノリコン膜を堆積し、次に上記薄い
多結晶シリコン膜および上記第1多結晶シリコン膜の表
面層を酸化して多結晶ノリコン酸化膜を形成し、次に上
記多結晶シリコン酸化膜のエツチングを行なって、上記
第1多結晶シリコン膜の存在しない部分の上記多結晶シ
リコン酸化膜を除去し、その後、熱酸化により層間絶縁
膜を形成し、次に上記層間絶縁膜の全面に第2多結晶シ
リコン膜を堆積して上記第2多結晶シリコン膜を所定の
形状にパターン形成する。
<Means for Solving the Problems> In order to achieve the above object, the method for manufacturing a semiconductor device of the present invention includes forming a two-layer insulating film by overlapping a first gate oxide film and a tinned film on a semiconductor substrate. , forming a first polycrystalline silicon film on the two-layer insulating film, patterning the first polycrystalline silicon film into a predetermined shape, and then patterning the tinned film into the predetermined shape. The first polycrystalline silicon film is etched excessively to the edge existing between the remaining first polycrystalline silicon film and the first gate oxide film, and the first polycrystalline silicon film is etched over the entire surface of the semiconductor substrate, covering the first polycrystalline silicon film. A polycrystalline silicon film thinner than the polycrystalline silicon film is deposited, and then the surface layer of the thin polycrystalline silicon film and the first polycrystalline silicon film is oxidized to form a polycrystalline silicon oxide film, and then the polycrystalline silicon film is deposited. The oxide film is etched to remove the polycrystalline silicon oxide film in areas where the first polycrystalline silicon film does not exist, and then an interlayer insulating film is formed by thermal oxidation, and then the entire surface of the interlayer insulating film is etched. Then, a second polycrystalline silicon film is deposited, and the second polycrystalline silicon film is patterned into a predetermined shape.

〈実施例〉 以下、この発明を図示の実施例により詳細に説明する。<Example> Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

まず、第1図(a)に示すように、半導体基板1」二に
ロコス酸化法によりフィールド酸化膜2を形成した後、
第1ゲート酸化膜3とチン化膜4からなる二層絶縁膜を
形成し、さらにその」二に化学的気相成長法により第1
多結晶シリコン膜5を4000〜5000人の厚さで被
着する。その後、通常の写真食刻技術を用いて感光性樹
脂6が所望の形状となるように上記第1多結晶シリコン
膜5」二に感光性樹脂6を残置する。次に、第1図(b
)に示すように、パターンニングされた感光性樹脂6を
マスクに上記第1多結晶シリコン膜5をエツチングした
後、上記感光性樹脂6を除去する。上記パターンニング
された第1多結晶シリコン膜5をマスクにリン酸系の液
で上記チッ化膜4を約200人だけエツチングして、図
中A部分に示すように上記第1多結晶シリコン膜5の端
部から内へ約200人だけ上記チン化膜4がくぼんだ状
態に上記チッ化膜4を過度にエツチングする(以下、こ
のエツチングをオーバエツチングという)。すなわち、
このオーバエツチングにより、パターンニングされて残
っている第1多結晶シリコン膜5と第1ゲート酸化膜3
の間に存する端部20が除去される。
First, as shown in FIG. 1(a), after forming a field oxide film 2 on a semiconductor substrate 1'' by the Locos oxidation method,
A two-layer insulating film consisting of a first gate oxide film 3 and a tinned film 4 is formed, and then a first
A polycrystalline silicon film 5 is deposited to a thickness of 4,000 to 5,000 layers. Thereafter, the photosensitive resin 6 is left on the first polycrystalline silicon film 5'' using a conventional photolithography technique so that the photosensitive resin 6 has a desired shape. Next, Figure 1 (b
), the first polycrystalline silicon film 5 is etched using the patterned photosensitive resin 6 as a mask, and then the photosensitive resin 6 is removed. Using the patterned first polycrystalline silicon film 5 as a mask, the nitride film 4 is etched by about 200 people using a phosphoric acid solution, and the first polycrystalline silicon film is etched as shown in part A in the figure. The nitride film 4 is excessively etched so that the nitride film 4 is recessed by about 200 degrees inward from the edge of the nitride film (hereinafter, this etching is referred to as over-etching). That is,
This overetching removes the patterned remaining first polycrystalline silicon film 5 and first gate oxide film 3.
The end portion 20 located in between is removed.

その後、第1図(c)に示ずように、上記半導体基板l
の全面上に第1多結晶シリコン膜5より薄い多結晶シリ
コン膜11を厚さ100〜1000人堆積する。上記多
結晶シリコン膜11は多結晶シリコン膜11が上記チッ
化膜4の除去された第1ゲ−川・酸化膜3と第1多結晶
シリコン膜5との間の空所にも堆積する。次に、第1図
(d)に示すように、上記薄い多結晶ノリコン膜11お
」;び上記第1多結晶シリコン膜5の表面層を酸化して
、全面に多結晶シリコン酸化膜12を形成する。この過
程で薄い多結晶シリコン膜IIは全て酸化され、上記多
結晶シリコン酸化膜12全体として見た場合に上記チッ
化膜4がオーバエツチングされているので、第2図(C
)に示す従来例の如き局部的に傳くなる部分aはなくな
る。次に、第1図(e)に示すように、上記多結晶シリ
コン酸化膜12の全面に渡って多結晶シリコン酸化膜1
2をエツチングすることにより第1多結晶シリコン膜5
の存在しない部分の多結晶シリコン酸化膜12′ を除
去する。
Thereafter, as shown in FIG. 1(c), the semiconductor substrate l
A polycrystalline silicon film 11 thinner than the first polycrystalline silicon film 5 is deposited on the entire surface to a thickness of 100 to 1000 layers. The polycrystalline silicon film 11 is also deposited in the space between the first silicon oxide film 3 and the first polycrystalline silicon film 5 from which the nitride film 4 has been removed. Next, as shown in FIG. 1(d), the surface layer of the thin polycrystalline silicon film 11 and the first polycrystalline silicon film 5 is oxidized to form a polycrystalline silicon oxide film 12 on the entire surface. Form. In this process, the thin polycrystalline silicon film II is completely oxidized, and when the polycrystalline silicon oxide film 12 is viewed as a whole, the nitride film 4 is overetched, as shown in FIG.
) The locally changing portion a as in the conventional example is eliminated. Next, as shown in FIG. 1(e), a polycrystalline silicon oxide film 1 is formed over the entire surface of the polycrystalline silicon oxide film 12.
2 by etching the first polycrystalline silicon film 5.
The polycrystalline silicon oxide film 12' is removed from the portions where the polycrystalline silicon oxide film 12' is not present.

さらに、第1図(f)に示すように、熱酸化により層間
絶縁膜7を形成し、続いて第1図(g)に示すように、
第2多結晶シリコン膜8を被着する。その後、第1図(
h)に示すように、所定の形状に上記第2多結晶シリコ
ン膜8をパターンニングしてMOSダイナミックメモリ
LSIが製造される。
Furthermore, as shown in FIG. 1(f), an interlayer insulating film 7 is formed by thermal oxidation, and then as shown in FIG. 1(g),
A second polycrystalline silicon film 8 is deposited. After that, see Figure 1 (
As shown in h), a MOS dynamic memory LSI is manufactured by patterning the second polycrystalline silicon film 8 into a predetermined shape.

この工程を経ることにより、第1図(f)に示ず如くチ
ッ化膜4をオーバエツチングしたくぼみ部分Aを多結晶
ノリコン膜11で埋め、それを酸化するため、従来例に
見られるチッ化膜4の側面での層間絶縁膜7の厚さの減
少を防止でき、かつ、第2多結晶シリコン膜8の異方性
エツチングによるパターンニングの際のチッ化膜側面の
第2多結晶シリコン膜8のエッチ残りを防止できて、層
間絶縁膜7の絶縁破壊強度を向」二できる。
By going through this process, as shown in FIG. 1(f), the recessed portion A where the nitride film 4 has been overetched is filled with the polycrystalline Noricon film 11, and it is oxidized, so that the nitride film 4 is overetched. The thickness of the interlayer insulating film 7 on the side surface of the film 4 can be prevented from decreasing, and the second polycrystalline silicon film on the side surface of the nitride film during patterning by anisotropic etching of the second polycrystalline silicon film 8 can be prevented. 8 can be prevented from remaining after etching, and the dielectric breakdown strength of the interlayer insulating film 7 can be improved.

〈発明の効果〉 以上の説明から明らかなように、この発明によれば、第
1多結晶シリコン膜をエツチングした後、第1多結晶シ
リコン膜をマスクにチッ化膜をそのチッ化膜側面にくぼ
み部分が形成されるように過度にエツチングし、このく
ぼみ部分を第1多結晶シリコン膜より薄い多結晶シリコ
ン膜で埋め、次いでそれを酸化して多結晶シリコン酸化
膜を形成し、さらにこれを熱酸化して層間絶縁膜を形成
して、層間絶縁膜が局部的に薄くなる部分がなくな一′
l− るので、層間絶縁膜の絶縁破壊強度を向上でき、かつ、
第2多結晶シリコン膜の異方性エツチングによるパター
ンニングの際における従来例の如きヂソ化膜側面に第2
多結晶シリコン膜がひさし状に残る部分がなくなるので
、半導体装置の性能を向上でき、歩留りも向上できる。
<Effects of the Invention> As is clear from the above description, according to the present invention, after etching the first polycrystalline silicon film, a nitride film is etched on the side surface of the nitride film using the first polycrystalline silicon film as a mask. Excessive etching is performed to form a recessed portion, and this recessed portion is filled with a polycrystalline silicon film thinner than the first polycrystalline silicon film, which is then oxidized to form a polycrystalline silicon oxide film, and this is further etched. By thermally oxidizing and forming an interlayer insulating film, the interlayer insulating film is no longer locally thinned.
l-, the dielectric breakdown strength of the interlayer insulating film can be improved, and
When patterning the second polycrystalline silicon film by anisotropic etching, a second layer is placed on the side surface of the dioxide film as in the conventional example.
Since no portion of the polycrystalline silicon film remains in the form of an eaves, the performance of the semiconductor device can be improved and the yield can also be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)から第1図(h)はこの発明の一実施例の
製造工程を示す図、第2図(a)から第2図(e)は従
来例の半導体装置の製造工程、第2図(「)は第2図(
e)のA部拡大図、第2図(g)は第2図(e)のB部
拡大図である。 1 半導体基板、 3・・・第1ゲート酸化膜、4 チ
ッ化膜、  1第1多結晶シリコン膜、7・層間絶縁膜
、  II・・・薄い多結晶シリコン膜、12.12°
・−多結晶シリコン酸化膜。 特 許 出 願 人  シャープ株式会社代 理 人 
弁理士  前出 葆 外2名=8−
FIGS. 1(a) to 1(h) are diagrams showing the manufacturing process of an embodiment of the present invention, and FIGS. 2(a) to 2(e) are diagrams showing the manufacturing process of a conventional example of a semiconductor device. Figure 2 (') is Figure 2 (')
Fig. 2(g) is an enlarged view of part A in Fig. 2(e). 1 Semiconductor substrate, 3... First gate oxide film, 4 Nitride film, 1 First polycrystalline silicon film, 7. Interlayer insulating film, II... Thin polycrystalline silicon film, 12.12°
-Polycrystalline silicon oxide film. Patent applicant: Sharp Corporation Agent
Patent attorney: 2 other people = 8-

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板上に第1ゲート酸化膜とチッ化膜を重
ねて二層絶縁膜を形成し、上記二層絶縁膜上に第1多結
晶シリコン膜を形成し、上記第1多結晶シリコン膜を所
定の形状にパターンニングし、次に上記チッ化膜を上記
所定の形状にパターンニングされて残っている第1多結
晶シリコン膜と第1ゲート酸化膜の間に存する端部まで
過度にエッチングし、上記第1多結晶シリコン膜を覆っ
て上記半導体基板の全面上に上記第1多結晶シリコン膜
よりも薄い多結晶シリコン膜を堆積し、次に上記薄い多
結晶シリコン膜および上記第1多結晶シリコン膜の表面
層を酸化して多結晶シリコン酸化膜を形成し、次に上記
多結晶シリコン酸化膜のエッチングを行なって、上記第
1多結晶シリコン膜の存在しない部分の上記多結晶シリ
コン酸化膜を除去し、その後、熱酸化により層間絶縁膜
を形成し、次に上記層間絶縁膜の全面に第2多結晶シリ
コン膜を堆積して上記第2多結晶シリコン膜を所定の形
状にパターン形成することを特徴とする半導体装置の製
造方法。
(1) forming a two-layer insulating film by overlapping a first gate oxide film and a nitride film on a semiconductor substrate; forming a first polycrystalline silicon film on the two-layer insulating film; The film is patterned into a predetermined shape, and then the nitride film is patterned into the predetermined shape and is excessively patterned to the edge between the first polycrystalline silicon film and the first gate oxide film. etching, depositing a polycrystalline silicon film thinner than the first polycrystalline silicon film over the entire surface of the semiconductor substrate, covering the first polycrystalline silicon film; A surface layer of the polycrystalline silicon film is oxidized to form a polycrystalline silicon oxide film, and then the polycrystalline silicon oxide film is etched to remove the polycrystalline silicon in the portion where the first polycrystalline silicon film does not exist. After removing the oxide film, an interlayer insulating film is formed by thermal oxidation, and then a second polycrystalline silicon film is deposited on the entire surface of the interlayer insulating film, and the second polycrystalline silicon film is patterned into a predetermined shape. 1. A method of manufacturing a semiconductor device, characterized by forming a semiconductor device.
JP60052125A 1985-03-14 1985-03-14 Manufacture of semiconductor device Pending JPS61210661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60052125A JPS61210661A (en) 1985-03-14 1985-03-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60052125A JPS61210661A (en) 1985-03-14 1985-03-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61210661A true JPS61210661A (en) 1986-09-18

Family

ID=12906152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60052125A Pending JPS61210661A (en) 1985-03-14 1985-03-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61210661A (en)

Similar Documents

Publication Publication Date Title
JP2000195950A (en) Semiconductor device and its production method
JPS61210661A (en) Manufacture of semiconductor device
JPH07111288A (en) Forming method for element separation
JPH07235594A (en) Manufacture of semiconductor device
JP3271090B2 (en) Semiconductor device manufacturing method
JP2551030B2 (en) Semiconductor device and manufacturing method thereof
JP3318766B2 (en) Method for manufacturing semiconductor device
JPH0620138B2 (en) Method of manufacturing thin film MOS structure semiconductor device
JP3225289B2 (en) Method for forming metal wiring of semiconductor device
JPS61206240A (en) Manufacture of semiconductor device
JPS6384118A (en) Manufacture of semiconductor device
JPS6149439A (en) Manufacture of semiconductor device
JPS61222158A (en) Manufacture of semiconductor device
JPS6222454A (en) Manufacture of semiconductor device
JPH03259526A (en) Manufacture of semiconductor device
JPS5963740A (en) Semiconductor integrated circuit device
JPS60227440A (en) Manufacture of semiconductor device
JPS6145859B2 (en)
JPS6362255A (en) Method for flattening semiconductor device
JPH09330922A (en) Method for separating element of semiconductor device
JPS59168661A (en) Manufacture of semiconductor integrated circuit
JPS63292646A (en) Manufacture of semiconductor device
JPH02105519A (en) Manufacture of semiconductor integrated circuit
JPH01241845A (en) Manufacture of semiconductor device
JPH02213158A (en) Manufacture of semiconductor device