JPS61170508A - Method for erasing skid mark in continuous heating furnace - Google Patents

Method for erasing skid mark in continuous heating furnace

Info

Publication number
JPS61170508A
JPS61170508A JP1288285A JP1288285A JPS61170508A JP S61170508 A JPS61170508 A JP S61170508A JP 1288285 A JP1288285 A JP 1288285A JP 1288285 A JP1288285 A JP 1288285A JP S61170508 A JPS61170508 A JP S61170508A
Authority
JP
Japan
Prior art keywords
skid
temperature
heating
skid beam
slab material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1288285A
Other languages
Japanese (ja)
Inventor
Fumiki Hirao
平尾 文樹
Tadashi Makino
義 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1288285A priority Critical patent/JPS61170508A/en
Publication of JPS61170508A publication Critical patent/JPS61170508A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To erase effectively skid marks by providing an auxiliary skid beam to the point off the extension line of the plane view on the down stream of skid beam and calculating the temp. distribution on the bottom surface of a material to be heated which is transferred from the skid beam to the auxiliary skid beam. CONSTITUTION:The auxiliary skid beam 15 is provided at the point off the extension line of the plane view on the down stream of the skid beam 11 and a heater 13 is provided to face upward below the extension line at the point provided with the auxiliary skid beam 15. The temp. distribution on the bottom surface of the material 11 to be heated when said material is transferred from the beam 11 to the beam 15 is then calculated and the quotient of the difference between the max. temp. and min. temp. thereof and an average temp. is determined. The heating of the heater 13 is controlled in order to erase the skid mark in accordance with such quotient and the predicted value of the residual time for heating by the heater 13.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、連続加熱炉に装入された被加熱材下面に生じ
るスキッドマークを消去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for erasing skid marks that occur on the lower surface of a material to be heated that is charged into a continuous heating furnace.

〔従来技術〕[Prior art]

連続加熱炉に装入された被加熱材、例えばスラブ材は炉
に付設されたスキッドビーム上を移送される間に加熱さ
れるが、一般にスキッドビームにはスラブ支持のための
、水冷されて温度の低いスキントポタン又はスキントレ
ールが設けられており、このスキッドボタン又はスキッ
ドビームと接触しているスラブ材下面部分が他の接触し
ていない部分に比べて低温となり、そのためスキッドマ
ークが発生していた。
The material to be heated, such as a slab material, charged into a continuous heating furnace is heated while being transferred on a skid beam attached to the furnace.Generally, the skid beam is water-cooled to support the slab. The lower surface of the slab material that is in contact with the skid button or skid beam is at a lower temperature than other parts that are not in contact with the skid button or skid beam, resulting in skid marks.

スキッドマークは圧延後の成品の寸法精度9品質等に悪
影響を及ぼすため、これを発生させないことが望まれる
Since skid marks have a negative effect on the dimensional accuracy 9 quality of rolled products, it is desirable to prevent them from occurring.

近年、連続加熱炉においては一般に省エネルギー化がt
上向され、低温抽出操業が実施されており、このため炉
内温度を従来よりも低温とする操業を行っている。とこ
ろが炉内温度が低温となる程大きいスキッドマークが発
生するため上記操業に制限が生じる場合があった。
In recent years, continuous heating furnaces have generally become more energy efficient.
The plant has been upgraded and low-temperature extraction operations are being carried out, and for this reason the temperature inside the furnace is lower than before. However, as the temperature inside the furnace becomes lower, larger skid marks occur, which may limit the above-mentioned operation.

このため種々のスキッドマークの発生防止対策が提案さ
れている0例えばスキッドビームを電気抵抗加熱して高
温度にすることにより防止する方法A(特公昭42−1
5449号)、炉天井側に噴流加熱バーナを設けてスラ
ブ材のスキッドマークが発生する位置の上面側を局部加
熱する方法B(特公昭57−54529号)、炉の上流
側の予熱帯、加熱帯に設けたスキッドビームの位置に対
して下流側の均熱帯におけるスキッドビームを、その上
流側のスキッドビームの延長線を外れる位置に設けてス
ラブ材のスキッドビームと接触する位置を変更し、スキ
ッドマークの発生を抑制する方法C(Revueda 
Me’tallargie −CI T  Mars 
1984)等がある。
For this reason, various measures to prevent the occurrence of skid marks have been proposed. For example, method A (Japanese Patent Publication No. 42-1
5449), Method B (Special Publication No. 57-54529), in which a jet heating burner is installed on the furnace ceiling to locally heat the upper surface of the slab material where skid marks occur (Japanese Patent Publication No. 57-54529), a preheating zone on the upstream side of the furnace, The position of the skid beam in the soaking zone on the downstream side of the position of the skid beam installed in the tropical zone is set at a position that is out of the extension line of the skid beam on the upstream side, and the position where it contacts the skid beam of the slab material is changed, and the skid beam is Method C for suppressing the occurrence of marks (Revueda
Me'tallargie-CI T Mars
1984) etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、A法の電気抵抗加熱では大型工業炉への通用に
関して耐久性、安全性等技術的に問題がある。またB法
では上方からスラブ材を局部加熱しているが、スラブ下
面でのスキッドビームへの放熱がなくなる訳ではな(ス
キッドマークの発生防止は不可能であった。またB法で
は炉床設置型の噴流加熱設備の一般的方法が述べられて
いるが、この方法ではスキッドビームが損傷し実用的で
ない。C法ではスキッドマークを消去するのに長時間を
要し、標準的な加熱工程の場合にはその加熱時間内にス
キッドマークを消去することができず、これに加えて均
熱帯のスキッドビーム位置に新たなスキッドマークが発
生し、結果的にはスキ7ドマークの数が増加するだけで
あった。また、上記A、 B、 Cいずれの方法も鋼種
9寸法、加熱履歴等に応じて最適な加熱制御が行われて
おらず、単にスキッドマーク部分の温度を上昇せしめる
だけであった。
However, electric resistance heating using Method A has technical problems such as durability and safety in applicability to large industrial furnaces. In addition, in method B, the slab material is locally heated from above, but this does not eliminate heat radiation to the skid beam at the bottom of the slab (it was impossible to prevent skid marks from occurring.Also, in method B, the hearth is installed A general method for jet heating equipment is described, but this method damages the skid beam and is not practical.Method C requires a long time to erase skid marks and is difficult to use in standard heating processes. In this case, the skid marks cannot be erased within the heating time, and in addition, new skid marks are generated at the skid beam position in the soaking zone, resulting in an increase in the number of skid marks. In addition, in all of the above methods A, B, and C, optimal heating control was not performed according to the steel type, dimensions, heating history, etc., and the temperature at the skid mark portion was simply increased. .

更に、スラブ材が加熱炉内にあるとき、又は加熱炉から
抽出された直後においてはスラブ材下面の温度を精度よ
く計測する技術が未だ開発されておらず、このため仮に
上述のような最適加熱制御を実施しようとしても不可能
であった。
Furthermore, no technology has yet been developed to accurately measure the temperature of the bottom surface of the slab material while it is in the heating furnace or immediately after it has been extracted from the heating furnace. Attempts to implement controls were impossible.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は斯かる事情に鑑みてなされたものであり、連続
加熱炉のスキッドビーム上を移送される被加熱材の下面
に形成されたスキッドマーク部分と接触しないように抽
出口近くのスキッドビームをスキッドマーク部分から避
けて設置すると共に、上流側のスキッドビームの延長上
にはスキッドマーク部分を加熱できるように加熱装置を
設けておき、スキッドマーク部分のスラブ下面の平均温
度に対する温度差を計算により求め、その温度差を補助
加熱して解消することにより、スキッドマークを消去し
得る連続加熱炉におけるスキッドマーク消去方法を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and is designed to prevent the skid beam near the extraction port from coming into contact with the skid mark portion formed on the lower surface of the material to be heated that is transferred on the skid beam of the continuous heating furnace. In addition to installing it away from the skid mark part, a heating device is installed on the extension of the skid mark part on the upstream side to heat the skid mark part, and the temperature difference between the skid mark part and the average temperature of the bottom surface of the slab is calculated. It is an object of the present invention to provide a method for erasing skid marks in a continuous heating furnace, which can erase skid marks by determining the temperature difference and eliminating the temperature difference by performing auxiliary heating.

本発明に係る連続加熱炉におけるスキッドマーク消去方
法は、連続加熱炉内のスキッドビーム上を移送される被
加熱材の下面のスキッドマークを消去する方法において
、 スキッドビーム下流側の平面視の延長線を外れた箇所に
補助スキッドビームを設け、また補助スキッドビームを
設けた箇所の前記延長線の下方に加熱装置を上向きに設
け、 スキッドビームから補助スキンドビームヘ被加熱材が移
送される際の被加熱材下面の温度分布を算出し、その最
高温度と最低温度との差と平均温度との商を求め、この
商および前記加熱装置による加熱残時間予測値に基づい
てスキッドマークを消去すべ(加熱装置の加熱制御を行
うことを特徴とする。
A skid mark erasing method in a continuous heating furnace according to the present invention is a method for erasing skid marks on the lower surface of a material to be heated that is transferred on a skid beam in a continuous heating furnace. An auxiliary skid beam is provided at a location away from the auxiliary skid beam, and a heating device is provided upward below the extension line of the auxiliary skid beam, so that when the material to be heated is transferred from the skid beam to the auxiliary skind beam, Calculate the temperature distribution on the lower surface of the heated material, find the quotient of the difference between the maximum temperature and the minimum temperature and the average temperature, and erase the skid marks based on this quotient and the predicted value of the remaining heating time by the heating device ( It is characterized by controlling the heating of the heating device.

〔実施例〕〔Example〕

以下本発明を図面に基づき具体的に説明する。 The present invention will be specifically explained below based on the drawings.

第1図は本発明の実施状態を示す模式図、第2図は連続
加熱炉の平面断面図、第3図は第2図の■−III線に
よる拡大断面図であり、図中1はウオーキングビーム方
式の連続加熱炉lOに装入されたスラブ材を示す。スラ
ブ材lは例えば水平かつ平行な2条の固定スキッドビー
ム11.11上に載せられ、回転するクランク(図示せ
ず)により固定スキッドビーム11.11の外側に夫々
指示された2条の移動スキッドビーム12.12の動き
によりその幅方向(白抜矢符方向)に移送される。スラ
ブ材lは装入口10dより装入されたのち加熱炉lOの
予熱帯10a。
FIG. 1 is a schematic diagram showing the implementation state of the present invention, FIG. 2 is a plan sectional view of a continuous heating furnace, and FIG. 3 is an enlarged sectional view taken along the line ■-III in FIG. A slab material charged into a beam-type continuous heating furnace IO is shown. The slab material l is placed, for example, on two horizontal and parallel fixed skid beams 11.11, and two moving skids are respectively directed to the outside of the fixed skid beams 11.11 by rotating cranks (not shown). The movement of the beam 12.12 transports it in its width direction (in the direction of the open arrow). The slab material l is charged through the charging port 10d and then transferred to the preheating zone 10a of the heating furnace lO.

加熱帯10b、均熱帯10cにて順次加熱される。It is sequentially heated in the heating zone 10b and the soaking zone 10c.

固定スキッドビーム11.11の下流側端部は加熱炉I
Oの抽出口10eからスラブ材1の幅方向寸法程度上流
側の位置で下方に曲げられている。固定スキッドビーム
11.11の下流側端部と抽出口10eとの間の固定ス
キッドビーム比liの下流側端部より下流側延長線の下
方に夫々上向きのバーナ部13a。
The downstream end of the fixed skid beam 11.11 is connected to the heating furnace I.
It is bent downward at a position upstream of the width direction dimension of the slab material 1 from the O extraction port 10e. Upward burner portions 13a are located below the downstream extension of the downstream end of the fixed skid beam ratio li between the downstream end of the fixed skid beam 11.11 and the extraction port 10e.

13aが設けられており、該バーナ部13a、 13a
は夫々スラブ材1の幅方向に複数のバーナを有している
。バーナ部13a、 13aには局部加熱装置13によ
り流量調整されて燃料が供給されるようになっている。
13a is provided, and the burner portions 13a, 13a
each has a plurality of burners in the width direction of the slab material 1. Fuel is supplied to the burner sections 13a, 13a with the flow rate adjusted by the local heating device 13.

バーナ部13a及び13a間には固定スキッドビーム1
1の下流端よりも下流側にスラブ材1の幅寸法よりも少
し長い補助スキッドビーム15が前記固定スキッドビー
ム11と同方向かつ同高さに固設されており、移動スキ
ッドビーム12の働きによりスラブ材lは固定スキッド
ビーム11上から補助スキッドビーム5上への移送が可
能になっている。
A fixed skid beam 1 is provided between the burner parts 13a and 13a.
An auxiliary skid beam 15, which is slightly longer than the width of the slab material 1, is fixed on the downstream side of the downstream end of the slab material 1 at the same direction and height as the fixed skid beam 11. The slab material l can be transferred from the fixed skid beam 11 onto the auxiliary skid beam 5.

予熱帯10a、加熱帯10b、均熱帯10cの各天井側
Each ceiling side of the pre-heating zone 10a, heating zone 10b, and soaking zone 10c.

法例には温度計16.16・・・16が取付けられてお
り、温度計16の温度測定信号はスキッドマーク指数計
算装置2及び局部加熱制御装置3へ与えられる。
Thermometers 16, 16, .

スキッドマーク指数計算装置2はスラブ材lの加熱炉1
0への装入から抽出までの間の所定時間毎に、スラブ材
1の下面の温度布及び圧延後の成品の寸法精度2品質と
強い相関のある後述するスキッドマーク指数を算出し、
算出したスキッドマーク指数を局部加熱制御装置3へ出
力するものである。スキッドマーク指数計算装置3には
スラブ材1の下面の温度(T i+ j)分布およびス
キッドマー次元非定常熱伝導の偏微分方程式を差分近イ
良より回折する手法の公知の例えばスラブ下面について
ては、下記(11,(21式が設定されている。
The skid mark index calculation device 2 is a heating furnace 1 for slab material l.
At every predetermined time interval from charging to extraction, calculate the skid mark index described below, which has a strong correlation with the temperature distribution on the bottom surface of the slab material 1 and the dimensional accuracy 2 quality of the rolled product, and
The calculated skid mark index is output to the local heating control device 3. The skid mark index calculation device 3 uses a well-known method of diffracting the temperature (T i + j) distribution on the bottom surface of the slab material 1 and the partial differential equation of skidmer-dimensional unsteady heat conduction from the difference near-field, for example, on the bottom surface of the slab material 1. The following formulas (11 and (21) are set.

(以 下 余 白) ρ・C−dx−dy2 ρ 畳 c  −dxedy ql −σ ・ φ1 ・Pi +σ・φ2 ・ (1−Fi) 表面積当りに炉壁及びスキッドビ ームから受ける熱量 λニスラブ材1の熱伝導率 ρニスラブ材lの比重 Cニスラブ材lの比熱 σ:ステファンボルツマン定数 φI ニスラブ材lの炉壁からの総括熱吸収率 φ2 ニスラブ材lのスキッドビームからの総括熱吸収
率 なお、T i 、 j等は第4図に示すようにスラブ材
lが一定の長さピッチdx、一定の厚みピッチdyで区
画される領域の中心点での温度を示し、添字iはスラブ
材lの長さ方向での領域、添字jはその厚さ方向での領
域を示しており、スラブ下面の場合j=1となる。また
Ti、j’等は前時点で計算した領域1+J等における
温度である。
(Margins below) ρ・C−dx−dy2 ρ Tatami c −dxedy ql −σ ・φ1 ・Pi +σ・φ2 ・ (1−Fi) Amount of heat received from the furnace wall and skid beam per surface area λ of the varnish slab material 1 Thermal conductivity ρ Specific gravity of varnish slab material 1 C Specific heat of varnish slab material σ: Stefan Boltzmann constant φI Overall heat absorption rate of varnish slab material 1 from the furnace wall φ2 Overall heat absorption rate of varnish slab material 1 from the skid beam Note that T i , j, etc. indicate the temperature at the center point of the area where the slab material l is divided by a constant length pitch dx and a constant thickness pitch dy, as shown in Figure 4, and the subscript i indicates the length of the slab material l. The subscript j indicates the area in the thickness direction, and in the case of the bottom surface of the slab, j=1. Further, Ti, j', etc. are the temperatures in the region 1+J, etc. calculated at the previous point in time.

また、Fiはスラブ材l下面の1番目の領域と炉壁との
間の形態〔スキッドビームに邪魔をされない割合(0≦
Pi≦1)〕に関する計数、 Tfは当該計算時点に温
度計16等から入力された炉壁温度。
In addition, Fi is the shape of the shape between the first region of the bottom surface of the slab material l and the furnace wall [ratio not disturbed by the skid beam (0≦
Pi≦1)]; Tf is the furnace wall temperature input from the thermometer 16 etc. at the time of the calculation.

T3は当該計算時点でのスキッドビーム温度、 dtは
前時点から当該計算時点までのスラブ材の炉内滞留時間
であり、上記Tsは通常の炉操業では略一定であるので
定数としている。
T3 is the skid beam temperature at the time of the calculation, dt is the residence time of the slab material in the furnace from the previous time to the time of the calculation, and since Ts is approximately constant during normal furnace operation, it is taken as a constant.

スキッドマーク指数計算装置2は、上位計算機(図示せ
ず)から各スラブ材lの炉内位置等に関する信号が入力
され、前記(1)、 (21式によりδ1゜Ti、jを
算出するために必要な情報、即ちλ、ρ。
The skid mark index calculation device 2 receives signals regarding the in-furnace position of each slab material l from a host computer (not shown), and calculates δ1°Ti,j using equations (1) and (21). Necessary information, namely λ, ρ.

C、dX+ d3’+  ’ +  φ1.φ2 、 
Fi、 Tsが設定されており、また同一のスラブ材1
に関する前時点で計算した温度Ti、j’を記憶するよ
うになっている。
C, dX+ d3'+ ' + φ1. φ2,
Fi, Ts are set, and the same slab material 1
The temperature Ti,j' calculated at the previous point in time is stored.

スキッドマーク指数計算装置2は所定時間毎に上位計算
機(図示せず)が出力する信号に基づいて該当スラブ材
の炉内位置に対応する温度計16より炉壁温度Tfの取
込みを行い、その温度計16からの入力信号Tf、上記
(ll、 +21式及び設定されているλ、 p、 c
、 σ、φ1.φ2 、 Fi+ Fs+ Ti汀等に
基づいてqlを求めてスラブ材1の各領域でスラブ材l
の下面の各領域での温度値よりその最大値と最小値との
差ΔT  (>O)及び下面の各除した商(以下これを
スキッドマーク指数という)御装置3へ出力する。第6
図はある時点でスキンドマーク指数計算装置2が算出し
たTi、jに基づいてスラブ材lの長さ方向の断面での
温度分布例を示す図である。
The skid mark index calculation device 2 takes in the furnace wall temperature Tf from the thermometer 16 corresponding to the position of the applicable slab material in the furnace based on the signal output from the host computer (not shown) at predetermined time intervals. The input signal Tf from a total of 16, the above (ll, +21 formula and the set λ, p, c
, σ, φ1. Calculate ql based on φ2, Fi + Fs + Ti, etc., and calculate the value of slab material l in each area of slab material 1.
From the temperature values in each region of the lower surface, the difference ΔT (>O) between the maximum value and the minimum value and the quotient divided by each of the lower surfaces (hereinafter referred to as skid mark index) are output to the control device 3. 6th
The figure is a diagram showing an example of temperature distribution in a cross section in the longitudinal direction of the slab material l based on Ti and j calculated by the skinned mark index calculation device 2 at a certain point in time.

時間予測装置4は図示しない上位計算機より先行スラブ
材の抽出ピッチ、圧延計画に基づくスラブ材1の寸法、
鋼種1本数等の操業スケジュールに関する情報が入力さ
れ、その抽出ピッチに基づき該当スラブ材lの予定抽出
時刻を求める。求めた値は局部加熱制御装置3へ入力さ
れる。
The time prediction device 4 receives the extraction pitch of the preceding slab material from a host computer (not shown), the dimensions of the slab material 1 based on the rolling plan,
Information regarding the operation schedule, such as the number of steel types and the like, is input, and the scheduled extraction time of the corresponding slab material l is determined based on the extraction pitch. The determined value is input to the local heating control device 3.

局部加熱制御装置3はスキッドマーク指数計算加熱装置
13の燃料供給量を調整してそれを抽出時点には略ゼロ
にする。つまり、抽出時点のスラブ材lの下面温度分布
を求めて抽出時点のスキッド算してそのスキッドマーク
指数を目標の抽出時点容範囲内で一致させるように前記
局部加熱装置13の加熱温度を、時間予測装置4から入
力される該当スラブ材lの予定抽出時刻まで所定時間毎
に求める。求めた加熱温度は計算の都度局部加熱装置1
3へ出力される。
The local heating control device 3 adjusts the fuel supply amount of the skid mark index calculation heating device 13 to make it approximately zero at the time of extraction. In other words, the heating temperature of the local heating device 13 is adjusted over time so that the bottom surface temperature distribution of the slab material l at the time of extraction is calculated, the skid at the time of extraction is calculated, and the skid mark index is matched within the target extraction time content range. It is calculated at predetermined time intervals until the scheduled extraction time of the applicable slab material I input from the prediction device 4. The obtained heating temperature is determined by the local heating device 1 each time the calculation is performed.
Output to 3.

局部加熱制御装置3は抽出時点におけるスラブ材lの下
面の各領域での温度Ti、j等及びスキンうに例えばス
ラブ下面については下記(3)、 (41式が設定され
ている。
In the local heating control device 3, the following formulas (3) and (41) are set for the temperature Ti, j, etc. in each region of the lower surface of the slab material l at the time of extraction, and the skin temperature, for example, for the lower surface of the slab.

(以 下 余 白) ρ ・ c  −dx−dy ql−σ ・ φ1 ・Fi +σ ・ φ3 ・Gi +σ ・ φ2 ・ (IFi−Gi)・・・(4) 但し、ql ニスラブ材l下面が単位時間、単位表面積
当りに炉壁、スキンドビー ム及び局部加熱装置から受ける熱 φ3ニスラブ材1の局部加熱装置による総括熱吸収率 TL 二局部加熱装置の加熱温度 Giミニスラブlの下面を含む領域と局部加熱装置との
間の形態に関する 計数 また、局部加熱制御装置3は(31,(41式より夫々
q2 、Tt、jを算出するために必要な情報、即ちλ
、ρ、  c + dx+ dt、  σ、φ1.φ2
1 φ3 、 Pi。
(Margins below) ρ ・ c -dx-dy ql-σ ・φ1 ・Fi +σ ・φ3 ・Gi +σ ・φ2 ・ (IFi-Gi)...(4) However, ql The bottom surface of varnish slab material l is the unit time. , Heat received per unit surface area from the furnace wall, skinned beam, and local heating device φ3 Overall heat absorption rate of the varnish slab material 1 by the local heating device TL Heating temperature of the local heating device Gi Area including the bottom surface of the mini-slab 1 and local heating In addition, the local heating control device 3 calculates the information necessary to calculate q2, Tt, and j from equations (31, (41), respectively, that is, λ
, ρ, c + dx+ dt, σ, φ1. φ2
1 φ3, Pi.

TL + Ts、 Giが設定されており、又同一スラ
ブ材1の前回計算した温度Ti、j’等を記憶する。
TL + Ts, Gi are set, and the previously calculated temperatures Ti, j', etc. of the same slab material 1 are stored.

なお1.(3)、 (41式におけるT i 、 j’
等の初期設定値は該当スラブ材1が補助スキッドビーム
15上に移送せられる直前のスキッドマーク指数T i
 、 j等を用いる。
Note 1. (3), (T i, j' in formula 41
The initial setting values are the skid mark index T i immediately before the relevant slab material 1 is transferred onto the auxiliary skid beam 15.
, j, etc. are used.

局部加熱制御装置3は固定スキッドビーム11から補助
スキッドビーム15上にスラブ材lが移送せられる直前
に上位計算機(図示せず)から取込信号が入力されるよ
うになっており、この信号が入力されると時間予測装置
4から該当スラブ材1の抽出時刻を取込み、取込んだ時
刻から抽出時刻までの時間を当該のスラブ材lが補助ス
キッドビーム15上で局部加熱される時間として用い、
(31,+41時点における目標のスキッドマーク指数
ΔT /Taνに対して、 但し、ε:基準値(〉0)となるか否かを判定加熱装置
13の目標の加熱温度TLの計算を続行し、(5)式を
満足する値が得られると、その加熱温度TL傷信号局部
加熱装置13へ出力する。
The local heating control device 3 is configured to receive an input signal from a host computer (not shown) immediately before the slab material l is transferred from the fixed skid beam 11 onto the auxiliary skid beam 15. When input, the extraction time of the relevant slab material 1 is taken from the time prediction device 4, and the time from the taken time to the extraction time is used as the time during which the relevant slab material 1 is locally heated on the auxiliary skid beam 15,
(For the target skid mark index ΔT /Taν at time points 31 and +41, however, ε: determines whether the reference value (>0) is reached or not. Continue calculation of the target heating temperature TL of the heating device 13, When a value satisfying equation (5) is obtained, the heating temperature TL flaw signal is output to the local heating device 13.

局部加熱装置13は信号TLを入力すると入力信号TL
と関連づけられた燃料吹出量となるように図示しないバ
ルブの開度を調整する。
When the local heating device 13 receives the signal TL, the local heating device 13 receives the input signal TL.
The opening degree of a valve (not shown) is adjusted so that the amount of fuel blown out is associated with the amount of fuel blown out.

第7図は上記したところをまとめたフローチャートであ
る。スキッドマーク指数計算装置2はあるスラブ材lに
ついて前回計算した時点から次に計算する時点までの時
間計算を行い、その時点になると該当するスラブ材lが
位置する炉壁温度Tfを該当する温度計16より取込み
、そして上位計算機(図示せず)から入力される該当ス
ラブ材の炉内位置情報により該当スラブ材が固定スキッ
ドビーム11上にあるか補助スキッドビーム15上にあ
るかを判別し、該当スラブ材1が固定スキッドビーム1
1上にある場合には再度これを繰り返す。
FIG. 7 is a flowchart summarizing the above. The skid mark index calculation device 2 calculates the time from the previous calculation time to the next calculation time for a certain slab material l, and at that point, the furnace wall temperature Tf where the relevant slab material l is located is measured by a corresponding thermometer. 16 and inputted from a host computer (not shown), it is determined whether the applicable slab material is on the fixed skid beam 11 or the auxiliary skid beam 15, and Slab material 1 is fixed skid beam 1
If it is above 1, repeat this again.

該当スラブ材1が補助スキッドビーム15上にある場合
にはスラブ材1の下面の各領域での温度Ti、jそれら
算出値を局部加熱制御装置3へ出力する。
When the relevant slab material 1 is on the auxiliary skid beam 15, the calculated values of temperatures Ti and j in each region of the lower surface of the slab material 1 are output to the local heating control device 3.

局部加熱制御装置3は上記両算出値が入力されると均熱
帯10cの温度計16より炉壁温度Tfを取込み、目標
とする前記加熱温度TLを仮定して(3)。
When the local heating control device 3 receives both of the above calculated values, it takes in the furnace wall temperature Tf from the thermometer 16 in the soaking zone 10c, and assumes the target heating temperature TL (3).

(41,(51式の計算を行う、即ち、抽出時点のスラ
ブ材lの各点温度及びスキッドマーク指数の予測計が(
5)式を満足するか否かを判定し、満足しない場合は局
部加熱装置13の加熱温度TLの目標値を変更して(5
)式を満足するまで計算する。そして満足する加熱温度
TLを局部加熱装置13へ出力する。
(41, (Calculate formula 51, that is, the temperature at each point of the slab material l at the time of extraction and the skid mark index predictor are (
5) Determine whether or not the formula is satisfied, and if not, change the target value of the heating temperature TL of the local heating device 13 and perform (5)
) Calculate until the formula is satisfied. Then, the satisfying heating temperature TL is output to the local heating device 13.

これにより局部加熱装置13の燃料供給量が適正値に制
御されるのでスラブ材lはその燃焼炎によりスキッドマ
ークが消去される。
As a result, the amount of fuel supplied to the local heating device 13 is controlled to an appropriate value, and skid marks on the slab material 1 are erased by the combustion flame.

そして、スキッドマークが消去された補助スキッドマー
ク15上のスラブ材1は、連続加熱炉lOの下流側に設
けられてあり、スラブ材1の移送方向に前後進でき、ま
た昇降できる図示しないエキストラクターにて取り出さ
れたのち、例えば圧延工程へ送られ圧延される。
The slab material 1 on the auxiliary skid mark 15 from which the skid mark has been erased is placed on the downstream side of the continuous heating furnace IO, and an extractor (not shown) that can move back and forth in the direction of transport of the slab material 1 and can move up and down. After being taken out, it is sent to, for example, a rolling process and rolled.

なお、上記実施例ではウオーキングビーム方式の連続加
熱炉に適用しているが、本発明番士これに限らずスキッ
ドビームが設けられた連続加熱炉すべてに適用できるこ
とは勿論である。
Although the above embodiment is applied to a walking beam type continuous heating furnace, the present invention is of course not limited to this and can be applied to any continuous heating furnace equipped with a skid beam.

また、上記説明ではスラブ材について適用しているが、
本発明はスラブ材に限らず金属材一般について適用でき
ることは勿論である。
Also, although the above explanation applies to slab materials,
Of course, the present invention is applicable not only to slab materials but also to metal materials in general.

更に、上記実h&!例では加熱炉から抽出する直前にス
ラブ材1のスキッドマークを消去するようにしているが
、本発明は抽出直前だけでなく、その途中でもスキンド
ビームの位置を偏位させると共に局部加熱装置を設けて
加熱するようにしてもよい。このように加熱する場合は
装入〜抽出間の時間短縮を図るときに有利である。
Furthermore, the above actual h&! In the example, skid marks on the slab material 1 are erased immediately before extraction from the heating furnace, but in the present invention, the position of the skinned beam is shifted not only immediately before extraction, but also during the extraction, and the local heating device is also used. It is also possible to provide a heating device. Heating in this manner is advantageous in shortening the time between charging and extraction.

〔効果〕〔effect〕

連続加熱炉を略同−条件下で移送されるスラブ材のうち
から100本のスラブ材を本発明により加熱して圧延し
、圧延後の鋼板上面の長さ方向の片側半分を温度針にて
実測した(圧延によりてスラブ材下面の温度分布が鋼板
の上面にあられれることがある)。
100 slabs from among the slabs transferred through a continuous heating furnace under substantially the same conditions are heated and rolled according to the present invention, and half of one side in the length direction of the top surface of the rolled steel plate is heated with a temperature needle. Actual measurement (Due to rolling, the temperature distribution on the bottom surface of the slab material may appear on the top surface of the steel plate).

第8図は縦軸に圧延後の鋼板温度をとり、圧延後の鋼板
温度の実測値(破線)を示すグラフであり、比較のため
に補助スキッドビームを設けない従来の加熱炉にて加熱
された鋼板を圧延後、前同様に実測した結果(実#jA
)を併せて示している。
Figure 8 is a graph showing the actual measured value (dashed line) of the steel plate temperature after rolling, with the vertical axis representing the temperature of the steel plate after rolling. After rolling the steel plate, the results were measured in the same way as before (actual #jA
) are also shown.

この図より理解される如〈従来では鋼板の長さ方向端部
の高温部分と較べてスキンドマーク相当位置の温度が約
70℃と低かったが、本発明によりそれを約30℃まで
軽減することが可能となった。これにより成品の寸法精
度1品質が向上する。
As can be understood from this figure, in the past, the temperature at the skinned mark position was lower, at about 70°C, compared to the high temperature part at the longitudinal end of the steel plate, but with the present invention, this can be reduced to about 30°C. It became possible. This improves the dimensional accuracy and quality of the finished product.

第9図は本発明を実施するスラブ材のスキッドマーク指
数ではな(、これに代えてそのスラブ材を圧延した圧延
材の温度変化にスキッドマーク指数を適用して示したグ
ラフであり、比較のために第1O図に従来の圧延材の温
度変化に関するスキッドマーク指数を示す、これら両図
より理解される如く、従来の圧延材はスキッドマーク指
数が大き      −く、またそのバラツキの幅が大
きかったが、本発明によりスキッドマーク指数及びバラ
ツキの幅を小さくできた。
Figure 9 is a graph showing the skid mark index applied to the temperature change of the rolled material obtained by rolling the slab material (instead, it is a graph showing the skid mark index applied to the temperature change of the rolled material obtained by rolling the slab material according to the present invention). For this reason, Figure 1O shows the skid mark index related to temperature changes for conventionally rolled materials.As can be understood from these two figures, conventionally rolled materials had a large skid mark index and a wide range of variation. However, according to the present invention, the skid mark index and the width of the variation can be reduced.

以上詳述した如く本発明による場合は、スキッドマーク
指数を軽減又はゼロとすることが可能であるので圧延材
の寸法精度1品質を向上でき、これにより加工時の操業
安定性の増大が図れ、また低温抽出操業が容易になる等
、本発明は優れた効果を奏する。
As detailed above, according to the present invention, it is possible to reduce or eliminate the skid mark index, thereby improving the dimensional accuracy and quality of the rolled material, thereby increasing operational stability during processing, Further, the present invention has excellent effects such as ease of low-temperature extraction operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施状態を示す模式図、第2図は連続
加熱炉の平面断面図、第3図は第2図のm −m線によ
る拡大断面図、第4図は温度測定位置の説明図、第5図
は本発明で予測した鋼板下面温度分布を示すグラフ、第
6図は鋼板断面における温度分布の一例を示すグラフ、
第7図は本発明の加熱制御内容を示すフローチャート、
第8.9゜10図は本発明の詳細な説明図である。 1・・・綱板 2・・・スキッドマーク指数計算装置3
・・・局部加熱制御装置 4・・・時間予測装置 13
・・・局部加熱装置 15・・・補助スキッドビーム特
 許 出願人  住友金属工業株式会社代理人 弁理士
  河  野  登  夫纂4図 !Ip 第 5 図 第 6 図 箋 8 図
Fig. 1 is a schematic diagram showing the implementation state of the present invention, Fig. 2 is a plan sectional view of a continuous heating furnace, Fig. 3 is an enlarged sectional view taken along the m-m line in Fig. 2, and Fig. 4 is a temperature measurement position. FIG. 5 is a graph showing the temperature distribution on the lower surface of the steel sheet predicted by the present invention, FIG. 6 is a graph showing an example of the temperature distribution in the cross section of the steel sheet,
FIG. 7 is a flowchart showing the heating control contents of the present invention;
Figures 8.9 and 10 are detailed illustrations of the present invention. 1... Rope plate 2... Skid mark index calculation device 3
...Local heating control device 4...Time prediction device 13
... Local heating device 15 ... Auxiliary skid beam patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono 4 diagrams! Ip Figure 5 Figure 6 Notebook 8

Claims (1)

【特許請求の範囲】 1、連続加熱炉内のスキッドビーム上を移送される被加
熱材の下面のスキッドマークを消去する方法において、 スキッドビーム下流側の平面視の延長線を 外れた箇所に補助スキッドビームを設け、また補助スキ
ッドビームを設けた箇所の前記延長線の下方に加熱装置
を上向きに設け、 スキッドビームから補助スキッドビームへ 被加熱材が移送される際の被加熱材下面の温度分布を算
出し、その最高温度と最低温度との差と平均温度との商
を求め、この商及び前記加熱装置による加熱残時間予測
値に基づいてスキッドマークを消去すべく加熱装置の加
熱制御を行うことを特徴とする連続加熱炉におけるスキ
ッドマーク消去方法。
[Claims] 1. In a method for erasing skid marks on the lower surface of a material to be heated that is transferred on a skid beam in a continuous heating furnace, an auxiliary device is provided at a point on the downstream side of the skid beam that is outside the extension line in plan view. A skid beam is provided, and a heating device is provided upward below the extension line of the location where the auxiliary skid beam is provided, and temperature distribution on the lower surface of the heated material when the heated material is transferred from the skid beam to the auxiliary skid beam. is calculated, the quotient of the difference between the maximum temperature and the minimum temperature and the average temperature is determined, and the heating control of the heating device is performed to erase the skid mark based on this quotient and the predicted value of the remaining heating time by the heating device. A method for erasing skid marks in a continuous heating furnace, characterized by:
JP1288285A 1985-01-25 1985-01-25 Method for erasing skid mark in continuous heating furnace Pending JPS61170508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1288285A JPS61170508A (en) 1985-01-25 1985-01-25 Method for erasing skid mark in continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1288285A JPS61170508A (en) 1985-01-25 1985-01-25 Method for erasing skid mark in continuous heating furnace

Publications (1)

Publication Number Publication Date
JPS61170508A true JPS61170508A (en) 1986-08-01

Family

ID=11817772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1288285A Pending JPS61170508A (en) 1985-01-25 1985-01-25 Method for erasing skid mark in continuous heating furnace

Country Status (1)

Country Link
JP (1) JPS61170508A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128116A (en) * 1986-11-17 1988-05-31 Rozai Kogyo Kaisha Ltd Heating furnace of walking beam type
JPS63131747U (en) * 1987-02-20 1988-08-29
JPH05179339A (en) * 1992-01-07 1993-07-20 Sumitomo Metal Ind Ltd Skid mark heater and heating method
JPH06306453A (en) * 1993-04-16 1994-11-01 Sumitomo Metal Ind Ltd Method for eliminating skid mark in continuous heating furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128116A (en) * 1986-11-17 1988-05-31 Rozai Kogyo Kaisha Ltd Heating furnace of walking beam type
JPS63131747U (en) * 1987-02-20 1988-08-29
JPH05179339A (en) * 1992-01-07 1993-07-20 Sumitomo Metal Ind Ltd Skid mark heater and heating method
JPH06306453A (en) * 1993-04-16 1994-11-01 Sumitomo Metal Ind Ltd Method for eliminating skid mark in continuous heating furnace

Similar Documents

Publication Publication Date Title
US4606529A (en) Furnace controls
CN104060080B (en) Heater for rolling steel heating of plate blank control method and system
JPS61170508A (en) Method for erasing skid mark in continuous heating furnace
JPH0663039B2 (en) Temperature control device for heating furnace
KR0118985B1 (en) Combustion control method of furnace
KR100689153B1 (en) Method for estimating temperature of slab in heating furnace
JPH06192751A (en) Method for estimating and controlling temperature of steel slab in steel slab continuous heating furnace
JP3982042B2 (en) Combustion control method for continuous heating furnace
JPH06306453A (en) Method for eliminating skid mark in continuous heating furnace
JP4815837B2 (en) Combustion control method for continuous heating furnace
KR100241023B1 (en) Method of controlling steelstrip temperature with heat treatment furnace
JP6844558B2 (en) Skid shift distance setting method and setting device in the heating furnace
KR100936357B1 (en) Decision method of the position and the quantity of the temperature sensor and of the heating zone in a reheating furnace
JPS61199020A (en) Method for controlling continuous heating furnace
JPH09209044A (en) Operation of continuous type steel cast slab heating furnace
KR100360086B1 (en) Uniform heating method using walking beam type furnace
JPH0663849B2 (en) Measuring method of material temperature in continuous heating furnace
JPS5836648B2 (en) How to control a heating furnace
JPH08311567A (en) Device for controlling temperature in heating furnace
JP2005076935A (en) Billet heating furnace and operation method thereof
JPH076001B2 (en) Furnace temperature setting device for continuous heating furnace
JPS58210120A (en) Method for controlling combustion in heating furnace
JPS61199019A (en) Method for controlling continuous heating furnace
Kang et al. Temperature control of CC slabs for the hot direct rolling process
RU1789045C (en) Method of heating control of blanks in multizone internally fired furnace