JPS61199022A - Method for controlling continuous heating furnace - Google Patents

Method for controlling continuous heating furnace

Info

Publication number
JPS61199022A
JPS61199022A JP4038385A JP4038385A JPS61199022A JP S61199022 A JPS61199022 A JP S61199022A JP 4038385 A JP4038385 A JP 4038385A JP 4038385 A JP4038385 A JP 4038385A JP S61199022 A JPS61199022 A JP S61199022A
Authority
JP
Japan
Prior art keywords
temperature
furnace
function
temp
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4038385A
Other languages
Japanese (ja)
Inventor
Satoshi Kohama
小濱 聡
Nobunori Wakamiya
若宮 宣範
Makoto Tsuruta
誠 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Mitsubishi Electric Corp
Original Assignee
Kobe Steel Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Mitsubishi Electric Corp filed Critical Kobe Steel Ltd
Priority to JP4038385A priority Critical patent/JPS61199022A/en
Publication of JPS61199022A publication Critical patent/JPS61199022A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the ejection temp. of each material with good accuracy and to reduce fuel consumption by determining the optimum heating-up curve to minimize the fuel flow rate with each material by taking the future fluctuation of an in-furnace temp., furnace wall temp. and material temp. into consideration in accordance with the fuel flow rate. CONSTITUTION:A function 106 to set the furnace temp. is constituted of a function 20 to calculate the present temp., a function 21 to determine the heating-up curve, a function 22 to calculate the future temp. and a function 23 to calculate the set furnace temp. in a heating furnace 101 divided to plural separate control zones and is periodically started. The function 20 calculates the preset material temp. by a model 5 for calculating the furnace temp., a model 6 for calculating the furnace wall temp. and a model 7 for calculating the material temp. The function 21 determines the heating-up curve of each material under the minimization of each fuel. The function 22 calculates the future material temp. and furnace temp. by the logic similar to the logic of the function 20. The function 23 compares the target heating-up temp. and present temp. of each material, calculates the furnace temp. of each control zone and instructs the set furnace temp. to a fuel flow rate controller 103.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、複数の制御帯を有する連続式加熱炉の制御
方法、特に燃料最少となる材料の昇温パターンを決定し
、その昇温パターンで材料が焼き上がる様に材料の炉温
設定値を決定する方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a method of controlling a continuous heating furnace having a plurality of control zones, and in particular, to determining a temperature increase pattern of a material that requires the least amount of fuel, and determining the temperature increase pattern. This relates to a method of determining the furnace temperature setting for the material so that the material is baked at

〔従来の技術〕[Conventional technology]

従来、この種の加熱炉の温度制御として、オンラインで
昇温曲線を決定する方法としては、例えば特開昭56−
75555号公報に示されているように、炉温から材料
温度を計算するモデル、および炉温と材料温度とから燃
料流室?計算するモデルの両弁線形モデルを用い、非線
形の燃料最少化を行なうために、炉温をステップ状に変
化させて摂動シミュレーション法(基準状態と摂動状悲
においてシミュレーションを行ない線形化係数を決定す
る方法)を用いている。
Conventionally, as a method for determining the temperature rise curve online for temperature control of this type of heating furnace, for example, JP-A-56-
As shown in Publication No. 75555, there is a model that calculates the material temperature from the furnace temperature, and a model that calculates the fuel flow chamber from the furnace temperature and the material temperature. In order to perform nonlinear fuel minimization using a double-valve linear model as the model to be calculated, a perturbation simulation method is used in which the furnace temperature is changed in steps (simulations are performed in the standard state and perturbed state to determine the linearization coefficient). method) is used.

〔発明が解決しようとする問題虞〕[Possible problem to be solved by the invention]

上記のような従来の連続式加熱炉の制御方法では、一般
に炉温の計算ゾーンは燃料流量を制御できるゾーンより
も数が多いため、炉温を基にした摂動法による最適化後
の最適炉温および昇温曲線は、常に実現可能なパターン
とに限らないという問題があった。
In the conventional continuous heating furnace control method as described above, the number of calculation zones for the furnace temperature is generally greater than the number of zones that can control the fuel flow rate. There is a problem in that the temperature and temperature rise curve are not always in a realistic pattern.

また、線形化係数および昇温パターンを決定する際、炉
壁への損失熱量、炉壁温度分布等を無視し、炉の応答遅
れを考慮せずに炉温をステップ状に変化させてシミュレ
ーションを行なっているため、実際の材料の昇温傾向お
よび炉の状態とかけ離れた昇温曲線が決定されるという
問題があった0また、僅1え何等かの昇温曲線が決定さ
れたとしても、その昇温パターンで焼き上げるための設
定炉温か以下のような理由で充分な精度で決定されない
という問題があった0 すなわち、目標とする材料温度にするために必要な熱量
qAは、 qA=OpG(θ、−〇p)it =αA・(TgA’Tp’ )        * *
 *(1)但し、Cp:比熱 G:材料重量 αA:伝達係数 θA二目標材料温度 θp:現在材料温度 r、A:設定炉@(絶対温度) Tp:現在材料温度(絶対温度) からTgAを逆算したりあるいは 但し、θgA二設定炉温 A:材料表面積 Δを工時間刻み からσgAを逆算するなどして設定炉温を決定できるが
、伝熱係数は炉内位置、温度、燃焼パターンなどによっ
て変化し、定数としての取り扱いが困難なため精度良い
設定炉温を決定できなかった。
In addition, when determining the linearization coefficient and temperature increase pattern, the simulation is performed by ignoring heat loss to the furnace wall, furnace wall temperature distribution, etc., and changing the furnace temperature in steps without considering the furnace response delay. As a result, there was a problem that a temperature rise curve was determined that was far from the actual temperature rise trend of the material and the furnace condition.Also, even if a temperature rise curve of some kind was determined, There was a problem that the set furnace temperature for baking with that temperature increase pattern could not be determined with sufficient accuracy for the following reasons. In other words, the amount of heat qA required to reach the target material temperature is qA = OpG ( θ, -〇p)it = αA・(TgA'Tp') * *
*(1) However, Cp: Specific heat G: Material weight αA: Transfer coefficient θA Two target material temperature θp: Current material temperature r, A: Setting furnace @ (absolute temperature) Tp: Current material temperature (absolute temperature) From TgA However, the set furnace temperature can be determined by back-calculating σgA from θgA2 Setting furnace temperature A: material surface area Δ from the work time increments, but the heat transfer coefficient depends on the position in the furnace, temperature, combustion pattern, etc. It was difficult to determine the set furnace temperature with high accuracy because it was difficult to treat as a constant.

この発明はかかる問題点を解決するためになされたもの
で、各材料の抽出温度を精度よく制御できるとともに、
燃料消費fを低減させることができる連続式加熱炉の制
御方法を得ることを目的とする。
This invention was made to solve these problems, and it is possible to precisely control the extraction temperature of each material, and
An object of the present invention is to obtain a control method for a continuous heating furnace that can reduce fuel consumption f.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る連続式加熱炉の制御方法は、燃料流量を
基にし炉内温度、炉壁温度、材料温度の将来の変動をも
考慮して、各材料につき燃料流量が最少となる最適な昇
温曲線を決定し、こうして求められた最適昇温曲線、現
在および将来の材料温度、さらには将来の炉温の各要素
に基づき材料1本毎の設定炉温を決定するようにしたも
のでめる0 〔作用〕 この発明においては、燃料流量を基にし炉内温度、炉壁
温度、材料温度の将来の変動をも考慮しで、各材料につ
いて燃料流量が最少となる昇温曲線を決定しているので
、実現可能な最適昇温曲線が得られる。また、このよう
にして求められた最適昇温曲線、現在および将来の材料
温度、さらには将来の炉温の各要素に基づき材料1本毎
の設定炉温を決定しているので、各材料の抽出温度を精
度よく制御できる。
The control method for a continuous heating furnace according to the present invention takes into account future fluctuations in the furnace internal temperature, furnace wall temperature, and material temperature based on the fuel flow rate, and optimizes the heating rate to minimize the fuel flow rate for each material. The temperature curve is determined, and the set furnace temperature for each material is determined based on the optimal temperature rise curve thus determined, the current and future material temperatures, and each element of the future furnace temperature. [Operation] In this invention, a temperature rise curve that minimizes the fuel flow rate for each material is determined based on the fuel flow rate, taking into account future fluctuations in the furnace temperature, furnace wall temperature, and material temperature. As a result, a achievable optimal temperature rise curve can be obtained. In addition, the set furnace temperature for each material is determined based on the optimum temperature rise curve obtained in this way, the current and future material temperatures, and the future furnace temperature. Extraction temperature can be precisely controlled.

〔実施例〕〔Example〕

以下、この発明の原理について説明する。 The principle of this invention will be explained below.

炉温計算モデルは以下の様にして構成されている。第1
図に示す様に加熱炉を炉長方向にn個に分割し、各分割
されたメツシュについて各々次の様な熱バランス方程式
をたてる。
The furnace temperature calculation model is constructed as follows. 1st
As shown in the figure, the heating furnace is divided into n pieces in the furnace length direction, and the following heat balance equation is established for each divided mesh.

T gi CΦ□      ・・・炉温の温度変化(it =:Ql       ・・・燃料、空気の顕熱+Hg
mW、         命・・燃料発熱量率Gi +
 1°CI)gIITIIEi”1・・・上流よりの排
ガス熱量 4−C!−T    ・・・下流への排ガス熱蓋i  
 Tag   gl ・・・炉壁よりのふく射 1自材料へのふく射 + 02(Twl−Tgl)+03(T8.−Tg、)
・・・炉壁、材料への対流 −Qwi      ・・・スキッド冷却水損失拳 ・
 ・(8) ここでHに燃料の単位流量当りの発熱量” pgは排ガ
ス比熱、01は各メツシュの排ガス流量であり、K  
 、K   、K   はそれぞれふく射交換xlj 
   21k    31j 係数、Cよ、C2,03は定数である。またnに炉長分
割数、mはスラブ本数である0 上記式(8)は燃料流itWが与えられれは、炉壁温度
、スラブ温度を既知とすれば、次の様に変形される。
T gi CΦ□ ... Temperature change in furnace temperature (it =: Ql ... Sensible heat of fuel and air + Hg
mW, life...Fuel calorific value rate Gi +
1°CI) gIITIIEi”1... Exhaust gas calorific value from upstream 4-C!-T... Exhaust gas heating lid i to downstream
Tag gl ... Radiation from furnace wall 1 Radiation to own material + 02 (Twl-Tgl) + 03 (T8.-Tg,)
... Convection to the reactor wall and materials - Qwi ... Skid cooling water loss fist ・
・(8) Here, H is the calorific value per unit flow rate of fuel, pg is the exhaust gas specific heat, 01 is the exhaust gas flow rate of each mesh, and K
, K and K are radiation exchange xlj
21k 31j The coefficients C, C2, 03 are constants. Further, n is the number of furnace length divisions, and m is the number of slabs. The above equation (8) can be transformed as follows, assuming that the fuel flow itW is given and the furnace wall temperature and slab temperature are known.

+ΣB1klITgk+C,(1=iaaan)・・−
(4) これは、0元連立の非線形微分方程式であるが、i 5
tep前の炉内温度分布を出発値として、時間に関して
離散化し、ニュートン法等を用いて収束させれば、簡単
に新らしい炉内温度分布全計典できる。
+ΣB1klITgk+C, (1=iaaan)...-
(4) This is a 0-dimensional simultaneous nonlinear differential equation, but i 5
By using the in-furnace temperature distribution before tep as a starting value, discretizing it with respect to time and converging it using Newton's method or the like, a new complete enumeration of the in-furnace temperature distribution can be easily obtained.

また材料温度モデルは良く知られている2次元の熱伝導
方程式より次の様に表わせる。
Furthermore, the material temperature model can be expressed as follows using the well-known two-dimensional heat conduction equation.

表面における境界条件は ここで、Xは材料厚み方向、Yは材料の巾方向を表わし
、d工、d2げそれぞれ材料厚み、材料中を表わす。ま
たC8.λ6.γSはそれぞれ材料の比熱、熱伝導率、
比重であり、q8は材料の表面熱流束であり次式で表わ
せる。
The boundary conditions on the surface are as follows: X represents the material thickness direction, Y represents the width direction of the material, and d and d2 represent the material thickness and the inside of the material, respectively. Also C8. λ6. γS is the specific heat, thermal conductivity, and
It is the specific gravity, and q8 is the surface heat flux of the material, which can be expressed by the following formula.

qll= ΣK” 1g ((Tg i+ 2門)’−
(T8□+273)’)1=1 +03(T、 、−Tg□)        1・(7
)式(5)は式(6)の境界条件を用いれば、通常の差
分手法で解く事ができる。
qll= ΣK" 1g ((Tg i+ 2 gates)'-
(T8□+273)') 1=1 +03(T, , -Tg□) 1・(7
) Equation (5) can be solved by a normal differential method by using the boundary condition of Equation (6).

炉壁温度モデルは第1図に示されている様に炉長手方向
分割毎のメツシュ内において、厚み方向のみの1次元熱
伝導刀根式によって、次の様に表わせる。
As shown in FIG. 1, the furnace wall temperature model can be expressed as follows using a one-dimensional heat conduction knife equation in the thickness direction only within the mesh for each division in the longitudinal direction of the furnace.

炉内表面における境界条件は + C2(Tg□−Tw)          ・・・
(9)炉外表面における境界条件は ここで、Xは炉壁厚み方向、d3は炉壁の厚み、Cw 
、X W l 7 prは炉壁の比熱、熱伝導率、比重
を表わしており、HOUTは外部熱伝専率、Ta□、は
外部温度を示している。式(8)も式(9)、式α0)
の境界条件を用いる事により通常の差分方程式で解く事
が可能となる。
The boundary condition on the inner surface of the furnace is + C2 (Tg□-Tw)...
(9) The boundary conditions on the outer surface of the furnace are as follows: X is the thickness direction of the furnace wall, d3 is the thickness of the furnace wall, and Cw
, X W l 7 pr represent the specific heat, thermal conductivity, and specific gravity of the furnace wall, HOUT represents the external heat transfer ratio, and Ta□ represents the external temperature. Formula (8) also formula (9), formula α0)
By using the boundary conditions, it becomes possible to solve with a normal difference equation.

上記3つのモデルを組み合わせて使用する事により、燃
料R量を与えれば、炉温、材料温度、炉壁温度の現在値
を初期値として炉温、材料温度、炉壁温度、3者の将来
温度が計算出来る。
By using the above three models in combination, if the amount of fuel R is given, the current values of the furnace temperature, material temperature, and furnace wall temperature are used as initial values, and the future temperatures of the furnace temperature, material temperature, furnace wall temperature, and the three can be calculated.

次に、燃料を最少とする材料の昇温曲線の決定方法を第
2図に示す流れ図に従って説明する。なお図中、(1)
は昇温曲線決定の第j 5tsp 、 (2)は同様の
第25top 、 (81は同様の第55top 、(
4)は同様の第45tep 、 (5)は炉温計算モデ
ル、(6)は炉壁温度計算モデル、(γ)は材料温度計
算モデル、(8)は材料通過位置炉温の計算、(9)は
平均温度、均熱度の計算、叫は線形化係数の計算、C1
1)は線形計画法(Lp)の計算である。
Next, a method for determining a temperature increase curve for a material that minimizes fuel consumption will be explained according to the flowchart shown in FIG. In the figure, (1)
is the jth 5tsp of temperature rise curve determination, (2) is the similar 25th top, (81 is the similar 55th top, (
4) is the same 45th step, (5) is the furnace temperature calculation model, (6) is the furnace wall temperature calculation model, (γ) is the material temperature calculation model, (8) is the calculation of the material passing position furnace temperature, (9 ) is the calculation of the average temperature and degree of uniformity, and the expression is the calculation of the linearization coefficient, C1
1) is linear programming (Lp) calculation.

まず、第1stop(1)として、現在の流量Wエ で
もって全材料が抽出されるまでの時間、6つのモデル(
5) l (6) T (γンを繰り返して使用する墨
により、各材料抽出時の平均温度T、 Q、均熱度(最
高温度−最低温度)ΔTs。、および材料通過時の各位
置での炉内温度T gloが計算できる。
First, as the first stop (1), the time until all the materials are extracted with the current flow rate W, is calculated using the six models (
5) l (6) T (By repeatedly using γ-n, the average temperature T, Q, soaking degree (maximum temperature - minimum temperature) ΔTs at the time of extraction of each material, and the temperature at each position when the material passes through. The furnace temperature T glo can be calculated.

久に、第2stop(2)として、各燃料流量制御帯毎
に上記燃料流量をΔWK″だけ5tep状に変化させる
事によって、前記第1stop(1)と同様に各流量変
化時の各材料抽出時平均温度〒−1均熱度ΔT、K、お
よび材料通過時の炉内温度Tg□′ を計算する事が可
能になる。
As a second stop (2), by changing the fuel flow rate by ΔWK'' in 5 steps in each fuel flow rate control zone, as in the first stop (1), when each material is extracted at each flow rate change. It becomes possible to calculate the average temperature 〒-1, the soaking degree ΔT, K, and the furnace temperature Tg□' when the material passes through.

次に、第3stop(81として、以下の線形化係数の
計算αO)を実行する。第26tep(2Jの処置によ
り非線形方程式の解である抽出時各材料平均温度、均熱
度、および各材料通過時の各計算ゾーンでの炉内温度は
次の様に線形化する事ができる。
Next, the third stop (as 81, the following linearization coefficient calculation αO) is executed. By the procedure of the 26th step (2J), the average temperature of each material at the time of extraction, the soaking degree, and the temperature inside the furnace in each calculation zone when each material passes, which are solutions of the nonlinear equation, can be linearized as follows.

ここでKMAXは燃料流量制御帯の数であり、P工え。Here, KMAX is the number of fuel flow control bands, and P is the number of fuel flow control bands.

P2工I P31には各々流量を変化させた場合の線形
化係数であり次で与えられる。
P2, I, and P31 are linearization coefficients when the flow rate is changed, and are given as follows.

ΔWK。ΔWK.

また、各燃料流量は、ΔW工を各制御帯の変化量とする
と W区=WK +ΔWK と表わす事ができる。
Further, each fuel flow rate can be expressed as W section = WK + ΔWK, where ΔW is the amount of change in each control band.

昇温曲線を求めるうえでの制約条件は材料の冶金学的制
約、および炉操業上の制約から次の様なものである。
The constraints in determining the temperature rise curve are as follows due to metallurgical constraints of the material and constraints on furnace operation.

ここで添字MIN 、 MAX  はそれぞれの下限値
および上限値を示している。
Here, the subscripts MIN and MAX indicate the respective lower and upper limits.

また、最適化の評価関係は燃料最少化であるから次の様
になる。
Furthermore, since the evaluation relationship for optimization is fuel minimization, it is as follows.

式α7)の制約条件下での式(至))の最少化は通常の
線形計画法(bp)の計算(1刀で求める事が可能であ
る。
Minimization of formula (to) under the constraint condition of formula α7) can be obtained by ordinary linear programming (bp) calculations (with one stroke).

上記解の流量が各材料の最適流JjkWKop、であり
、第4θtap(4)としてこのfLitを基にして前
記6モデル(5)、 (6) 、 (7)により抽出ま
での各材料の最適昇温曲線を計算する事が可能となる。
The flow rate of the above solution is the optimal flow rate JjkWKop of each material, and the optimal flow rate of each material until extraction is determined by the above six models (5), (6), and (7) based on this fLit as the fourth θtap (4). It becomes possible to calculate the temperature curve.

こうして求まった昇温曲線に沿ってΔを時間後に材料を
焼土げるのに必要な熱量は式(1)で求められΔを時間
後に温度θ、になるのに要した熱ft qyは q、 = Cp@G・(θF−θp)Δt=α(T g
、4−T p4 )         、  ・(′1
g)但し、θF :将来材料温度 TgF:将来炉温(絶対温度) となる。上記式(1)、弐〇〇)でα−’−α、とする
と材料に対する設定炉温θgAは 0・ ・(イ) となる。こうして求まった設定炉温になる様に燃料′#
L鴬を制御する事により、鋼片温度を目標通りに精度良
く焼き上げる事ができる。第6図はこの状態を示す。
The amount of heat required to burn the material after Δ time along the temperature rise curve obtained in this way is determined by equation (1), and the heat required to reach the temperature θ after Δ time is ft qy is q , = Cp@G・(θF−θp)Δt=α(T g
, 4-T p4 ) , ・('1
g) However, θF: Future material temperature TgF: Future furnace temperature (absolute temperature). In the above formula (1), 2〇〇), if α-'-α, the set furnace temperature θgA for the material becomes 0. Fuel '#' to achieve the set furnace temperature determined in this way.
By controlling the L-shape, the temperature of the steel billet can be precisely fired to the target temperature. FIG. 6 shows this state.

たとえば式(支))によると、目標温度θ□が現状温度
θ、より高く将来温度θ、が現状温度0pより低いケー
スが生じたとすると、将来、現状の燃料流量を維持する
ならば目標とする昇温パターンより低い昇温となるため
、現状の燃料#L量を増加させる方向に作動するであろ
う。また、上記と逆の場合すなわちθえ〈θ9.θ2〉
θ、のケースが生じたとすると、現状の燃料流量のまま
では昇温パターンより高くなってしまうため、現状の燃
料流電音下げる方向に作動するであろう。
For example, according to equation (support)), if the target temperature θ□ is higher than the current temperature θ and the future temperature θ is lower than the current temperature 0p, then if the current fuel flow rate is to be maintained in the future, the target temperature Since the temperature rise is lower than the temperature rise pattern, the current amount of fuel #L will be increased. Also, in the opposite case to the above, that is, θ 〈θ9. θ2〉
If the case θ occurs, the temperature will be higher than the temperature increase pattern if the current fuel flow rate remains, so the current fuel flow noise will be lowered.

次にこの発明の一実施例に基づく加熱炉制御について第
4図を参照して説明する。
Next, heating furnace control based on an embodiment of the present invention will be explained with reference to FIG. 4.

第4図において、複数の別制御帯に分割された加熱炉(
101)には燃焼用バーナ(105)、炉温検出器(1
04)が配置されており、炉温設定機能(106)によ
って設定された、各制御帯毎の設定温度になる様燃料流
量制御器(103)によって流電が制御されている。(
102)は材料情報機能であり、炉内の材料の寸法、重
量、抽出温度、炉内搬送情報等の材料情報を炉温設定機
能(106)に指示する。
In Figure 4, a heating furnace (
101) includes a combustion burner (105) and a furnace temperature detector (105).
04) is arranged, and the current flow is controlled by the fuel flow rate controller (103) so as to reach the set temperature for each control zone set by the furnace temperature setting function (106). (
Reference numeral 102) is a material information function, which instructs the furnace temperature setting function (106) to provide material information such as the dimensions, weight, extraction temperature, and conveyance information of the material in the furnace.

炉温設定機能(106)は、現状温度計算機能(20)
と昇温曲線決定機能(21)と将来温度計算機能(2)
)と設定炉温計算機能−)とからなっており、周期的に
起動される。現状温度計算機能(2Q)は、材料情報を
基にして炉温計算モデル(5)、炉壁温度計算モデル(
6)、材料温度計算モデル(7ンにより、現在の材料温
度を計算する。昇温曲線決定機能(211は、この発明
の説明で述べた様に第2図に示す流れ図に従って各材料
毎の昇温曲線を各々燃料最少化の下に決定する。
The furnace temperature setting function (106) is the current temperature calculation function (20)
and temperature rise curve determination function (21) and future temperature calculation function (2)
) and a set furnace temperature calculation function -), which are activated periodically. The current temperature calculation function (2Q) uses the furnace temperature calculation model (5) and furnace wall temperature calculation model (5) based on material information.
6), the material temperature calculation model (7) calculates the current material temperature.The temperature rise curve determination function (211) calculates the temperature rise for each material according to the flowchart shown in FIG. Each temperature curve is determined under fuel minimization.

将来温度計算機能(ロ))は、現状温度計算機能(20
)と同様のロジックで将来の材料温度、炉温を計算する
The future temperature calculation function (b)) is the current temperature calculation function (20
) to calculate the future material temperature and furnace temperature using the same logic.

設定炉温計算機能例は、各材料毎の目標昇温曲線と現状
温度とを比較して、各制御帯の炉温を計算し、燃料流量
制御器(103)に設定炉温全指示する。
An example of the set furnace temperature calculation function compares the target temperature increase curve for each material with the current temperature, calculates the furnace temperature for each control zone, and instructs the fuel flow rate controller (103) to set the entire furnace temperature.

しかして、燃料流量を基にして炉内温度、炉壁温度、材
料温度の将来の変動をも考慮して、各材料について燃料
流量が最少となる実現可能な昇温曲線を決定しているた
め、各材料の抽出温度全精度良く制御できるばかりでな
く、燃料流量の低減効果が非常に大きくなる。
Therefore, based on the fuel flow rate, we also take into account future fluctuations in the furnace temperature, furnace wall temperature, and material temperature, and determine a feasible temperature rise curve that minimizes the fuel flow rate for each material. Not only can the extraction temperature of each material be controlled with high accuracy, but also the effect of reducing the fuel flow rate is extremely large.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、燃料流量を基にし炉内
温度、炉壁温度、材料温度の将来の変動をも考慮して、
各材料につき燃料流量が最少となる最適な昇温曲線を決
定するようにしているので、実現可能な最適昇温曲線が
得られる0 また、このようにして求められた最適昇温曲線、現在お
よび将来の材料温度、さらには将来の炉温の各要素に基
づき材料1本毎の設定炉温を求めるようにしているので
、各材料の抽出温度を精度よく制御でき、しかも燃料消
費を低減させることができる等の効果がある。
As explained above, this invention takes into consideration future fluctuations in the furnace temperature, furnace wall temperature, and material temperature based on the fuel flow rate.
Since the optimum temperature rise curve that minimizes the fuel flow rate is determined for each material, the optimum temperature rise curve that can be achieved can be obtained. Since the set furnace temperature for each material is calculated based on the future material temperature and each element of the future furnace temperature, the extraction temperature of each material can be precisely controlled and fuel consumption can be reduced. There are effects such as being able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は加熱炉の炉温計算ゾーン分割を示す概略図、第
2図は最適昇温曲線決定の流れ図、第3図は炉温設定値
決定概念図、第4図はこの発明の一実施態様を示す全体
構成図である。 (5)+1・炉温計算モデル (6)・・炉壁温度計算モデル (7)・・材料温度計算モデル (社)・・現状温度計算機能 @ll・拳昇温曲線計算機能 図・・将来温度計算機能 啜)・・設定炉温計算機能 (101)・・加熱炉 (103)・・燃料流量制御器 (104)・・炉温検出器 (105)・・燃焼用バーナ (106)・・炉温設定機能
Fig. 1 is a schematic diagram showing the zone division of furnace temperature calculation of a heating furnace, Fig. 2 is a flowchart of determining the optimum temperature rise curve, Fig. 3 is a conceptual diagram of determining the furnace temperature set value, and Fig. 4 is an embodiment of the present invention. FIG. 2 is an overall configuration diagram showing an aspect. (5)+1・Furnace temperature calculation model (6)・Furnace wall temperature calculation model (7)・・Material temperature calculation model (company)・Current temperature calculation function @ll・Fist temperature rise curve calculation function diagram・・Future Temperature calculation function (sniff) Setting furnace temperature calculation function (101) Heating furnace (103) Fuel flow controller (104) Furnace temperature detector (105) Combustion burner (106) Furnace temperature setting function

Claims (1)

【特許請求の範囲】[Claims] 複数の制御帯を有する連続式加熱炉の加熱炉制御におい
て、燃料流量に基づき非定常熱バランス式により炉温の
時間変化を計算する第1機能、炉温から炉壁内部温度の
時間変化を計算する第2機能、炉温から材料内部温度の
時間変化を計算する第3機能、上記第1、第2、第3の
各機能を用い各制御帯の現状燃料流量での材料抽出時平
均温度、均熱度、および材料通過時の各炉温をそれぞれ
計算する第4機能、上記第1、第2、第3の各機能を用
い各制御帯の燃料流量を現状流量からある一定値変化さ
せた時の材料抽出時平均温度、均熱度、および材料通過
時の各炉温をそれぞれ計算する第5機能、上記第4、第
5の各機能の結果に基づき現状燃料流量まわりでの線形
化係数を計算しこれを用いて制約条件下で燃料最少化と
なる最適燃料流量を計算する第6機能、および上記第1
、第2、第3の各機能を用い材料の現在位置より抽出ま
での昇温曲線を決定する第7機能を備え、上記第7機能
に第6機能で得られた最適燃料流量を入力して最適な昇
温曲線を決定し、この最適昇温曲線、現在の材料温度、
将来の材料温度、および将来の炉温の各要素に基づき炉
温設定位置における材料の設定炉温を決定することを特
徴とする連続式加熱炉の制御方法。
In the furnace control of a continuous heating furnace that has multiple control zones, the first function calculates the time change in the furnace temperature using an unsteady heat balance formula based on the fuel flow rate, and calculates the time change in the furnace wall internal temperature from the furnace temperature. A second function to calculate the temporal change in material internal temperature from the furnace temperature, a third function to calculate the average temperature at the time of material extraction at the current fuel flow rate in each control zone using each of the first, second, and third functions. A fourth function that calculates the soaking degree and each furnace temperature when the material passes through, and when the fuel flow rate in each control zone is changed by a certain value from the current flow rate using the first, second, and third functions described above. The fifth function calculates the average temperature during material extraction, the degree of soaking, and each furnace temperature when the material passes through, and calculates the linearization coefficient around the current fuel flow rate based on the results of the fourth and fifth functions above. and a sixth function that uses this to calculate the optimal fuel flow rate that minimizes fuel under constraint conditions, and the first function described above.
, a seventh function that determines the temperature increase curve from the current position of the material to extraction using the second and third functions, and the optimal fuel flow rate obtained in the sixth function is input to the seventh function. Determine the optimal temperature rise curve, and use this optimal temperature rise curve, current material temperature,
A control method for a continuous heating furnace, characterized in that a set furnace temperature of a material at a furnace temperature setting position is determined based on a future material temperature and each element of the future furnace temperature.
JP4038385A 1985-02-27 1985-02-27 Method for controlling continuous heating furnace Pending JPS61199022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4038385A JPS61199022A (en) 1985-02-27 1985-02-27 Method for controlling continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4038385A JPS61199022A (en) 1985-02-27 1985-02-27 Method for controlling continuous heating furnace

Publications (1)

Publication Number Publication Date
JPS61199022A true JPS61199022A (en) 1986-09-03

Family

ID=12579129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4038385A Pending JPS61199022A (en) 1985-02-27 1985-02-27 Method for controlling continuous heating furnace

Country Status (1)

Country Link
JP (1) JPS61199022A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180493A (en) * 1993-12-22 1995-07-18 Seibu Polymer Corp Segment for shield construction method tunnel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180493A (en) * 1993-12-22 1995-07-18 Seibu Polymer Corp Segment for shield construction method tunnel

Similar Documents

Publication Publication Date Title
US4373364A (en) Method of controlling the temperature of a heating furnace
JPS5947324A (en) Controlling method of heating in heating furnace
KR101956365B1 (en) System for control temperature pattern of strip in continuous annealing line and the method of the same
KR20180098337A (en) Temperature control device and temperature control method of steel plate
JPS61199022A (en) Method for controlling continuous heating furnace
JPH03207821A (en) Controlling method for cooling strip in cooling zone of continuous annealing
JPS61261433A (en) Method for controlling temperature of heating furnace
JPS61199018A (en) Method for controlling heating of heating furnace
JPS6036452B2 (en) Control method for continuous heating furnace
JPS61199023A (en) Method for determining heating-up curve of material in heating furnace
JPS61199020A (en) Method for controlling continuous heating furnace
JPS62127422A (en) Method for determining temperature rising curve of material in heating furnace
JPH0532445B2 (en)
JPS61199013A (en) Method for controlling continuous heating furnace
JPH0532446B2 (en)
JPH09296229A (en) Method for controlling combustion of continuous heating furnace
JPH06281364A (en) Temperature control method for heating furnace
JPH0532449B2 (en)
JPH0327608B2 (en)
JPS61199019A (en) Method for controlling continuous heating furnace
JPH09296228A (en) Method for controlling combustion of continuous heating furnace and device therefor
JPH09209044A (en) Operation of continuous type steel cast slab heating furnace
JPS6345454B2 (en)
JPS6140053B2 (en)
JPH04246130A (en) Method for controlling flow rate of combustion gas in continuous annealing furnace