JPH0663849B2 - Measuring method of material temperature in continuous heating furnace - Google Patents

Measuring method of material temperature in continuous heating furnace

Info

Publication number
JPH0663849B2
JPH0663849B2 JP63323462A JP32346288A JPH0663849B2 JP H0663849 B2 JPH0663849 B2 JP H0663849B2 JP 63323462 A JP63323462 A JP 63323462A JP 32346288 A JP32346288 A JP 32346288A JP H0663849 B2 JPH0663849 B2 JP H0663849B2
Authority
JP
Japan
Prior art keywords
temperature
zone
heating
furnace
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63323462A
Other languages
Japanese (ja)
Other versions
JPH02170023A (en
Inventor
和夫 新井
孝行 加地
英明 山下
稔也 佐藤
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP63323462A priority Critical patent/JPH0663849B2/en
Publication of JPH02170023A publication Critical patent/JPH02170023A/en
Publication of JPH0663849B2 publication Critical patent/JPH0663849B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、連続加熱炉における材料温度の測定方法に係
り、特に加熱帯と均熱帯を有する連続加熱炉内で移動加
熱される被加熱材の材料温度履歴を目標値に制御するた
めの材料温度および昇温パターンの測定方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for measuring a material temperature in a continuous heating furnace, and particularly to a material to be heated which is moved and heated in a continuous heating furnace having a heating zone and a soaking zone. The present invention relates to a method for measuring a material temperature and a heating pattern for controlling the material temperature history of the above to a target value.

<従来の技術> 通常、焼鈍炉などの連続加熱炉で再加熱処理される鋼板
などの被加熱材は、均熱帯内において所定の温度域で所
定の時間保持される。そのときの材料温度は、主に加熱
帯出口および均熱帯出口に設置された放射温度計で計測
されるが、この場合被加熱材の放射率εを正確に求めて
補正することが不可欠である。また、均熱時間を確認す
るために、計算により昇温パターンの予測を行うが、こ
の場合総括熱吸収率φCGを決めることが不可欠である。
そして、これら放射率εと総括熱吸収率φCGとはリアル
タイムに同定しなければ高い検出精度を維持することは
困難でる。
<Prior Art> Usually, a material to be heated such as a steel sheet that is reheated in a continuous heating furnace such as an annealing furnace is held in a predetermined temperature range for a predetermined time within the soaking zone. The material temperature at that time is mainly measured by a radiation thermometer installed at the heating zone outlet and the soaking zone outlet. In this case, it is essential to accurately obtain and correct the emissivity ε of the heated material. . Further, in order to confirm the soaking time, the temperature rise pattern is predicted by calculation. In this case, it is indispensable to determine the overall heat absorption rate φ CG .
Further, it is difficult to maintain high detection accuracy unless the emissivity ε and the overall heat absorption coefficient φ CG are identified in real time.

その理由について、以下に詳しく述べる。The reason will be described in detail below.

通常の材料温度の計測において、必要な因子は表面温度
と平均温度である。表面温度は材料の表面性状を評価す
るために必要であり、また平均温度は材質の内質評価の
ために必要である。ところで、温度計測に放射温度計を
用いる場合、表面温度の測定値は放射率に依存し、また
平均温度の測定値は表面温度と雰囲気の熱伝達率とに依
存する。
In normal measurement of material temperature, the necessary factors are surface temperature and average temperature. The surface temperature is necessary for evaluating the surface quality of the material, and the average temperature is necessary for evaluating the internal quality of the material. By the way, when a radiation thermometer is used for temperature measurement, the measured value of the surface temperature depends on the emissivity, and the measured value of the average temperature depends on the surface temperature and the heat transfer coefficient of the atmosphere.

一方、熱伝達率は加熱の実績データから平均温度のみの
関数形として求める手法もあるが、上記のように、平均
温度自体が熱伝達率に依存することから、別の手法、例
えば輻射方程式により、表面温度と総括熱吸収率φCG
関数形として求めざるを得ないのである。ここで、大気
中で放冷の場合には、総括熱吸収率φCG相当のものが即
放射率εとなり、また雰囲気加熱の場合にもεとφCG
は炉寸法,材料寸法および炉壁放射率の関数で結合され
るので、いずれにしてもφCGはεで代表できる。
On the other hand, there is a method to obtain the heat transfer coefficient as a function form of only the average temperature from the actual heating data, but since the average temperature itself depends on the heat transfer coefficient as described above, another method such as the radiation equation is used. , The surface temperature and the total heat absorption coefficient φ CG have to be obtained as a functional form. Here, in the case of cooling in the atmosphere, the emissivity ε is equivalent to the overall heat absorption coefficient φ CG , and also in the case of atmospheric heating, ε and φ CG are the furnace dimensions, material dimensions and furnace wall. In any case, φ CG can be represented by ε because they are combined as a function of emissivity.

したがつて、放射温度計に与える放射率εが真値である
との保証があるとすれば、測定された表面温度から熱伝
達率を、さらにこの熱伝達率を用いて平均温度を順次決
定することが可能であるが、現在のところ放射率εその
ものを検定する絶対的な手段が無いのが実情である。そ
れ故、放射率および熱伝達率,表面温度,平均温度の4
者は、いずれもが単独に真に正しいものとして与える方
法が原理上存在しないのであり、これら4者はただ一組
の組合せによつて同時に決定すべき性質のものであると
いえる。
Therefore, if there is a guarantee that the emissivity ε given to the radiation thermometer is a true value, the heat transfer coefficient is determined from the measured surface temperature and the average temperature is sequentially determined using this heat transfer coefficient. It is possible, but the reality is that there is currently no absolute means to test the emissivity ε itself. Therefore, emissivity and heat transfer coefficient, surface temperature, average temperature of 4
It can be said that, in principle, there is no way for any of them to be given as a truly correct thing by themselves, and these four are of the nature that they should be determined simultaneously by only one set of combinations.

さらに、総括熱吸収率φCGは操炉状態によつて変化する
ことが明らかにされており、φCGすなわちεをオンライ
ンでその場同定することが、高精度な材料温度の測定と
制御の第1条件としながら、実際にはそのための手法が
無かつた。なお、わずかに、特公昭61−43649号公報に
記載されているように、φCGを算出しつつ材料温度を計
算して求める方法が開示されている。
Furthermore, it has been clarified that the overall heat absorption coefficient φ CG changes depending on the furnace operating condition, and in-situ identification of φ CG, that is, ε, is the first method for highly accurate material temperature measurement and control. Although there was only one condition, there was actually no method for that. Note that, as disclosed in Japanese Patent Publication No. 61-43649, there is disclosed a method of calculating and calculating the material temperature while calculating φ CG .

<発明が解決しようとする課題> しかしながら、特公昭61−43649号公報においては、時
刻tにおける材料温度を計算するに際して、Δt時間前
のφCG値を用いるようにしているものの、その発明の詳
細な説明の項においても記載されているように、「φCG
は鋼片の材質もしくは形状が同一であつても必ずしも一
定ではなく、炉の操業状態によつて異なる不確定な要素
と見なされている(公報2ページ3欄上21〜24行)」と
していながら、このような取扱いをせざるを得ないた
め、「統計的手法によつて平均化し、(同4欄上20
行)」としたφCGを適用するとしており、精度的に問題
があり、かつ原理的に燃料燃焼熱,スケール生成熱,上
流帯からの入熱,炉壁からの損失熱,排ガス損失熱等数
多くの不確定なパラメータからなる熱バランス式を根拠
にしてφCGを算出することが、精度上の限界を生じてい
る。
<Problems to be Solved by the Invention> However, in Japanese Patent Publication No. 61-43649, when the material temperature at time t is calculated, the φ CG value before Δt time is used, but the details of the invention are described. As described in the section of the explanation, "φ CG
Is not necessarily constant even if the material or shape of the steel slab is the same, and is considered to be an uncertain factor that differs depending on the operating condition of the furnace (Publication 2, page 3, column 3, lines 21-24). " However, since it is unavoidable to handle such a situation, "Averaging by using statistical methods,
) ”, Φ CG is applied, and there is a problem in accuracy, and in principle, fuel combustion heat, scale formation heat, heat input from upstream zone, heat loss from furnace wall, heat loss from exhaust gas, etc. Calculating φ CG on the basis of the heat balance equation consisting of many uncertain parameters has limited accuracy.

また、時刻tにおける材料温度を計算する伝熱方程式
(同3欄の(3)式)において、雰囲気熱伝達率αをど
のような形で与えるかの説明が見当たらない。したがつ
て、φCGもαも操炉状態によつて大きく左右されるパラ
メータであることを考えると、この発明は正鵠を得たも
のであるとはいえない。この点、φCG,ε,αおよび材
料温度を決定する作業が同時になされるのであれば、極
めて合理的である。本発明は、上記の事情に鑑みなされ
たものであつて、連続加熱炉における精度の高い材料温
度の測定方法を提供することを目的とする。
Further, in the heat transfer equation for calculating the material temperature at the time t (equation (3) in the same column 3), there is no description of how to give the atmospheric heat transfer coefficient α. Therefore, considering that both φ CG and α are parameters that largely depend on the furnace operating state, it cannot be said that the present invention has obtained a proper idea. In this respect, it is extremely rational if the operations for determining φ CG , ε, α and the material temperature are performed at the same time. The present invention has been made in view of the above circumstances, and an object thereof is to provide a highly accurate method of measuring a material temperature in a continuous heating furnace.

<課題を解決するための手段> 本発明の構成は、下記の手順を基本とするものであり、
これによつて、高精度な加熱処理が達成される。
<Means for Solving the Problems> The configuration of the present invention is based on the following procedure,
As a result, highly accurate heat treatment is achieved.

(1)加熱帯入側の材料温度(T),加熱帯と均熱帯
の炉内温度(T′,T)を、通常の任意の手段で測定
する。
(1) The material temperature (T 0 ) on the entrance side of the heating zone and the temperature (T f ′, T f ) inside the heating zone and the soaking zone are measured by any ordinary means.

(2)加熱帯出側と均熱帯出側の2点で、放射温度計に
より被加熱材の輝度温度(〔T〕,〔T〕)を検出
する。
(2) The brightness temperature ([T 1 ], [T 2 ]) of the material to be heated is detected by the radiation thermometer at two points, the heating zone exit side and the soaking zone exit side.

(3)加熱帯内の総括熱吸収率φCGを一定値で
し、均熱帯内の総括熱吸収率φCGを在炉時間に比例して
増大する一次関数形のφとみなす。
(3) the overall heat absorption rate phi CG in the heating zone and H at a constant value, regarded as a linear function type phi s the overall heat absorption rate phi CG increases in proportion to the standing furnace time in the soaking zone.

(4)被加熱材の放射率εをφCGの関数形として与え
る。
(4) Give the emissivity ε of the material to be heated as a function form of φ CG .

(5)T,T′,〔T〕よりを収束演算同定
し、加熱帯出側材料温度Tと加熱パターンを決定す
る。
(5) Convergence calculation and identification of H from T 0 , T f ′, [T 1 ] is performed to determine the heating zone outlet side material temperature T 1 and heating pattern.

(6),T,T,〔T〕よりφを収束演算同定
し、均熱帯出側材料温度Tと均熱パターンを決定す
る。
(6) Convergence calculation and identification of φ s is performed from H , T 1 , T f , and [T 2 ] to determine the material temperature T 2 of the soaking zone and the soaking pattern.

<作用> 本発明者らは、加熱帯と均熱帯を有する連続加熱炉内に
熱電対を装着した薄鋼板を連続走行させ、加熱帯入側か
ら均熱帯出側までの材料温度を連続測定する実験を行つ
た。そのとき得られた測温データをもとに、昇温計算式
から輻射熱伝達率を逆算し、さらに輻射熱伝達率式から
総活熱吸収率を逆算した。そして、薄鋼板の鋼種,板
厚,板輻,走行速度および加熱帯・均熱帯温度を種々変
更することによつて得られた膨大な測温データを解析し
た結果、以下のような重要な知見を得た。
<Operation> The inventors of the present invention continuously run a thin steel plate equipped with a thermocouple in a continuous heating furnace having a heating zone and a soaking zone, and continuously measure the material temperature from the heating zone entrance side to the soaking zone exit side. I conducted an experiment. Based on the temperature measurement data obtained at that time, the radiant heat transfer coefficient was calculated back from the temperature rise calculation formula, and the total active heat absorption coefficient was calculated back from the radiant heat transfer coefficient formula. Then, as a result of analyzing enormous temperature measurement data obtained by variously changing the steel type, plate thickness, plate radiation, traveling speed, heating zone and soaking temperature of thin steel plates, the following important findings were obtained. Got

(1)加熱帯内では、総括熱吸収率φCGがそのレベルに
ついては鋼種,加熱条件等により異なるものの、ほぼ一
定値に保たれること。
(1) Within the heating zone, the overall heat absorption coefficient φ CG should be maintained at a substantially constant value, although its level varies depending on the steel type, heating conditions, etc.

(2)均熱帯内では、φCGは在炉時間にほぼ比例して増
大すること。
(2) In the soaking zone, φ CG should increase almost in proportion to the reactor time.

これらの現象は、炉内温度と材料表面温度との差ΔTに
よつて統一的に解釈できる。すなわち、加熱帯内ではΔ
Tが通常200℃超のレベルで大きく、φCGはほとんど室
温中の材料の放射率と等しい値とみなすことができ、一
方、均熱帯内ではΔTが100℃以下と急激に小さくな
り、かつΔTは在炉時間とともに0に漸近して行く。原
理上、ΔT=0のときφCG=1.0になるので、近熱炉帯
ではΔTが0に漸近することがφCGを連続的に増大させ
ていくものと考えられる。これらΔTとφCGとの相関の
一例を第2図に示す。この図から、φCGはΔT>200℃
でほぼ一定値となること、およびΔT≒0゜でφCG=1.
0に漸近することが明らかである。
These phenomena can be uniformly interpreted by the difference ΔT between the temperature inside the furnace and the surface temperature of the material. That is, within the heating zone
T is usually large at a level of over 200 ° C, and φ CG can be regarded as a value almost equal to the emissivity of the material at room temperature, while ΔT sharply decreases to 100 ° C or less in the soaking zone, and ΔT Asymptotically approaches 0 with the time spent in the furnace. In principle, since φ CG = 1.0 when ΔT = 0, it is considered that when the ΔT approaches 0 in the near-heat reactor zone, φ CG continuously increases. An example of the correlation between these ΔT and φ CG is shown in FIG. From this figure, φ CG is ΔT> 200 ℃
Becomes almost constant value and φ CG = 1.
It is clear that it approaches a zero.

一方、発明者らが総括熱吸収率φCGと放射率εとの関係
について種々検討したところ、総括熱吸収率φCGと放射
率εとは一般に特定の関係式で結合されることを見出し
た。そこで、未知数はφCGあるいはεのいずれか一方に
限定することができるから、εが与えられれば、放射温
度計で被加熱材の輝度温度を検出することにより、材料
の表面温度(Ta)を換算でき、また、φCGが与えられれ
ば、一方ではTaとから輻射熱伝達率を見積もつてTaより
平均温度aを換算し、他方で昇温計算により放射温度
測定位置での材料平均温度bを算出することができ
る。それ故、異なる手段で換算あるいは算出された材料
平気温度aとbを等価となした、φCGあるいはεの
みを未知数とする方程式を導いてこれを解くことにより
φCGあるいはεを決定し、後は自動的にεあるいはφCG
および放射温度計による測定温度と昇温パターンとを同
時決定するロジツクを構築することが可能である。
On the other hand, when we have made various investigations about the relationship between the emissivity ε and overall heat absorption rate phi CG, we found generally to be combined in a particular relation to the overall heat absorption rate phi CG emissivity ε . Therefore, since the unknown can be limited to either φ CG or ε, if ε is given, the surface temperature (Ta) of the material can be determined by detecting the brightness temperature of the heated material with a radiation thermometer. If φ CG is given, on the one hand, the radiant heat transfer coefficient is estimated from Ta and the average temperature a is converted from Ta. On the other hand, the average material temperature b at the radiation temperature measurement position is calculated by the temperature rise calculation. It can be calculated. Therefore, φ CG or ε is determined by deriving an equation that makes the material average temperatures a and b, which are converted or calculated by different means equivalent, and that only φ CG or ε is an unknown, and solves it. Is automatically ε or φ CG
It is possible to construct a logic that simultaneously determines the temperature measured by the radiation thermometer and the temperature rise pattern.

以下に、本発明の基本手順について説明する。The basic procedure of the present invention will be described below.

加熱帯出側(すなわち均熱帯入側)と均熱帯出側にそれ
ぞれ放射温度計を配置して、被加熱材の材料表面温度を
連続して計測し、それらの測温値を以下の手順により演
算する。
Radiation thermometers are installed on the heating zone exit side (that is, the soaking zone entrance side) and the soaking zone exit side respectively, and the material surface temperature of the material to be heated is continuously measured, and the temperature measurement values are calculated by the following procedure. To do.

まず、放射温度計の設定放射率〔ε〕を、それぞれ任
意でよいが、取扱上最も簡便な1.0と設定して、それぞ
れ加熱帯出側放射温度計と均熱帯出側放射温度計の検出
値(すなわち輝度温度)〔T〕,〔T〕をリアルタ
イムでデータロギングする。
First, although the set emissivity [ε] of the radiation thermometer may be arbitrary, it is set to 1.0, which is the most convenient for handling, and the detection values of the heating zone exit side radiation thermometer and the soaking zone exit side radiation thermometer ( That is, the brightness temperature) [T 1 ] and [T 2 ] are data-logged in real time.

一方、放射温度計の検出素子の吸収波長λ,材料厚
さd,板幅W,加熱帯在炉時間t,均熱帯在炉時間t
材料の熱的物性値(熱伝導率λ,温度伝播率aなど),
加熱帯入側材料平均温度,加熱帯炉内温度T′お
よび均熱帯炉内温度Tなどを入力する。
On the other hand, the absorption wavelength λ 0 of the detection element of the radiation thermometer, the material thickness d, the plate width W, the heating zone in-reactor time t H , the soaking zone in-reactor time t s ,
Thermal properties of the material (thermal conductivity λ, thermal conductivity a, etc.),
The heating zone entrance side material average temperature 0 , the heating zone furnace temperature T f ′, the soaking zone furnace temperature T f, etc. are input.

次いで加熱帯における仮の均一総括熱吸収率′を
選択して、一方で放射率ε′を例えば下記(2)式で
示すε′(′,W)の関数を用いて換算する。
Then 'Select, while the emissivity epsilon 1' temporary uniform overall heat absorption rate H in the heating zone is converted with a function of, for example, the following (2) 1 epsilon represented by formula '(H', W) .

まず、一般に材料温度の放射率ε′は下記(1)式で
表される。
First, the emissivity ε 1 ′ of the material temperature is generally expressed by the following equation (1).

ε′={−1+1−C −1−(ε −1
1)・F/F−1 ………(1) ここで、Cは被加熱材料と炉壁間の熱量授受の状態を
評価するパラメータで、一般に形態係数といわれたもの
であり、矩形断面の炉で鋼板等マクロな凹面を有しない
材料を完全に包囲している場合には、C≒1.0とみな
せる。εはレンガで造られた炉壁の放射率であり、通
常0.8〜0.9の範囲に特定されるので一定値として与える
ことができる。F/Fは材料表面積と炉壁表面積と
の比であり、予め既知として扱える。
ε 1 ′ = { H−1 + 1− CF −1 − (ε f −1
1) · F m / F f } -1 (1) where C F is a parameter for evaluating the state of heat exchange between the material to be heated and the furnace wall, which is generally called the view factor. When a furnace having a rectangular cross section completely encloses a material having no macroscopic concave surface such as a steel plate, it can be regarded as C f ≈1.0. [epsilon] f is the emissivity of the furnace wall made of brick, and is usually specified in the range of 0.8 to 0.9, so it can be given as a constant value. F m / F f is the ratio of the material surface area to the furnace wall surface area and can be treated as known in advance.

結局、ε′は′と材料寸法の関数として与えるこ
とができ、例えば薄い板の場合には、板厚(d)<<板
幅(W)であるから、ε′は下記(2)式のように
′とWの関数で計算できる。
After all, ε 1 ′ can be given as a function of H ′ and the material size. For example, in the case of a thin plate, the plate thickness (d) << the plate width (W), so ε 1 ′ is given by the following (2 ) Like the formula
It can be calculated by the function of H'and W.

ε′=(−1−b・W)−1 ………(2) ここで、bH:正定数 ついで、加熱帯出側材料表面温度T1,1を、例えば下記
(3)式で示すT11(〔T〕,ε′,λ)の関数
を用いて換算する。
ε 1 ′ = ( H−1 −b H · W) −1 (2) where bH is a positive constant, and the heating zone outlet side material surface temperature T 1,1 is, for example, the following formula (3). The conversion is performed using the function of T 11 ([T 1 ], ε 1 ′, λ 0 ) shown by.

11={(〔T〕+273)−1+λ/C・lε
′}−1−273(℃) ………(3) ここで、 λ:放射温度計の検出素子の吸収波長 (μm) C:1.43×10 (μm・deg) 引き続いて放射測温点における輻射熱伝達率α11を、
例えば下記(4)式で表すα11(T11,T′,′)
のボルツマンの熱輻射式とニユートンの伝熱式とを結合
した放射熱伝達式を用いて換算する。
T 11 = {([T 1 ] +273) −1 + λ 0 / C 2 · l n ε
1 ′} −1 −273 (℃) ……… (3) where λ 0 : absorption wavelength of the detection element of the radiation thermometer (μm) C 2 : 1.43 × 10 4 (μm · deg) The radiant heat transfer coefficient α 11 at the hot point is
For example, α 11 (T 11 , T f ′, H ′) expressed by the following equation (4)
Boltzmann's heat radiation equation and Newton's heat transfer equation are combined to calculate the radiation heat transfer equation.

α11′・σ{(T11+273)+ (T′+273)}・(T11+T′+546) (kcal/m2h℃) ………(4) ここで、 σ:ステフアン・ボルツマン定数 (=4.88×10−8kcal/mhK) T′:加熱帯炉内温度(℃) さらに測温点での材料内の平均温度11を例えば下記
(5)式で示す11(T11,α11,d,T′)の関数で換
算する。11 =T11・{1+N11/2・ (1−T′/T11)・}(℃) ここで、 N11=(α11・d/λ)×10−3 d:材料外径 λ:熱伝導率 :平均温度位置係数 引続き加熱帯出側測温点における材料内の平均温度
を、例えば(6)式で示す12(T,T11,t,d,
T′,′)の熱伝導解析解昇温計算式により予測
演算する。12 =(−T′)・exp(−k・t)+T′ ………(6) ここで、 μ:8.889×10 a:温度伝播率(m/h) t:加熱炉滞在時間(s) m:材料の形状係数 なお、加熱帯を適宜分割して、分割区画毎に逐時昇温計
算させてももちろんよい。
α 11 = H ′ ・ σ {(T 11 +273) 2 + (T f ′ +273) 2 } · (T 11 + T f ′ +546) (kcal / m 2 h ° C) ……… (4) where σ : Stephan-Boltzmann constant (= 4.88 × 10 −8 kcal / m 2 hK 4 ) T f ′: Temperature in the heating zone furnace (° C.) Further, the average temperature 11 in the material at the temperature measuring point is expressed by the following formula (5), for example. It is converted by a function of 11 (T 11 , α 11 , d, T f ′) shown by. 11 = T 11 · {1 + N 11/2 · (1-T f '/ T 11) ·} (℃) where, N 11 = (α 11 · d / λ) × 10 -3 d: material OD lambda :Thermal conductivity : Average temperature position coefficient 12 (T 0 , T 11 , t H , d,
T f ′, H ′) heat conduction analysis solution Prediction calculation is performed by the temperature rise calculation formula. 12 = (− T f ′) · exp (−k · t H ) + T f ′ ... (6) where μ 0 : 8.889 × 10 3 a: Temperature propagation rate (m 2 / h) t H : Heating furnace residence time (s) m: Material shape factor Of course, the heating zone may be appropriately divided and the temperature increase calculation may be performed for each divided section.

ここで求められた加熱帯出側平均温度12と前記ステ
ツプで測定換算された平均温度11を比較して、両者
の差が許容誤差δ内に収まるかどうかを判断させ、収ま
るまで総括熱吸収率′の選択を繰り返す。
By comparing the average temperature 11 measured in terms of where the heating home use side average temperature 12 obtained in the step, to determine whether the difference therebetween falls within the allowable error [delta], fit to overall heat absorption rate H Repeat the selection of ′.

前記1112の差が所要精度内で一致したら、その
ときの′,ε′をそれぞれ同定すべき,ε
として、加熱炉出口材料表面温度T(=T11)および
材料内平均温度(=11)を決定し、同時に出力す
る。
The 11 When the difference of 12 match within the required accuracy, H to be identified that H for time ', epsilon 1', respectively, epsilon 1
As a result, the heating furnace outlet material surface temperature T 1 (= T 11 ) and the material average temperature 1 (= 11 ) are determined and simultaneously output.

ついでを均熱帯入側における総括熱吸収率φsi
して与え、仮の均熱帯内の平均総括熱吸収率′を選
択する。ここで均熱帯では総括熱吸収率は在炉時間に比
例して増大する、とした前提から、均熱帯出側測温点に
おける総括熱吸収率φsθを例えば下記(7)式で示す
φsθ′)の関数を用いて計算する。
Then, H is given as the total heat absorption rate φ si on the entrance side of the soaking zone, and the temporary average heat absorption rate s ′ in the soaking zone is selected. Here, on the premise that the total heat absorption rate in the soaking zone increases in proportion to the in-reactor time, the total heat absorption rate φ at the temperature measuring point on the soaking zone is expressed by, for example, φ shown in the following equation (7). Calculation is performed using the function of ( H , s ').

φsθ=2−φsi ………(7) ここで、φsi つぎに、φsθより、均熱帯出側測温点における放射
率ε′を、前出(2)式と同様に例えば下記(8)式
で示すε′(φsθ,W)の関数を用いて換算し、さら
に材料表面温度T21を例えば下記(9)式で示すT
21(〔T〕,ε′,λ)の関数を用いて換算す
る。
φ = 2 s −φ si (7) Here, φ si = H , and from φ , the emissivity ε 1 ′ at the temperature measuring point on the soaking zone is given by the above equation (2). Similarly, for example, it is converted using the function of ε 2 ′ (φ , W) shown in the following formula (8), and the material surface temperature T 21 is expressed as T in the following formula (9).
21 ([T 2 ], ε 2 ′, λ 0 ) function is used for conversion.

ε′=(φsθ−b・W)−1 ………(8) ここで、b:正定数 T21={(〔T〕+273)−1 +λ/C・lε′}−1−273(℃) ………(9) 引き続いて、放射測温点における輻射熱伝達率α
21を、例えば下記(10)式で示すα21(T21,T,φ
sθ)の輻射熱伝達率式を用いて演算する。
ε 2 ′ = (φ −b s · W) −1 (8) where b s : positive constant T 21 = {([T 2 ] +273) −1 + λ 0 / C 2 · l n ε 2 ′} −1 −273 (° C.) ……… (9) Subsequently, the radiant heat transfer coefficient α at the radiation temperature measuring point
21 is expressed by, for example, the following equation (10), α 21 (T 21 , T f , φ
) radiant heat transfer coefficient equation.

α21=φsθ・σ{(T21+273)+ (T+273)}・(T21+T+546) ………(10) ここで、T:均熱炉内温度(℃) さらに測温点における材料内の平均温度21を、例え
ば下記(11)式で示す21(T21,α21,d,T)の関数
で換算する。21 =T21・{1+N21/2・(1−T/T21)・
} ………(10) ここで、N21=(α21・d/λ)×10−3 引続き均熱炉出口測温点における材料内の平均温度
22を、例えば下記(12)式で示す、2221,t
,d,T′)の熱伝導解析解昇温計算式により演
算する。22 =(−T)・eXp(−k・t)+T ………(12) ここで、 なお、加熱帯の場合と同様に、均熱帯を適宜分割して分
割炉毎に逐次昇温計算させてもよい。
α 21 = φ · σ {(T 21 +273) 2 + (T f +273) 2 } ・ (T 21 + T f +546) ……… (10) Where, T f : temperature inside the soaking furnace (° C) Further, the average temperature 21 in the material at the temperature measurement point is converted by, for example, a function of 21 (T 21 , α 21 , d, T f ) shown by the following equation (11). 21 = T 21 · {1 + N 21/2 · (1- Tr / T 21 ) ·
} ……… (10) Where, N 21 = (α 21 · d / λ) × 10 −3 The average temperature in the material at the temperature measuring point at the soaking furnace outlet
22 is represented by the following formula (12), for example, 22 ( 1 , 21 , t
s , d, T f , s ') are calculated by the heat conduction analysis solution temperature rise calculation formula. 22 = (1 -T f) · eXp (-k · t s) + T f ......... (12) here, As in the case of the heating zone, the soaking zone may be appropriately divided and the temperature rise calculation may be sequentially performed for each of the dividing furnaces.

ここで求められた均熱帯出側材料平均温度22と、前
記ステツプで測定換算された材料平気温度21を比較
して、両者の差が許容誤差δ内に収まるかどうかを判定
させ、収まるまで平均総括熱吸収率′の選択を繰り
返す。
The soaking temperature average material 22 obtained here is compared with the material average temperature 21 measured and converted in the step, and it is determined whether or not the difference between the two falls within the allowable error δ, and the average is obtained until it falls. The selection of the overall heat absorption rate s'is repeated.

前記2122の差が所要精度内で一致したら、その
ときの′,ε′をそれぞれ同定すべき,ε
として、均熱帯出側材料表面温度T(=T21)と材料
内平均温度(=21)を決定し、同時に出力する。
The 21 When the difference of 22 match within the required accuracy, s to be identified that s when ', epsilon 2', respectively, epsilon 2
As the mean temperature, the material surface temperature T 2 (= T 21 ) and the material average temperature 2 (= 21 ) are determined and simultaneously output.

これらの基本手順をフローにまとめて第1図に示した。These basic procedures are summarized in the flow chart and shown in FIG.

このような手順を用いれば、加熱・均熱炉内の材料表面
温度と平均温度を高精度に検出することが可能である。
また、ここで用いる演算式はすべて解析解であるから、
前記特公昭61−43649号公報に記載されているような偏
微分方程式を解く場合に比べて計算時間が極めて短く、
小刻みなフイードバツク制御が行えるので、迅速かつ高
精度な材料温度制御には非常に有利であり、当然のこと
として簡易モデルと比べて高精度である。
By using such a procedure, it is possible to detect the material surface temperature and the average temperature in the heating / soaking furnace with high accuracy.
Also, since all the arithmetic expressions used here are analytical solutions,
The calculation time is extremely short as compared with the case of solving a partial differential equation as described in JP-B-61-43649,
Since the feed back control can be performed in small increments, it is very advantageous for rapid and highly accurate material temperature control, and of course, it has higher precision than the simple model.

以上の説明から明らかなように、本発明の特徴は相互に
関係し合つている総括熱吸収率,放射率,熱媒の熱伝達
率,材料の表面温度および平均温度を同時に決定するこ
とが可能であり、従来技術の考えには全く存在しない最
も好ましい手法である。
As is clear from the above description, the features of the present invention are that it is possible to simultaneously determine the overall heat absorption coefficient, emissivity, heat transfer coefficient of heat medium, surface temperature and average temperature of materials, which are mutually related. Is the most preferable method that does not exist in the idea of the prior art at all.

<実施例> 以下に、本発明方法の実施例について説明する。<Examples> Examples of the method of the present invention will be described below.

第3図は、薄鋼板の加熱・均熱焼鈍ラインに、本発明方
法を適用した場合の概要を示す側面図である。この図に
おいて、被加熱材1の表面温度は加熱帯2出側(すなわ
ち均熱帯3入側)および均熱帯3出側にそれぞれ設置さ
れた例えば吸収波長0.9μmのSi素子型の放射温度計5a,
5bによつて測定され、その測温信号は熱電体9a〜9fによ
つて測定された加熱・均熱帯炉内温度信号とともにデー
タ採取装置10に入力されて、演算処理装置11において演
算処理される。この演算処理装置11からの制御信号は制
御装置12を介して加熱帯2と均熱帯3それぞれのガス流
量調節弁7a,7bにフイードバツクされ、燃焼制御され
る。ペイオフリール21より送り出された被加熱材1は加
熱帯2,均熱帯3と順次通過して加熱・均熱された後、最
終的にテイクアツプリール22にて巻取られる。
FIG. 3 is a side view showing an outline when the method of the present invention is applied to a heating / soaking annealing line for thin steel sheets. In this figure, the surface temperature of the material to be heated 1 is, for example, a Si element type radiation thermometer 5a having an absorption wavelength of 0.9 μm installed on the heating zone 2 exit side (ie, the soaking zone 3 entrance side) and the soaking zone 3 exit side, respectively. ,
5b, the temperature measurement signal is input to the data collection device 10 together with the heating and soaking chamber temperature signal measured by the thermoelectric body 9a ~ 9f, is processed by the arithmetic processing unit 11 . The control signal from the arithmetic processing unit 11 is fed back to the gas flow rate control valves 7a and 7b of the heating zone 2 and the soaking zone 3 via the control unit 12 to control combustion. The material to be heated 1 sent out from the payoff reel 21 is sequentially passed through the heating zone 2 and the soaking zone 3 to be heated and soaked, and finally wound up by the take-up reel 22.

なお、図中、4a〜4cは炉内に設置されたガイドロール、
6a,6bは炉内外乱光を遮蔽するための冷却遮蔽管、8a,8b
は燃料とエアの噴出孔である。
In the figure, 4a to 4c are guide rolls installed in the furnace,
6a and 6b are cooling shield tubes for shielding the ambient light from the furnace, and 8a and 8b
Is a jet of fuel and air.

また、加熱帯2出口と均熱帯3出口に設置された放射温
度計5a,5bは本発明に係るもので、防熱対策が施され、
それぞれ設定放射率〔ε〕を例えば1.0としておく。こ
れら放射温度計5a,5bによるデータの採取は連続して行
うが、下記の点を配慮する。すなわち、 (1)材料の同一箇所を2台の放射温度計が測定し得る
よう、ともに被加熱材1の板幅方向の中央位置からの放
射を集光すべく配置する。
Further, the radiation thermometers 5a and 5b installed at the heating zone 2 outlet and the soaking zone 3 outlet are related to the present invention, and are provided with heat insulating measures,
The set emissivity [ε] is set to 1.0, for example. The data collection by these radiation thermometers 5a and 5b is performed continuously, but the following points should be considered. That is, (1) both are arranged to collect radiation from the central position in the plate width direction of the material to be heated 1 so that two radiation thermometers can measure the same portion of the material.

(2)下流側の均熱帯3出側における測定値としては、
加熱帯2出側からの材料の所要走行時間分だけ遅らせて
データ採取して演算処理する。さらに、加熱帯2入側に
おける被加熱材1の平均温度は、通常50℃未満と小さ
く、かつ許容誤差が10〜20℃と較的大きいので、例えば
接触温度計あるいは予め被加熱材1の放射率が与えられ
た放射温度計により測温した表面温度から推定した、い
わゆる従来技術による平均温度を既知として与えるもの
とする。
(2) As the measured values on the downstream side of the soaking zone 3,
Data is collected and arithmetically processed with a delay of the required travel time of the material from the heating zone 2 exit side. Further, the average temperature of the material 1 to be heated on the inlet side of the heating zone 2 is usually as small as less than 50 ° C and has a relatively large tolerance of 10 to 20 ° C. It is assumed that a so-called conventional average temperature estimated from the surface temperature measured by a radiation thermometer given a rate is given as a known value.

このように構成した材料温度測定装置を、加熱帯、均熱
帯長さがそれぞれ12m、炉高2.5m、炉幅2.2mで、ガスを
炉内で直接燃焼させるタイプの連続焼鈍炉に適用して、
板厚1.0mm,板幅1000mmで24m/minのラインスピードで走
行させながら連続加熱されるフエライト系ステンレス鋼
板の表温度を測定した。
Applying the material temperature measuring device configured in this way to a continuous annealing furnace of the type that directly burns gas in the furnace with a heating zone, soaking zone length of 12 m, furnace height of 2.5 m, furnace width of 2.2 m ,
The surface temperature of a ferritic stainless steel sheet that was continuously heated while running at a line speed of 24 m / min with a sheet thickness of 1.0 mm and a sheet width of 1000 mm was measured.

なお、この鋼板に予め熱電対を装着して、その測定値を
基準をなす真温度とした。
A thermocouple was previously attached to this steel plate, and the measured value was used as the true temperature as a reference.

また、比較のために、従来法の放射率を予め0.35に固定
設定した放射温度計を並列に取付けて測定した。
For comparison, a radiation thermometer with the emissivity of the conventional method fixed at 0.35 was attached in parallel and measured.

それらの測定結果を第1表に示す。Table 1 shows the measurement results.

この表から明らかなように放射率をオンライン同定した
本発明法に対し、放射率固定設定方式の従来法はいずれ
も熱電対による測定値(真温度)に比較して大きな測定
誤差を有していることがわかる。これは、従来法で予め
設定した放射率が、加熱帯では本発明で同定した放射率
より大きく、均熱帯では逆に小さくなつており、その結
果このような材料温度の大小関係になつたものである。
したがつて、本発明法を用いることにより、材料温度の
測定精度が向上し、とくに放射率の小さい加熱炉では顕
著である。
As is apparent from this table, in contrast to the method of the present invention in which the emissivity is identified online, the conventional method of the fixed emissivity setting method has a large measurement error as compared with the measurement value (true temperature) by the thermocouple. You can see that This is because the emissivity preset by the conventional method is larger than the emissivity identified in the present invention in the heating zone, and is conversely smaller in the soaking zone, and as a result, the material temperature has such a magnitude relationship. Is.
Therefore, the use of the method of the present invention improves the measurement accuracy of the material temperature, which is remarkable especially in a heating furnace having a small emissivity.

このように、本発明はオンラインで加熱帯,均熱帯それ
ぞれに総括熱吸収率を同定し、これと同時に加熱帯と均
熱帯の放射測温点における放射率も同定できるので、精
度の高い材料温度の測定が可能である。この実測値に基
づいて目標材料温度との偏差を通常のフイードバツクに
よる炉内温度制御を行うことにより、確実にその偏差を
縮小させ、高精度の焼鈍処理を実現することができる。
As described above, according to the present invention, the overall heat absorption coefficient of each of the heating zone and the soaking zone can be identified online, and at the same time, the emissivity at the radiation measuring point of the heating zone and the soaking zone can be identified. Can be measured. By performing the temperature control in the furnace by a normal feedback on the deviation from the target material temperature based on the measured value, the deviation can be surely reduced and a highly accurate annealing process can be realized.

なお、本実施例では、鋼板を直接燃焼雰囲気炉で加熱す
る場合について述べたが、本発明はこれに限定されず、
鋼板以外の形状例えば丸棒および鉄鋼以外の金属や非金
属、あるいはラジアントチユーブ方式等の異なる雰囲気
加熱方法に対しても、当然のことながら適用できること
はいうまでもない。
In addition, in the present embodiment, the case of heating the steel sheet directly in the combustion atmosphere furnace was described, but the present invention is not limited to this.
It goes without saying that the present invention can be applied to shapes other than steel plates, such as round bars and metals, non-metals other than steel, and different atmosphere heating methods such as the radiant tube method.

また、加熱炉に予熱帯がある場合には、予熱帯と加熱帯
の接続部でさらに加えて放射温度計で測定するか、ある
いは予熱帯と加熱帯とを一体化させて一の加熱帯とみな
すかで、本発明法を問題無く適用できる。
If the heating furnace has a pre-tropical zone, the radiation zone thermometer may be used in addition to the connection between the pre-tropical zone and the heating zone, or the pre-tropical zone and the heating zone may be integrated into one heating zone. The method of the present invention can be applied without any problem.

<発明の効果> 以上説明したように、本発明によれば、放射温度計を用
いた測温において不可欠な放射率をオンライン同定し、
かつ雰囲気加熱での昇温予測計算に不可欠な総括熱吸収
率をオンライン同定するようにしたので、炉出口での材
料温度と炉内の昇温パターンを高精度に検出でき、正確
な炉内温度の修正に基づいた目標通りの熱処理を施すこ
とができ、その結果、高レベルでしかも変動の小さい製
品品質を得ることができ、また熱エネルギーに無駄がな
く、さらに最高速での通板により高い生産性を保つこと
ができるなどの多くの効果を有する。
<Effects of the Invention> As described above, according to the present invention, the emissivity essential for temperature measurement using a radiation thermometer is identified online,
In addition, since the overall heat absorption rate, which is indispensable for predicting the temperature rise in atmospheric heating, is identified online, the material temperature at the furnace outlet and the temperature rise pattern in the furnace can be detected with high accuracy, and the accurate temperature inside the furnace can be detected. As a result, it is possible to perform the heat treatment as targeted based on the correction of the above, and as a result, it is possible to obtain a high level and product quality with little fluctuation. Also, there is no waste of heat energy, and it is higher due to passing at maximum speed. It has many effects such as being able to maintain productivity.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明方法に係る基本手順を示す流れ図、第
2図は、炉内温度と材料表面温度の差と総括熱吸収率と
の相関を示す特性図、第3図は、本発明方法の適用例の
概要を示す側面図である。 1……被加熱材,2……加熱帯, 3……均熱帯,4……ガイドロール, 5……放射温度計,6……外乱光遮蔽管, 7……ガス流量調節弁,8……ガス・エア噴出孔, 9……熱電対,10……データ採取装置, 11……演算処理装置,12……制御装置, 21……ペイオフリール,22……テイクアツプリール。
FIG. 1 is a flow chart showing the basic procedure according to the method of the present invention, FIG. 2 is a characteristic diagram showing the correlation between the difference between the furnace temperature and the material surface temperature, and the overall heat absorption rate, and FIG. 3 is the present invention. It is a side view which shows the outline of the application example of a method. 1 ...... Heated material, 2 ...... Heating zone, 3 ...... Soaking zone, 4 ...... Guide roll, 5 ...... Radiation thermometer, 6 ...... Ambient light shielding tube, 7 ...... Gas flow control valve, 8 ... … Gas / air ejection holes, 9 …… Thermocouple, 10 …… Data sampling device, 11 …… Computer processing device, 12 …… Control device, 21 …… Pay-off reel, 22 …… Take-up reel.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 稔也 兵庫県神戸市中央区脇浜海岸通2番88号 川崎製鉄株式会社阪神製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiya Sato 2-88 Wakihama Kaigan-dori, Chuo-ku, Kobe-shi, Hyogo Kawasaki Steel Co., Ltd. Hanshin Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】加熱帯と均熱帯からなる連続加熱炉内に被
加熱材を走行させながら連続加熱する際の材料温度の測
定方法であって、加熱帯の入側における材料温度と加熱
帯および均熱帯の炉内雰囲気温度をそれぞれ測定すると
ともに、加熱帯の出側および均熱帯の出側の2カ所にそ
れぞれ取付けられた放射温度計によって被加熱材の輝度
温度を検出し、かつ加熱帯内における総括熱吸収率を一
定値とし、また均熱帯内における総括熱吸収率を被加熱
帯の在炉時間の一次関数形として、前記加熱帯入側材料
温度と加熱帯および均熱帯の炉内雰囲気温度と加熱帯の
総括熱吸収率とから、加熱帯の出側と均熱帯の出側との
2点間における被加熱材の放射率をオンラインで同定し
たのち、加熱帯,均熱帯の出側およびそれらの炉内にお
ける被加熱材の昇温パターンをそれぞれ求めることを特
徴とする連続加熱炉における材料温度の測定方法。
1. A method for measuring a material temperature when a material to be heated is continuously heated while running in a continuous heating furnace composed of a heating zone and a soaking zone, which comprises: The ambient temperature in the soaking zone is measured, and the brightness temperature of the material to be heated is detected by the radiation thermometers installed at the two outlets of the heating zone and the outlet side of the soaking zone. The overall heat absorption rate in the heating zone is set to a constant value, and the total heat absorption rate in the soaking zone is defined as a linear function of the heating time of the heated zone. The emissivity of the material to be heated between the outlet of the heating zone and the outlet of the soaking zone was identified online from the temperature and the overall heat absorption rate of the heating zone. And rising of heated material in those furnaces Method of measuring the material temperature in a continuous furnace, characterized in that to determine the pattern, respectively.
JP63323462A 1988-12-23 1988-12-23 Measuring method of material temperature in continuous heating furnace Expired - Lifetime JPH0663849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63323462A JPH0663849B2 (en) 1988-12-23 1988-12-23 Measuring method of material temperature in continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63323462A JPH0663849B2 (en) 1988-12-23 1988-12-23 Measuring method of material temperature in continuous heating furnace

Publications (2)

Publication Number Publication Date
JPH02170023A JPH02170023A (en) 1990-06-29
JPH0663849B2 true JPH0663849B2 (en) 1994-08-22

Family

ID=18154952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63323462A Expired - Lifetime JPH0663849B2 (en) 1988-12-23 1988-12-23 Measuring method of material temperature in continuous heating furnace

Country Status (1)

Country Link
JP (1) JPH0663849B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233797A (en) * 2011-05-02 2012-11-29 Sumitomo Metal Ind Ltd Method for measuring temperature of material to be processed, method for manufacturing processed product, and apparatus for heating the material to be processed

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236914A (en) * 1990-02-14 1991-10-22 Matsushita Electric Ind Co Ltd Heater
JPH0820191B2 (en) * 1991-02-14 1996-03-04 日本碍子株式会社 Temperature measurement method in continuous furnace
JP2019211227A (en) * 2018-05-31 2019-12-12 学校法人早稲田大学 Temperature measurement system, heating furnace, and workpiece temperature acquisition method in heating furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233797A (en) * 2011-05-02 2012-11-29 Sumitomo Metal Ind Ltd Method for measuring temperature of material to be processed, method for manufacturing processed product, and apparatus for heating the material to be processed

Also Published As

Publication number Publication date
JPH02170023A (en) 1990-06-29

Similar Documents

Publication Publication Date Title
CN105045949A (en) Walking beam furnace steel billet temperature modeling and on-line correcting method
JPH0663849B2 (en) Measuring method of material temperature in continuous heating furnace
JP5493993B2 (en) Thick steel plate cooling control device, cooling control method, and manufacturing method
CN114015863B (en) Self-correction algorithm for billet heating model
JP2823645B2 (en) Furnace temperature control method in heating furnace
JP6797759B2 (en) Steel material temperature prediction method
JPH08502362A (en) Radiation pyrometer assembly for detecting the temperature of a long object moving in the longitudinal direction
JP2006272395A (en) Method and apparatus for controlling cooling and computer program
JP2022165402A (en) Temperature measuring method, temperature measuring device, temperature control method, temperature control device, method for manufacturing steel material, and facility for manufacturing steel material
Marino et al. Control of pusher furnaces for steel slab reheating using a numerical model
JP3744374B2 (en) Heating furnace temperature control method and apparatus
Hwang Methodology for the emissivity estimation of radiation-type thermometers using the latent heat generated during the phase transformation of steels
JPH0671315A (en) Method for estimating rolling temperature of steel sheet in hot rolling
JP3646546B2 (en) Steel rolling method
CN116817603B (en) High-temperature smelting furnace molten pool temperature monitoring and inverting method based on heat conduction inverse problem
JP4258341B2 (en) Manufacturing method of high-strength steel sheet with excellent material uniformity in the longitudinal direction of the steel sheet
JPS63140036A (en) Method for identifying overall heat absorptivity of continuous heating furnace
JP7414044B2 (en) Metal strip temperature measuring method, metal strip temperature measuring device, metal strip manufacturing method, metal strip manufacturing equipment, and metal strip quality control method
JP2005076935A (en) Billet heating furnace and operation method thereof
JPH0348126A (en) Identification of temperature rise pattern in heating furnace
JPH0722129B2 (en) Wafer temperature control system in oxidation / diffusion device
JPH11138205A (en) Method for predicting material temperature in multi-pass rolling
JPS61170508A (en) Method for erasing skid mark in continuous heating furnace
JPH10324926A (en) Method for predicting overall ratio of heat absorption in continuous heating furnace and method for predicting temperature of steel slab
KR100936357B1 (en) Decision method of the position and the quantity of the temperature sensor and of the heating zone in a reheating furnace