JPH09209044A - Operation of continuous type steel cast slab heating furnace - Google Patents

Operation of continuous type steel cast slab heating furnace

Info

Publication number
JPH09209044A
JPH09209044A JP1552896A JP1552896A JPH09209044A JP H09209044 A JPH09209044 A JP H09209044A JP 1552896 A JP1552896 A JP 1552896A JP 1552896 A JP1552896 A JP 1552896A JP H09209044 A JPH09209044 A JP H09209044A
Authority
JP
Japan
Prior art keywords
temperature
furnace
zone
heating
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1552896A
Other languages
Japanese (ja)
Inventor
Kimiharu Yanagino
公治 柳野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1552896A priority Critical patent/JPH09209044A/en
Publication of JPH09209044A publication Critical patent/JPH09209044A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately estimate the temp. of a cast slab and to execute the smooth operation of a cast slab heating furnace by estimating the present steel cast slab temp. from the actual measured atmospheric temp. in each furnace zone and the steel cast slab condition and suitably controlling the atmospheric temp. of each furnace zone. SOLUTION: The present steel cast temp. is estimated by using a distributing constant system temp. model from the actual measured atmospheric temp. in each furnace zone and a position, thickness, width, length, material and charging time of the steel cast slab in each furnace zone in a continuous type steel cast slab heating furnace in a prescribed period. Successively, heating time in each furnace zone is calculated based on the ejecting order of the steel cast slab from the furnace and further, the steel cast slab temp. till ejecting is calculated by the distributing constant system temp. model. From this result, a constant of a concentrating constant system tap. model is decided in each zone in on-line. Further, a target temp. raising pattern, in which the unit requirement of the fuel is minimized, is calculated by using a prescribed evaluating function at the atmospheric tap. obtd. from the concentrating constant system temp. model substituting the decided constant. The atmospheric temp. in each furnace zone is set so as to be heated along this target temp. raising pattern.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋼鋳片の連続式加
熱炉の操業方法に関し、詳しくは、加熱帯及び均熱帯内
での雰囲気温度を適切に制御し、該加熱炉から抽出され
る鋼鋳片(以下、鋳片という)の温度を所望な値にする
技術に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a continuous heating furnace for steel slabs, and in particular, it is extracted from the heating furnace by appropriately controlling the atmospheric temperature in the heating zone and the soaking zone. The present invention relates to a technique for setting the temperature of a steel slab (hereinafter referred to as a slab) to a desired value.

【0002】[0002]

【従来の技術】製鉄所の熱間圧延工場では、前工程、例
えば連続鋳造工程で得た圧延用素材としての鋳片を、熱
間圧延に適切な温度に再加熱することが多い。そして、
今日ではその加熱手段として、予熱帯、加熱帯2及び均
熱帯3と呼ばれる複数の炉室(炉帯)を有する所謂連続
式加熱炉(以下、単に加熱炉という)が一般に用いられ
ている。
2. Description of the Related Art In a hot rolling plant of an iron mill, a slab as a raw material for rolling obtained in a preceding step, for example, a continuous casting step is often reheated to a temperature suitable for hot rolling. And
Today, a so-called continuous heating furnace (hereinafter, simply referred to as a heating furnace) having a plurality of furnace chambers (furnace zones) called a pre-tropical zone, a heating zone 2 and a soaking zone 3 is generally used as the heating means.

【0003】ところで、この加熱炉は、図1に示すよう
に、製造ラインに沿って長く、また、装入される鋳片1
の鋼種、サイズあるいは装入時温度が様々であるばかり
か、各炉帯2、3での加熱目的も異なるので、管理すべ
き項目が多く炉内の雰囲気温度(以下、炉温という)制
御、ひいては燃料の燃焼制御が非常に難しい。そのた
め、従来より、この炉温制御方法が多々研究され、種々
の実測値をベースにして、鋳片1の加熱状況をシュミレ
ートする数学モデルを作成し、該モデルをオンラインの
計算機で演算しつつ制御する方法が種々開発されてい
る。
By the way, as shown in FIG. 1, this heating furnace is long along the production line, and the cast slab 1 is charged.
Not only are the steel types, sizes, and temperatures at the time of charging different, but the heating purpose in each furnace zone 2, 3 is also different, so there are many items to be controlled, and the atmospheric temperature in the furnace (hereinafter referred to as furnace temperature) control, Eventually, combustion control of fuel is very difficult. Therefore, many studies have been made on this furnace temperature control method, a mathematical model for simulating the heating condition of the slab 1 was created based on various measured values, and the model was controlled by operating the computer online. Various methods have been developed.

【0004】しかしながら、該加熱炉の炉温制御を行う
場合の重要項目は、基本的には(A)鋳片の現在位置で
の温度を推定する部分、(B)加熱炉への鋳片の装入か
ら抽出までの加熱時間を求める部分、(C)目標抽出温
度を達成するまでの理想的な目標昇温パターンを決定す
る部分、(D)求めた目標昇温パターンに鋳片の温度が
できるだけ近づくような設定炉温を決定する部分からな
り、これらのうち、特に(C)と(D)に関しては、近
年めぼしい提案がなされている。
However, the important items for controlling the furnace temperature of the heating furnace are basically (A) the portion for estimating the temperature at the present position of the slab, and (B) the slab for the heating furnace. A part for obtaining a heating time from charging to extraction, (C) a part for determining an ideal target temperature rising pattern until the target extraction temperature is reached, and (D) a target temperature rising pattern for which the temperature of the slab is determined. It consists of a part that determines the set furnace temperature as close as possible, and of these, particularly regarding (C) and (D), remarkable proposals have been made in recent years.

【0005】例えば、特開昭61−199016号公報
は、「鋳片の目標昇温パターンを数学モデルで決定する
際に、燃料流量を現在値からある一定値だけ変化させた
時の該鋳片の抽出時平均温度、均熱度、及び該鋳片が通
過する時の各炉帯温度を計算して、現燃料流量値の近傍
での線形係数を求め、さらに該鋳片の抽出時平均温度、
均熱度に関する制約条件下で燃料流量最小となる最適燃
料流量を線形計画法を用いて求め、この燃料流量から各
鋳片の設定炉温を重み付き平均値として計算して各炉帯
での設定炉温を決定する。」という連続式加熱炉の制御
方法を開示した。
For example, Japanese Patent Application Laid-Open No. 61-199016 discloses, "When determining a target temperature rising pattern of a slab with a mathematical model, the slab is changed when the fuel flow rate is changed from a current value by a certain constant value. Extraction average temperature, soaking degree, and calculating each furnace zone temperature when the slab passes, to obtain the linear coefficient in the vicinity of the current fuel flow rate value, further extraction average temperature of the slab,
The optimum fuel flow rate that minimizes the fuel flow rate under the condition of soaking degree is obtained using linear programming, and the set furnace temperature of each slab is calculated as a weighted average value from this fuel flow rate and set in each furnace zone. Determine the furnace temperature. The method of controlling the continuous heating furnace is disclosed.

【0006】また、特開平2−156017号公報は、
「鋳片が加熱炉から抽出されるまでの期間における各炉
帯での燃料流量設定値を時々刻々求めながら、各鋳片の
温度をシミュレーションすると共に、品質確保、省エネ
ルギーなどの操業目的に従って設定された所定の評価関
数の値を求め、この値が最小になるよう最急降下法など
の非線形最適化手法を用いて該鋳片の目標昇温パターン
を求め、燃料流量と鋳片温度を線形近似したモデルを用
いて、上記で求めた目標昇温パターンに近づくように燃
料流量を設定する。」という連続式加熱炉の燃焼制御方
法を開示した。
Further, Japanese Patent Laid-Open No. 2-156017 discloses that
“The temperature of each slab is simulated while the fuel flow rate set value in each furnace zone is calculated every moment until the slab is extracted from the heating furnace, and it is set according to the operation purpose such as quality assurance and energy saving. The value of the predetermined evaluation function was obtained, and the target temperature rise pattern of the cast was calculated using a non-linear optimization method such as the steepest descent method so that this value was minimized, and the fuel flow rate and the cast temperature were linearly approximated. Using the model, the fuel flow rate is set so as to approach the target heating pattern obtained above. "

【0007】しかしながら、特開昭61−199016
号公報及び特開平2−156017号公報に記載のもの
は、最終的に設定するものが炉温、燃料流量と違いはあ
るもの、基本的には、燃料流量と鋳片温度、あるいは燃
料流量と炉温との関係を数学モデルで線形近似して求め
ている点で同じである。そして、これらの関係は、実際
には該モデルよりもっと複雑で、且つ本質的に非線形で
あるため、燃料流量等の変化量が大きくなるほど、実際
と計算結果との間の誤差が増加し、加熱炉の燃焼制御が
円滑に行かないという問題があった。
However, JP-A-61-199016
Japanese Patent Laid-Open Publication No. 2-156017 and Japanese Patent Laid-Open Publication No. 2-156017 have final differences that are different from the furnace temperature and the fuel flow rate. Basically, the fuel flow rate and the slab temperature or the fuel flow rate are set. It is the same in that the relationship with the furnace temperature is obtained by linear approximation using a mathematical model. And since these relationships are actually more complicated than the model and are essentially non-linear, the larger the amount of change in fuel flow rate, etc., the greater the error between the actual and calculated results, and There was a problem that the combustion control of the furnace was not performed smoothly.

【0008】一方、非線形の数学モデルを用いて加熱炉
の燃焼制御を行う方法もあるが、その方法は、燃料流量
や炉温の最適化計算が非常に煩雑で、操業予定の変更の
たびに最適化計算をやり直したり、該最適化計算自体が
時間を要するため、操作量変更のアクションが遅れ、せ
っかく計算した最適化の効果が減少するという問題があ
った。
On the other hand, there is also a method of controlling the combustion of a heating furnace by using a non-linear mathematical model, but this method is very complicated in the optimization calculation of the fuel flow rate and the furnace temperature, and the operation schedule is changed every time. Since the optimization calculation is redone or the optimization calculation itself takes time, there is a problem that the action amount changing action is delayed, and the effect of the optimized calculation is reduced.

【0009】そこで、特開平3−140415号公報
は、「オンラインでの計算機負荷低減を目的として、鋳
片温度を以下に示すような集中定数系の温度モデルと
し、炉からの抽出時温度と均熱度(鋳片搬送のためのス
キッドがある部分とない部分での鋳片の温度差)が目標
値通りとなるような目標昇温パターンを決定する。」と
いう加熱炉の材料昇温曲線決定方法を開示した。
In view of this, Japanese Patent Laid-Open No. 3-140415 discloses, "For the purpose of reducing the computer load on-line, the slab temperature is set as a temperature model of a lumped constant system as shown below, and is equal to the temperature at the time of extraction from the furnace. A target temperature rising pattern is determined so that the heat value (the temperature difference of the slab in the part with and without skids for conveying the slab) matches the target value. " Was disclosed.

【0010】 θ0 =θg−(θg−θi)・exp(−α・t/D) ……(1’) α=a・σ/(ρ・Cp)・(θg2 +θ0 2 )・(θg+θ0 ) ……(2’) ここで、a:修正係数[−] この方法によれば、温度モデルを簡素化しているため、
鋳片の目標昇温パターン、あるいは設定炉温を求める際
に計算負荷低減が期待できた。
Θ 0 = θg− (θg−θi) · exp (−α · t / D) (1 ′) α = a · σ / (ρ · Cp) · (θg 2 + θ 0 2 ) · ( θg + θ 0 ) (2 ′) where a: correction coefficient [−] Since this method simplifies the temperature model,
The calculation load can be expected to be reduced when obtaining the target heating pattern of the slab or the set furnace temperature.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、この方
法にも、修正係数a,比熱Cpというパラメータをオフ
ラインで操業実績をもとに決定した一定値(代表値)と
しているので、加熱炉への鋳片の装入時温度の広範囲
化、鋼種の多品種化など加熱炉内における材料の加熱パ
ターンが複雑になるに伴い、該温度モデルの計算上で誤
差のばらつきが大きくなる。さらに、このばらつきを減
らすには、たくさんの層別を行い、パラメータを求めな
ければならなくなり、その管理が困難となる。また、上
記(2’)式のαは、炉温θgへの鋳片温度の近づきや
すさを示す量であり、さらに、上記(2’)式における
θ0 は、初期鋳片温度θiからt時間後の鋳片温度θ0
の時間平均温度とするのが温度モデルとしてより確かで
あるが、(2’)式では簡略してt時間後の鋳片温度を
採用しているという欠点もある。
However, in this method as well, since the parameters such as the correction coefficient a and the specific heat Cp are set to constant values (representative values) determined based on the operation results off-line, casting to a heating furnace is performed. As the heating pattern of the material in the heating furnace becomes complicated due to the widening of the charging temperature of the pieces and the variety of steel types, the error in the calculation of the temperature model becomes large. Furthermore, in order to reduce this variation, many stratifications must be performed and parameters must be calculated, which makes management difficult. Further, α in the above formula (2 ′) is an amount indicating how close the slab temperature approaches the furnace temperature θg, and θ 0 in the above formula (2 ′) is the initial slab temperature θi to t. Slab temperature after time θ 0
Although it is more reliable as a temperature model to use the time average temperature of the above, there is a drawback that the slab temperature after t hours is simply adopted in the formula (2 ′).

【0012】本発明は、かかる事情に鑑み、炉内にある
鋳片の目標昇温パターンを求める際に使用する集中定数
系温度モデルを見直し、鋳片温度を精度良く推定し、円
滑な鋳片加熱炉の操業を達成する方法を提供することを
目的としている。
In view of the above circumstances, the present invention has reviewed the lumped constant temperature model used to obtain the target temperature rise pattern of the ingot in the furnace, estimates the ingot temperature with high accuracy, and smoothes the ingot. The aim is to provide a method of achieving the operation of a heating furnace.

【0013】[0013]

【課題を解決するための手段】発明者は、上記目的を達
成するため鋭意研究し、集中定数系温度モデルの未知パ
ラメータの決定方法に工夫を凝らし、公知の分布定数系
温度モデルの併用に着眼し、本発明を完成させた。すな
わち、本発明は、炉内を通過中の鋼鋳片温度を推定する
と共に、その推定値、抽出時の目標温度、加熱時間から
該鋼鋳片の目標昇温パターンを決定し、該鋼鋳片が該目
標昇温パターンに沿うよう加熱帯及び均熱帯の雰囲気温
度を設定する連続式鋼鋳片加熱炉の操業方法において、
所定の周期で各炉帯の実測雰囲気温度及び各炉帯内の鋼
鋳片の位置、厚み、幅、長さ、材質、装入温度から分布
定数系温度モデルを用いて現在の鋼鋳片温度を推定し、
炉からの鋼鋳片の抽出順をもとに各炉帯での加熱時間を
計算し、引続き前記分布定数系温度モデルで抽出までの
鋼鋳片温度を計算し、それらの結果から下記集中定数系
温度モデルの定数を各帯毎にオンラインで決定し、さら
に、該定数を代入した該集中定数系温度モデルから求め
た雰囲気温度で下記評価関数を用いて燃料原単位が最小
となる目標昇温パターンを計算し、該目標昇温パターン
に沿って加熱されるよう各炉帯の雰囲気温度を設定する
ことを特徴とする連続式鋼鋳片加熱炉の操業方法であ
る。
[Means for Solving the Problems] The inventor has conducted diligent research in order to achieve the above object, devised a method for determining unknown parameters of a lumped constant temperature model, and focused on the combined use of a known distributed constant temperature model. Then, the present invention has been completed. That is, the present invention estimates the temperature of the steel slab while passing through the furnace, and determines the target temperature rise pattern of the steel slab from the estimated value, the target temperature at the time of extraction, and the heating time. In a method for operating a continuous steel slab heating furnace, which sets a heating zone and an atmospheric temperature of a soaking zone so that a piece follows the target temperature rising pattern,
Current steel slab temperature using a distributed constant temperature model based on the measured atmospheric temperature of each smelting zone and the position, thickness, width, length, material, and charging temperature of the steel slab in each furnace zone in a predetermined cycle. And then
Calculate the heating time in each furnace zone based on the extraction order of steel slabs from the furnace, then calculate the steel slab temperature until extraction with the distributed constant system temperature model, and from the results the following lumped constants The constant of the system temperature model is determined online for each zone, and the target temperature rise that minimizes the fuel consumption rate by using the following evaluation function at the ambient temperature obtained from the lumped constant system temperature model in which the constant is substituted It is a method of operating a continuous steel cast slab heating furnace, characterized in that a pattern is calculated and an atmospheric temperature of each furnace zone is set so that the furnace zone is heated according to the target temperature rising pattern.

【0014】 θ0 =θg−(θg−θi)・exp(−α・t/D) ……(1) α=2・Φcg・σ/(ρ・Cp)・(θg2 +θm2 )・(θg+θm) ……(2) Min(wh×θgh+ws×θgs) ……(3) ここで、各記号は、前記と重複するので、省略する。Θ 0 = θg− (θg−θi) · exp (−α · t / D) (1) α = 2 · Φcg · σ / (ρ · Cp) · (θg 2 + θm 2 ) · ( [theta] g + [theta] m) (2) Min (wh * [theta] gh + ws * [theta] gs) (3) Here, since the respective symbols are the same as those described above, they are omitted.

【0015】また、本発明は、上記目標昇温パターンの
計算を、鋼鋳片の位置がスキッド上及びスキッド間にあ
る場合に分け、個別に行うことを特徴とする連続式鋼鋳
片加熱炉の操業方法でもある。本発明によれば、集中定
数系温度モデルのパラメータを分布定数系(差分モデ
ル)の温度計算結果に基づいてオンラインで決定するの
で、鋳片毎に前記パラメータの決定が可能であり、集中
定数系温度モデルの精度も分布定数系の温度モデル(差
分モデル)とほぼ同等の精度が得られ、かつ計算機負荷
を低減できる。また、求めた温度モデルは、炉温と鋳片
温度との非線形な関係を表現できており、この温度モデ
ルを用いて目標昇温パターンを決定したり、設定炉温決
定を行うため、精度の良い昇温パターン、必要炉温が得
られ、最終結果としての加熱炉の操業が円滑になる。
Further, the present invention is characterized in that the calculation of the target temperature rising pattern is performed separately when the position of the steel slab is on the skid and between the skids, and is individually performed. Is also the operating method. According to the present invention, the parameters of the lumped constant system temperature model are determined online based on the temperature calculation results of the distributed constant system (difference model), so it is possible to determine the parameters for each slab and the lumped constant system The accuracy of the temperature model is almost the same as that of the temperature model of the distributed constant system (difference model), and the load on the computer can be reduced. In addition, the obtained temperature model can express a non-linear relationship between the furnace temperature and the slab temperature.The temperature model is used to determine the target temperature rise pattern and to determine the set furnace temperature. A good temperature rise pattern and required furnace temperature can be obtained, and the final operation of the heating furnace will be smooth.

【0016】[0016]

【発明の実施の形態】以下に、図1〜5に基づき、本発
明の実施の形態を説明する。図1は、本発明の概要をブ
ロック図で表現したものである。それによると、本発明
の重要構成要件である計算ソフトは、鋳片の各炉帯内で
の加熱時間を予測する「加熱時間予測部」、各炉帯の炉
温実測値から公知の分布定数系温度モデルを用いて鋳片
の現状温度を予測する「鋳片温度推定部」、これらの計
算結果から集中定数系温度モデルの定数を決定する「温
度モデル決定部」、そこで決まった温度モデルを用い、
鋳片の最適昇温パターンを定める「目標昇温パターン決
定部」及び該目標昇温パターンに基づき各炉帯から抽出
する鋳片の目標温度値を計算する「設定炉温決定部」で
形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a block diagram showing the outline of the present invention. According to it, the calculation software, which is an important constituent requirement of the present invention, is a "heating time prediction unit" for predicting the heating time in each furnace zone of the slab, a known distribution constant from the furnace temperature actual measurement value of each furnace zone. A "slab temperature estimation unit" that predicts the current temperature of the slab using the system temperature model, a "temperature model determination unit" that determines the constants of the lumped constant system temperature model from these calculation results, and a temperature model determined there Used,
It is formed by the "target temperature rise pattern determination unit" that determines the optimum temperature rise pattern of the slab and the "set furnace temperature determination unit" that calculates the target temperature value of the slab extracted from each furnace zone based on the target temperature rise pattern. ing.

【0017】この場合、公知の分布定数系温度モデルと
しては、一般的な伝熱の偏微分方程式(例えば、特開平
3−140415号公報参照)が用いられ、集中定数系
温度モデルとしては、前記(1)〜(2)式が用いられ
る。但し、本発明では、鋳片が加熱炉内を移動する際に
使用するスキッドの影響を配慮し、各炉帯からの抽出時
の目標鋳片平均温度の達成や抽出時のスキッドマーク温
度(材料スキッド間平均温度と材料スキッド部平均温度
との差)をある範囲内に納めるため、(1)及び(2)
式は、鋳片がスキッド上にある場合とスキッド間にある
場合とに分けて計算されるようになっている。つまり、
前記「鋳片温度推定部」は、図2に示すようなスキッド
部、スキッド間部を内包する部分についての各温度が公
知の2次元差分モデルを用いて計算されるのである。ま
た、対象とする鋳片は、加熱帯、均熱帯と通過し、各帯
の加熱時間は、それら炉帯長さと鋳片移動速度から「加
熱時間予測部」にて求められる。
In this case, as a known distributed constant system temperature model, a general partial differential equation of heat transfer (see, for example, Japanese Patent Laid-Open No. 3-140415) is used. Formulas (1) and (2) are used. However, in the present invention, considering the influence of the skid used when the slab moves in the heating furnace, the achievement of the target slab average temperature during extraction from each furnace zone and the skid mark temperature during extraction (material (1) and (2) to keep the difference between the average temperature between skids and the average temperature of the material skids within a certain range.
The formula is calculated separately for the case where the slab is on the skid and the case where it is between the skids. That is,
In the "cast slab temperature estimation unit", the temperatures of the skid portion and the portion including the skid portion as shown in FIG. 2 are calculated using a known two-dimensional difference model. Further, the target slab passes through the heating zone and the soaking zone, and the heating time of each zone is determined by the "heating time prediction unit" from the furnace zone length and the slab moving speed.

【0018】次に、本発明での計算手順を説明する。ま
ず、「鋳片温度推定部」にて求めてある鋳片の現状温度
及び「加熱時間予測部」にて予測した各帯の加熱時間を
オンラインコンピュータに取り込む。そして、取り込ん
だデータをもとに、ある適当な炉温θg(例えば、現状
炉温)を仮定して加熱した場合の抽出時の鋳片温度を、
前記「鋳片温度推定部」で用いたと同様の差分モデルを
用いて計算する。その結果の1例を図3に示す。また、
現状温度、加熱帯出口での温度、均熱帯抽出時温度につ
いてスキッド部での平均温度を算出し、加熱帯、均熱帯
におけるスキッド部平均温度についての集中定数系温度
モデルの定数を以下のように決定する。なお、加熱帯の
該集中定数温度モデルを決定する場合には、θiを鋳片
の現状温度、θ0 を加熱帯出口での温度とし、均熱帯で
の該温度モデルを決定する場合には、θiを加熱帯出口
での温度、θ0 を均熱帯抽出時温度とする(図4参
照)。定数決定方法 (a)総括熱吸収率Φcgは、前記差分モデルの境界条
件に用いたΦcgを平均化して代表させる。
Next, the calculation procedure in the present invention will be described. First, the present temperature of the slab obtained by the "slab temperature estimation unit" and the heating time of each band predicted by the "heating time prediction unit" are loaded into the online computer. Then, based on the acquired data, the slab temperature at the time of extraction when heating is performed assuming a certain suitable furnace temperature θg (for example, the current furnace temperature),
The calculation is performed using the same difference model as that used in the above “slab temperature estimation unit”. An example of the result is shown in FIG. Also,
Calculate the average temperature in the skid part for the current temperature, the temperature at the heating zone outlet, and the temperature at the time of soaking in the tropical zone, and set the constants of the lumped constant system temperature model for the average temperature of the skid portion in the heating zone and the soaking zone as follows. decide. When determining the lumped constant temperature model of the heating zone, θi is the current temperature of the slab, θ 0 is the temperature at the outlet of the heating zone, and when determining the temperature model in the soaking zone, Let θi be the temperature at the outlet of the heating zone, and θ 0 be the temperature at the extraction of the soaking zone (see FIG. 4). The constant determining method (a) overall heat absorption rate Φcg is represented by averaging Φcg used for the boundary condition of the difference model.

【0019】(b)平均比熱Cpは、各炉帯入口と出口
のスキッド部平均温度から以下のような含熱量を用いた
計算により求める。 Cp=[H(θ0 )−H(θi)]/[θ0 −θi] ……(4) θ0 :各炉帯出口でのスキッド部平均温度[K°] θi:各炉帯入口でのスキッド部平均温度[K°] H(θ0 ):温度θ0 での含熱量[kcal/kg] H(θi):温度θiでの含熱量[kcal/kg] (c)鋳片全体の平均温度θmは、前記(1)及び
(2)式に、炉帯入口でのスキッド部平均温度θi、炉
帯出口でのスキッド部平均温度θ0 、加熱時間t、炉温
θg、総括熱吸収率Φcg、平均比熱Cp、スラブ厚D
を代入することにより、3次方程式の解として一意的に
求めることができる。
(B) The average specific heat Cp is calculated from the average temperature of the skid portion at the inlet and outlet of each furnace zone by calculation using the following heat content. Cp = [H (θ 0 ) −H (θi)] / [θ 0 −θi] (4) θ 0 : Average skid temperature at each zone outlet [K °] θi: At each zone inlet Skid part average temperature [K °] H (θ 0 ): Heat content at temperature θ 0 [kcal / kg] H (θi): Heat content at temperature θi [kcal / kg] (c) The average temperature θm is calculated by using the equations (1) and (2), the skid average temperature θi at the furnace zone inlet, the skid average temperature θ 0 at the furnace zone outlet, the heating time t, the furnace temperature θg, and the total heat absorption. Rate Φcg, average specific heat Cp, slab thickness D
Can be uniquely obtained as a solution of the cubic equation.

【0020】このようにして、スキッド部にある鋳片つ
いての加熱帯及び均熱帯の集中定数系温度モデルが定め
られる。一方、上記と同様にしてスキッド間にある鋳片
に関しても加熱帯及び均熱帯の集中定数計温度モデルが
作成される。なお、実際の計算は、(1)及び(2)式
に代え、本項末に記載する(8)〜(11)式が用いら
れる。
In this way, the heating zone for the slab in the skid portion and the lumped constant temperature model for soaking are determined. On the other hand, similar to the above, a lumped parameter temperature model of the heating zone and the soaking zone is created for the slabs between the skids. In addition, in the actual calculation, equations (8) to (11) described at the end of this section are used instead of equations (1) and (2).

【0021】さらに、各鋳片の目標昇温パターンは、上
記にて決定した集中定数系温度モデルを、加熱制約条件 (イ)炉抽出時のスキッド部平均温度が目標温度以上で
あること、 θsS≧θmok ……(5) (ロ)炉抽出時のスキッド間平均温度とスキッド部平均
温度の差が目標値以下であること、 θsM−θsS≦θski ……(6) (ハ)各炉帯の炉温は、設備上の上限を上回らないこ
と、 θgh≦θghMAX,θgs≦θgsMAX ……(7) 及び、可能な加熱帯炉温と均熱帯炉温の組合せのなかで
各帯炉温が最小になるような評価関数(前記(3)式)
を基に解き、唯一解として計算する。そして、この最適
な炉温の組合せで加熱した際の加熱帯出口でのスキッド
部鋳片の平均温度を炉帯出口での目標温度として定め
る。
Further, the target temperature rise pattern of each slab is obtained by using the lumped constant system temperature model determined above, heating constraint condition (a) that the skid part average temperature at the time of furnace extraction is not less than the target temperature, θsS ≧ θmok …… (5) (b) The difference between the skid average temperature and the skid average temperature at the time of furnace extraction is less than the target value, θsM−θsS ≦ θski …… (6) (c) For each furnace zone The furnace temperature must not exceed the upper limit of the equipment, θgh ≦ θghMAX, θgs ≦ θgsMAX (7), and each zone furnace temperature is the minimum among the possible combinations of heating zone furnace temperature and soaking zone temperature. Such an evaluation function (formula (3) above)
And calculate as the only solution. Then, the average temperature of the skid slab at the heating zone outlet when heating is performed with this optimum combination of furnace temperatures is determined as the target temperature at the furnace zone outlet.

【0022】最後に、設定炉温を決定する方法を説明す
る。上記の方法で、ある鋳片の現時点での炉帯中の位置
に対応した集中定数系温度モデルが決定されている。ま
た、「目標昇温パターン決定部」にて、現時点で炉帯を
出る鋳片のスキッド部についての目標温度が定められて
いる。従って、加熱帯在炉中の鋳片に関しては、(8)
式、及び均熱帯在炉中の鋳片に関しては(9)式を用い
て、各帯出口での目標温度を達成するための炉温がニュ
ートン法等を用いて求められる。この炉温をある炉帯に
存在する全ての鋳片について求め、鋳片の重み付き平均
を行い、操業に必要な炉温を決定する。そして、この設
定炉温を確保あるいは維持するよう、各炉帯に設けられ
たバーナの燃料使用量を調整する。
Finally, a method for determining the set furnace temperature will be described. By the above method, a lumped constant temperature model corresponding to the current position of a cast piece in the furnace zone is determined. In addition, the "target temperature rise pattern determination unit" defines the target temperature for the skid portion of the slab that leaves the furnace zone at the present time. Therefore, regarding the slab in the heating zone furnace, (8)
For the slab in the soaking zone and the slab in the soaking zone, the equation (9) is used to obtain the furnace temperature for achieving the target temperature at each zone outlet using the Newton method or the like. This furnace temperature is obtained for all the slabs existing in a certain furnace zone, the weighted average of the slabs is performed, and the furnace temperature necessary for the operation is determined. Then, the fuel consumption of the burner provided in each furnace zone is adjusted so as to secure or maintain this set furnace temperature.

【0023】本発明に係る連続式鋼鋳片加熱炉の操業方
法を採用し、鋳片を加熱した例を図5に示す。図5よ
り、加熱炉への装入時の鋳片温度が変動しても、均熱帯
出口での鋳片温度がほぼ目標値を達成していることが明
らかである。スキッド部加熱帯温度モデル θhS=θgh−(θgh−θiS)・exp(−αhS・th/D) ……(8) αhS=2・ΦcghS・σ/(ρ・CpsS)・(θgs2 +θmsS2 ) ・(θgs+θmsS)スキッド部均熱帯温度モデル θsS=θgs−(θgs−θhS)・exp(−αsS・ts/D) ……(9) αsS=2・ΦcsS・σ/(ρ・CpsS)・(θgs2 +θmsS2 ) ・(θgs+θmsS)スキッド間加熱帯温度モデル θhM=θgh−(θgh−θiM)・exp(−αhM・th/D) ……(10) αhM=2・ΦcghM・σ/(ρ・CphM)・(θgh2 +θmhM2 ) ・(θgh+θmhM)スキッド間均熱帯温度モデル θsM=θgs−(θgs−θhM)・exp(−αsM・ts/D) ……(11) αsM=2・ΦcgsM・σ/(ρ・CpsM)・(θgs2 +θmsM2 ) ・(θgs+θmsM) ここで、 θgh:加熱帯炉温[K°] θgs:均熱帯炉温[K°] th:加熱帯加熱時間[hr] ts:均熱帯加熱時間[hr] θhS:加熱帯出時スキッド部平均温度[K°] θsS:均熱帯出時スキッド部平均温度[K°] θiS:初期のスキッド部平均温度[K°] ΦcghS:加熱帯スキッド部総括熱吸収率[−] ΦcgsS:均熱帯スキッド部総括熱吸収率[−] CphS:加熱帯スキッド部平均比熱[kcal/kg
K°] CpsS:均熱帯スキッド部平均比熱[kcal/kg
K°] θmhS:加熱帯在炉中平均スキッド部温度[K°] θmsS:均熱帯在炉中平均スキッド部温度[K°] θhM:加熱帯出口スキッド間平均温度[K°] θsM:均熱帯出口スキッド間平均温度[K°] ΦcghM:加熱帯スキッド間総括熱吸収率[−] ΦcgsM:均熱帯スキッド間総括熱吸収率[−] CphM:加熱帯スキッド間平均比熱[kcal/kg
K°] CpsM:均熱帯スキッド間平均比熱[kcal/kg
K°] θmhM:加熱帯在炉中平均スキッド間温度[K°] θmsM:均熱帯在炉中平均スキッド間温度[K°] θghMAX:加熱帯炉温上限値[K°] θgsMAX:均熱帯炉温上限値[K°]
FIG. 5 shows an example of heating a slab by adopting the method for operating a continuous steel slab heating furnace according to the present invention. From FIG. 5, it is clear that even if the slab temperature during charging into the heating furnace fluctuates, the slab temperature at the soaking zone outlet has almost reached the target value. Skid unit heating zone temperature model θhS = θgh- (θgh-θiS) · exp (-αhS · th / D) ...... (8) αhS = 2 · ΦcghS · σ / (ρ · CpsS) · (θgs 2 + θmsS 2)・ (Θgs + θmsS) Skid part uniform temperature model θsS = θgs- (θgs-θhS) ・ exp (-αsS ・ ts / D) (9) αsS = 2 ・ ΦcsS ・ σ / (ρ ・ CpsS) ・ (θgs) 2 + θmsS 2 ) ・ (θgs + θmsS) Skid heating zone temperature model θhM = θgh− (θgh−θiM) · exp (−αhM · th / D) (10) αhM = 2 · ΦcghM · σ / (ρ · CphM ) · (θgh 2 + θmhM 2 ) · (θgh + θmhM) skid HazamaHitoshi tropical temperature model θsM = θgs- (θgs-θhM) · exp (-αsM · ts / D) ...... (11) αsM = 2 ΦcgsM · σ / (ρ · CpsM ) · (θgs 2 + θmsM 2) · (θgs + θmsM) where, θgh: heating zone furnace temperature [K °] θgs: soaking furnace temperature [K °] th: heating zone the heating time [ hr] ts: Uniform heating time [hr] θhS: Average temperature of skid part during heating zone [K °] θsS: Average temperature of skid part during uniform zone output [K °] θiS: Initial average temperature of skid part [K °] ΦcghS: Total heat absorption rate of heating zone skid part [-] ΦcgsS: Total heat absorption rate of soaking zone skid [-] CphS: Average specific heat of heating zone skid part [kcal / kg]
K °] CpsS: average specific heat of soaking zone skid part [kcal / kg
K °] θmhS: Average skid temperature in the heating zone furnace [K °] θmsS: Average skid temperature in the soaking zone [K °] θhM: Average temperature between heating zone outlet skids [K °] θsM: Soaking zone Average temperature between outlet skids [K °] ΦcghM: Overall heat absorption rate between heating zones skids [−] ΦcgsM: Overall heat absorption rate between soaking zone skids [−] CphM: Average specific heat between heating zones skids [kcal / kg]
K °] CpsM: Average specific heat between soaking tropical skids [kcal / kg
K °] θmhM: Average temperature between skids in the heating zone furnace [K °] θmsM: Average temperature between skids in the soaking zone [K °] θghMAX: Upper limit temperature of the heating zone furnace [K °] θgsMAX: Soaking zone furnace Upper temperature limit [K °]

【0024】[0024]

【発明の効果】以上述べたように、発明により、集中定
数系温度モデルを分布定数系(差分モデル)温度モデル
の計算結果に基づいてオンラインで決定するので、鋼鋳
片毎の定数の決定が可能であり、集中定数系温度モデル
の計算精度が分布定数系温度モデルとほぼ同等になる。
また、求めた集中定数系温度モデルを用いて、目標昇温
パターンや設定炉温を計算するので、炉温と鋼鋳片との
非線形性を考慮でき、加熱の精度と計算機負荷の低減を
両立させることができるようになり、円滑な加熱炉の操
業が達成できた。
As described above, according to the present invention, the lumped parameter system temperature model is determined online based on the calculation result of the distributed parameter system (difference model) temperature model. It is possible, and the calculation accuracy of the lumped constant temperature model is almost the same as that of the distributed constant temperature model.
In addition, since the target temperature rise pattern and set furnace temperature are calculated using the obtained lumped parameter system temperature model, the nonlinearity between the furnace temperature and the steel slab can be taken into consideration, and both heating accuracy and computer load can be reduced. As a result, the smooth operation of the heating furnace was achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を説明するブロック図である。FIG. 1 is a block diagram illustrating the present invention.

【図2】鋳片とスキッド位置との関係を示す図である。FIG. 2 is a diagram showing a relationship between a slab and a skid position.

【図3】分布定数系温度モデルで計算した鋳片温度の変
化及び加熱体、均熱帯の炉温を示す図である。
FIG. 3 is a diagram showing changes in a slab temperature calculated by a distributed constant temperature model, a heating element, and a furnace temperature in a soaking zone.

【図4】集中定数系温度モデルの定数決定を説明する図
である。
FIG. 4 is a diagram illustrating determination of constants of a lumped constant temperature model.

【図5】本発明の実施結果を示す図である。FIG. 5 is a diagram showing an implementation result of the present invention.

【符号の説明】[Explanation of symbols]

1.鋼鋳片 2.加熱帯 3.均熱帯 1. Steel slab 2. Heating zone 3. Equal temperature

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炉内を通過中の鋼鋳片温度を推定すると
共に、その推定値、抽出時の目標温度、加熱時間から該
鋼鋳片の目標昇温パターンを決定し、該鋼鋳片が該目標
昇温パターンに沿うよう加熱帯及び均熱帯の雰囲気温度
を設定する連続式鋼鋳片加熱炉の操業方法において、 所定の周期で各炉帯の実測雰囲気温度及び各炉帯内の鋼
鋳片の位置、厚み、幅、長さ、材質、装入温度から分布
定数系温度モデルを用いて現在の鋼鋳片温度を推定し、
炉からの鋼鋳片の抽出順をもとに各炉帯での加熱時間を
計算し、引続き前記分布定数系温度モデルで抽出までの
鋼鋳片温度を計算し、それらの結果から下記集中定数系
温度モデルの定数を各帯毎にオンラインで決定し、さら
に、該定数を代入した該集中定数系温度モデルから求め
た雰囲気温度で下記評価関数を用いて燃料原単位が最小
となる目標昇温パターンを計算し、該目標昇温パターン
に沿って加熱されるよう各炉帯の雰囲気温度を設定する
ことを特徴とする連続式鋼鋳片加熱炉の操業方法。 θ0 =θg−(θg−θi)・exp(−α・t/D) ……(1) α=2・Φcg・σ/(ρ・Cp)・(θg2 +θm2 )・(θg+θm) ……(2) Min(wh×θgh+ws×θgs) ……(3) ここで、 θ0 :t時間後の鋼鋳片温度[K°] θi:初期の鋼鋳片温度[K°] θg:雰囲気温度[K°] t:加熱時間[hr] D:鋼鋳片厚み[m] Φcg:総括熱吸収率[−] σ:ステファンボルツマン定数[kcal/m2 hrK
°4 ] ρ:鋼鋳片の比重[kg/m3 ] Cp:鋼鋳片の比熱[kcal/kgK°] θm:鋼鋳片平均温度[K°] wh:加熱帯雰囲気温度の重み[−] ws:均熱帯雰囲気温度の重み[−] θgh:加熱帯雰囲気温度[K°] θgs:均熱帯雰囲気温度[K°]
1. A steel slab temperature is estimated by estimating the temperature of the steel slab while passing through the furnace, and determining a target temperature rising pattern of the steel slab from the estimated value, the target temperature during extraction, and the heating time. In the operating method of the continuous steel slab heating furnace in which the heating zone and the soaking zone atmosphere temperature are set so as to follow the target heating pattern, the measured atmospheric temperature of each furnace zone and the steel in each furnace zone are set at a predetermined cycle. Estimate the current steel slab temperature using the distributed constant temperature model from the position, thickness, width, length, material and charging temperature of the slab,
Calculate the heating time in each furnace zone based on the extraction order of steel slabs from the furnace, then calculate the steel slab temperature until extraction with the distributed constant system temperature model, and from the results the following lumped constants The constant of the system temperature model is determined online for each zone, and the target temperature rise that minimizes the fuel consumption rate by using the following evaluation function at the ambient temperature obtained from the lumped constant system temperature model in which the constant is substituted A method for operating a continuous steel slab heating furnace, comprising: calculating a pattern and setting an atmospheric temperature of each furnace zone so that the furnace zone is heated according to the target heating pattern. θ 0 = θg− (θg−θi) · exp (−α · t / D) (1) α = 2 · Φcg · σ / (ρ · Cp) · (θg 2 + θm 2 ) · (θg + θm) (2) Min (wh × θgh + ws × θgs) (3) Where, θ 0 : Steel slab temperature [K °] after t hours θi: Initial steel slab temperature [K °] θg: Atmosphere Temperature [K °] t: Heating time [hr] D: Steel slab thickness [m] Φcg: Overall heat absorption rate [−] σ: Stefan Boltzmann constant [kcal / m 2 hrK
° 4 ] ρ: Specific gravity of steel slab [kg / m 3 ] Cp: Specific heat of steel slab [kcal / kgK °] θm: Average temperature of steel slab [K °] wh: Weight of heating zone atmosphere temperature [- ] Ws: Weight of soaking zone atmosphere temperature [-] θgh: Heating zone atmosphere temperature [K °] θgs: Soaking zone atmosphere temperature [K °]
【請求項2】 上記目標昇温パターンの計算を、鋼鋳片
の位置がスキッド上及びスキッド間にある場合に分け、
個別に行うことを特徴とする請求項1記載の連続式鋼鋳
片加熱炉の操業方法。
2. The calculation of the target heating pattern is divided into cases where the position of the steel slab is on the skid and between the skids,
The method for operating a continuous steel slab heating furnace according to claim 1, wherein the method is carried out individually.
JP1552896A 1996-01-31 1996-01-31 Operation of continuous type steel cast slab heating furnace Pending JPH09209044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1552896A JPH09209044A (en) 1996-01-31 1996-01-31 Operation of continuous type steel cast slab heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1552896A JPH09209044A (en) 1996-01-31 1996-01-31 Operation of continuous type steel cast slab heating furnace

Publications (1)

Publication Number Publication Date
JPH09209044A true JPH09209044A (en) 1997-08-12

Family

ID=11891318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1552896A Pending JPH09209044A (en) 1996-01-31 1996-01-31 Operation of continuous type steel cast slab heating furnace

Country Status (1)

Country Link
JP (1) JPH09209044A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274421A (en) * 2005-03-30 2006-10-12 Jfe Steel Kk Combustion control method of continuous heating furnace
JP2010054109A (en) * 2008-08-28 2010-03-11 Ngk Insulators Ltd Heating chamber temperature deciding method and heating chamber temperature optimizing method
CN113699335A (en) * 2021-07-27 2021-11-26 宝武杰富意特殊钢有限公司 Manufacturing method of high-quality 60Si2Mn low decarburized layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274421A (en) * 2005-03-30 2006-10-12 Jfe Steel Kk Combustion control method of continuous heating furnace
JP2010054109A (en) * 2008-08-28 2010-03-11 Ngk Insulators Ltd Heating chamber temperature deciding method and heating chamber temperature optimizing method
CN113699335A (en) * 2021-07-27 2021-11-26 宝武杰富意特殊钢有限公司 Manufacturing method of high-quality 60Si2Mn low decarburized layer

Similar Documents

Publication Publication Date Title
CN106636606B (en) A kind of method for controlling furnace temperature of heating furnace based on simulation model
JPS6111289B2 (en)
JPS5947324A (en) Controlling method of heating in heating furnace
CN114126777B (en) Method for controlling a cooling device in a rolling train
JPH09209044A (en) Operation of continuous type steel cast slab heating furnace
JP4998655B2 (en) Combustion control method for continuous heating furnace
JP3710572B2 (en) Heating furnace control device
JPH0663039B2 (en) Temperature control device for heating furnace
Staalman et al. On-line slab temperature calculation and control
JP3982042B2 (en) Combustion control method for continuous heating furnace
JP3537215B2 (en) Heating furnace temperature controller
JPH0929401A (en) Method for controlling temperature of molten steel in tundish for continuous casting
JPH11335739A (en) Method and device for heating temp. control of continuous heating furnace
JPS5819435A (en) Controlling method for continuous heating furnace
JPH01246322A (en) Apparatus for setting furnace temperature in continuous heating furnace
JPS61170508A (en) Method for erasing skid mark in continuous heating furnace
JPH06306453A (en) Method for eliminating skid mark in continuous heating furnace
Andreev et al. Obtaining reliable information on energy-saving regimes for the heating of continuous-cast semifinished products prior to rolling
JPH03162526A (en) Method for determining temperature rising cure of material of heating furnace
JPH03140415A (en) Method for determining material heating-up curve in heating furnace
JPH03223417A (en) Successive estimation of parameter in combustion control of continuous heating furnace and its utilization
JP2000073126A (en) Method for controlling combustion in continuous type heating furnace
JPH09157760A (en) Method of controlling furnace temperature in continuous heating furnace
JP2005076935A (en) Billet heating furnace and operation method thereof
JPH08260055A (en) Method for controlling furnace temperature of steel heating furnace

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030729