JP2823645B2 - Furnace temperature control method in heating furnace - Google Patents

Furnace temperature control method in heating furnace

Info

Publication number
JP2823645B2
JP2823645B2 JP2076994A JP7699490A JP2823645B2 JP 2823645 B2 JP2823645 B2 JP 2823645B2 JP 2076994 A JP2076994 A JP 2076994A JP 7699490 A JP7699490 A JP 7699490A JP 2823645 B2 JP2823645 B2 JP 2823645B2
Authority
JP
Japan
Prior art keywords
temperature
furnace
heating
zone
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2076994A
Other languages
Japanese (ja)
Other versions
JPH03277722A (en
Inventor
和夫 新井
孝行 加地
一哉 浅野
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP2076994A priority Critical patent/JP2823645B2/en
Publication of JPH03277722A publication Critical patent/JPH03277722A/en
Application granted granted Critical
Publication of JP2823645B2 publication Critical patent/JP2823645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Control Of Temperature (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、加熱炉における炉温制御方法に関する。Description: TECHNICAL FIELD The present invention relates to a furnace temperature control method in a heating furnace.

<従来の技術> 通常、焼鈍炉などの連続加熱炉で再加熱処理される鋼
板などの被加熱材は、均熱帯内において所定の温度域で
所定の時間保持される。そのときの材料温度は、主に加
熱帯出口および均熱帯出口に設置された放射温度計で計
測されるが、この場合被加熱材の放射率εを正確に求め
て補正することが不可欠である。また、均熱時間を確認
するために、計算により昇温パラメータの予測を行う
が、この場合総括熱吸収率φCGを決めることが不可欠で
ある。そして、これら放射率εと総括熱吸収率φCGとは
リアルタイムに同定しなければ高い検出精度を維持する
ことは困難である。
<Conventional Technology> Generally, a material to be heated such as a steel sheet that is reheated in a continuous heating furnace such as an annealing furnace is held for a predetermined time in a predetermined temperature region within a soaking zone. The material temperature at that time is measured mainly by a radiation thermometer installed at the outlet of the heating zone and the outlet of the soaking zone. In this case, it is essential to accurately obtain and correct the emissivity ε of the material to be heated. . In order to confirm the soaking time, the calculation for prediction of Atsushi Nobori parameter by, it is essential to determine this case overall heat absorption rate phi CG. Then, from these emissivity ε and overall heat absorption rate phi CG is difficult to maintain a high detection accuracy to be identified in real time.

その理由について、以下に詳しく述べる。 The reason will be described in detail below.

通常の材料温度の計測において、必要な因子は表面温
度と平均温度である。表面温度は材料の表面性状を評価
するために必要であり、また平均温度は材料の内質評価
のために必要である。ところで、温度計測に放射温度計
を用いる場合、表面温度の測定値は放射率に依存し、ま
た平均温度の測定値は表面温度と雰囲気の熱伝達率とに
依存する。
In normal material temperature measurement, the necessary factors are the surface temperature and the average temperature. The surface temperature is required for evaluating the surface properties of the material, and the average temperature is required for evaluating the internal quality of the material. When a radiation thermometer is used for temperature measurement, the measured value of the surface temperature depends on the emissivity, and the measured value of the average temperature depends on the surface temperature and the heat transfer coefficient of the atmosphere.

一方、熱伝導率は加熱の実績データから平均温度のみ
の関数形として求める手法もあるが、上記のように、平
均温度自体が熱伝達率に依存することから、別の手法、
例えば輻射方程式により、表面温度と総括吸収率φCG
関数形として求めざるを得ないのである。ここで、大気
中で放冷の場合には、総括熱吸収率φCG相当のものが即
放射率εとなり、また雰囲気加熱の場合にもεとφCG
は炉寸法,材料寸法および炉壁放射率の関数で結合され
るので、いずれにしてもφCGはεで代表できる。
On the other hand, there is a method of obtaining the thermal conductivity as a function form of only the average temperature from the actual heating data, but as described above, since the average temperature itself depends on the heat transfer coefficient, another method is used.
For example by radiation equations, it's inevitably determined as a function form of the overall absorption rate phi CG and surface temperature. Here, in the case of cooling in the atmosphere, becomes that of overall heat absorption rate phi CG equivalent is immediately emissivity epsilon, also furnace dimensions also epsilon and phi CG when the ambient heating, the material sizes and furnace wall In any case, φ CG can be represented by ε, since they are combined as a function of emissivity.

したがって、放射温度計に与える放射率εが真値であ
るとの保証があるとすれば、測定された表面温度から熱
伝達率を、さらにこの熱伝達率を用いて平均温度を順次
決定することが可能であるが、現在のところ放射率εそ
のものを検定する絶対的な手段が無いのが実情である。
それ故、放射率および熱伝達率,表面温度,平均温度の
4者は、いずれもが単独に真に正しいものとして与える
方法が原理上存在しないのであり、これら4者はただ一
組の組合せによって同時に決定すべき性質のものである
といえる。
Therefore, if there is a guarantee that the emissivity ε given to the radiation thermometer is a true value, determine the heat transfer coefficient from the measured surface temperature, and further determine the average temperature sequentially using this heat transfer coefficient. Is possible, but at present there is no absolute means for testing the emissivity ε itself.
Therefore, the emissivity and heat transfer coefficient, the surface temperature, and the average temperature do not have a method of giving each of them as a truly correct one in principle, and these four are determined by only one combination. At the same time, it can be said that it is of a nature that should be determined.

さらに、総括熱吸収率φCGは操炉状態によって変化す
ることが明らかにされており、φCGすなわちεをオンラ
インでその場同定することが、高精度な材料温度の測定
と制御の第1条件としながら、実際にはそのための手法
が無かった。なお、わずかに、特公昭61−43649号公報
に記載されているように、φCGを算出しつつ材料温度を
計算して求める方法が開示されている。
Furthermore, it has been clarified that the overall heat absorption rate φ CG varies depending on the furnace operation conditions, and it is necessary to identify φ CG, that is, ε in-situ, in-situ, as the first condition for highly accurate material temperature measurement and control. However, there was actually no method for that. Incidentally, slightly, as described in JP-B-61-43649, a method of obtaining by calculation the material temperature while calculating the phi CG is disclosed.

<発明が解決しようとする課題> しかしながら、特公昭61−43649号公報においては、
時刻tにおける材料温度を計算するに際して、Δt時間
前のφCG値を用いるようにしているものの、その発明の
詳細な説明の項においても記載されているように、「φ
CGは鋼片の材質もしくは形状が同一であっても必ずしも
一定ではなく、炉の操業状態によって異なる不確定な要
素と見なされている(同公報2ページ3欄上21〜24
行)」としていながら、このような取扱いをせざるを得
ないため、「統括的手法によって平均化し、(同4欄上
20行)」としたφCGを適用するとしていることから、精
度的に問題があり、かつ原理的に燃料燃焼熱,スケール
生成熱,上流帯からの入熱,炉壁からの損失熱,排ガス
損失熱等数多くの不確定なパラメータからなる熱バラン
ス式を根拠にしてφCGを算出することが、精度上の限界
を生じている。
<Problems to be solved by the invention> However, in Japanese Patent Publication No. 61-43649,
In calculating the material temperature at the time t, the φ CG value before the time Δt is used, but as described in the detailed description of the invention, “φ
CG is not necessarily constant even if the material or shape of the slab is the same, and is regarded as an uncertain element that varies depending on the operation state of the furnace (see page 2, column 3, columns 21 to 24).
Line), but such a treatment is inevitable.
Since you are applying the phi CG which was 20 rows) ", there is a problem with the accuracy, the and theoretically fuel combustion heat, scale formation heat, the heat input from the upstream zone, heat loss from the furnace wall, the exhaust gas the heat balance equation consisting of the loss heat such as a number of uncertain parameters in the grounds for calculating the phi CG has resulted in limitations on accuracy.

また、時刻tにおける材料温度を計算する伝熱方程式
(同3欄の(3)式)においては、雰囲気熱伝達率αを
どのような形で与えるかの説明が見当たらない。したが
って、φCGもαも操炉状態によって大きく左右されるパ
ラメータであることを考えると、この発明は正鵠を得た
ものであるとはいえない。この点、φCG,ε,αおよび
材料温度を決定する作業が同時になされるのであれば、
極めて合理的である。
Further, in the heat transfer equation for calculating the material temperature at time t (Equation (3) in the third column), there is no description on how to give the atmosphere heat transfer coefficient α. Therefore, considering that both φ CG and α are parameters greatly influenced by the furnace operation state, the present invention cannot be said to have been successful. In this regard, if the work of determining φ CG , ε, α and the material temperature is performed simultaneously,
Very reasonable.

本発明は、上記の事情に鑑みてなされたものであっ
て、連続加熱炉における精度の高い炉温の制御方法を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a highly accurate furnace temperature control method in a continuous heating furnace.

<課題を解決するための手段> 本発明の構成は、下記の手順を基本とするものであ
り、これによって、高精度な加熱処理が達成される。こ
の手順は、加熱帯と均熱帯に2分割された連続加熱炉の
場合を代表例として説明するものである。
<Means for Solving the Problems> The configuration of the present invention is based on the following procedure, whereby high-precision heat treatment is achieved. This procedure describes a continuous heating furnace divided into a heating zone and a solitary zone as a representative example.

(1) 加熱帯入側の材料表面温度(T0),加熱帯と均
熱帯の炉内温度(TFH,TFK)を、通常の任意の手段で測
定する。
(1) Measure the material surface temperature (T 0 ) on the inlet side of the heating zone and the furnace temperature (T FH , T FK ) of the heating zone and the soaking zone by usual arbitrary means.

(2) 加熱帯出側と均熱帯出側の2点で、放射温度計
により被加熱材の輝度温度(〔TH〕,〔TK〕)を検出す
る。
(2) The luminance temperature ([ TH ], [ TK ]) of the material to be heated is detected by a radiation thermometer at two points, the exit side of the heating zone and the exit side of the soaking zone.

(3) 加熱帯内と均熱帯内の総括熱吸収率φCGを炉温
と材料表面温度との偏差ΔTを関数とする例えば、次式
で表現する。
(3) The overall heat absorption rate φ CG in the heating zone and in the soaking zone is expressed by the following equation, for example, using the deviation ΔT between the furnace temperature and the material surface temperature as a function.

φCG=φ exp(−a/ΔT) ΔT=TF−T ここで、 φ0;加熱帯入口での総括熱吸収率 (パラメータ) TF ;加熱炉炉内温度 (℃) T ;被加熱材の表面温度 (℃) a ;微係数 (パラメータ) (4) 被加熱材の放射率εをφCGの関数形として与え
る。
φ CG = φ 0 exp (−a / ΔT) ΔT = TF −T where φ 0 ; overall heat absorption rate at the entrance of the heating zone (parameter) T F ; heating furnace temperature (° C) T; the surface temperature of the heating member (° C.) a; derivative (parameters) (4) gives the emissivity ε of the material to be heated as a function form of phi CG.

(5) 〔TH〕,εおよび〔TK〕,εを用いて加熱
帯出側と均熱帯出側でのそれぞれの測温位置における材
料表面温度THa,TKaを換算する。
(5) [T H], epsilon H and [T K], material surface temperature in each of the temperature measuring position of the heating home use side and the soaking zone outlet side with epsilon K T Ha, converting the T Ka.

(6) T0,TFH,TFKCGより熱伝導解析解昇温計算式
から加熱帯出側および均熱帯出側におけるそれぞれの放
射温度計位置での被加熱材の材料平均温度Hb,Kb
求める。次いで、材料表面温度THb,TKbに変換する。
(6) From T 0 , T FH , T FK , φ CG , heat conduction analysis solution From the heating equation, the material average temperature Hb , Find Kb . Next, it is converted into the material surface temperatures T Hb and T Kb .

(7) ステップ(5)で求めた材料表面温度THa,TKa
とステップ(6)で求めた材料表面温度THb,TKbとがそ
れぞれ必要精度内で一致するようなa,φを探索する。
(7) Material surface temperature T Ha , T Ka determined in step (5)
And the material surface temperature T Hb, T Kb obtained in step (6) is a such match within required accuracy respectively, to search for the phi 0.

(8) ステップ(7)においてa,φが決定された
ら、そのときのHbおよびKbをそれぞれ加熱帯および
均熱帯出側での被加熱材の平均温度と決定する。
(8) a, phi 0 is determined When in step (7), to determine the average temperature of the heated material of the Hb and Kb at that time in each heating zone and soaking the delivery side.

(9) 同時に求められている昇温計算結果を用いて全
昇温パターンを同定する。
(9) The entire heating pattern is identified using the heating calculation result obtained at the same time.

(10) この昇温パターンになるように炉内温度分布を
調整する。
(10) Adjust the temperature distribution in the furnace so as to achieve this heating pattern.

<作 用> 本発明者らは、加熱帯と均熱帯を有する連続加熱炉内
に熱電対を装着した薄鋼板を連続走行させ、加熱帯入側
から均熱帯出側までの材料温度を連続測定する実験を行
った。そのとき得られた測温データをもとに、昇温計算
式から輻射熱伝達率を逆算し、さらに輻射熱伝達率式か
ら総括熱吸収率を逆算した。そして、薄鋼板の鋼種,板
厚,板幅,走行速度および加熱帯・均熱帯温度を種々変
更することによって得られた膨大な測温データを解析し
た結果、以下のような重要な知見を得た。
<Operation> The present inventors continuously run a thin steel sheet equipped with a thermocouple in a continuous heating furnace having a heating zone and a soaking zone, and continuously measure the material temperature from the heating zone entrance side to the soaking zone exit side. An experiment was performed. Based on the temperature measurement data obtained at that time, the radiant heat transfer coefficient was back calculated from the heating equation, and the overall heat absorption rate was back calculated from the radiant heat transfer equation. As a result of analyzing the enormous temperature measurement data obtained by variously changing the steel type, thickness, width, running speed, heating zone and soaking zone temperature of the thin steel sheet, the following important findings were obtained. Was.

(1) 加熱帯内では、総括熱吸収率φCGがそのレベル
については鋼種,加熱条件等により異なるものの、ほぼ
一定値に保たれること。
(1) In the heating zone, the steel grade for the overall heat absorption rate phi CG is that level, although different by heating conditions, be maintained substantially constant value.

(2) 均熱帯内では、φCGは在炉時間にほぼ比例して
増大すること。
(2) Within the tropics, φ CG should increase almost in proportion to the furnace time.

これらの現象は、炉内温度TFと材料表面温度Tとの差
ΔTによって統一的に解釈できる。すなわち、加熱帯内
ではΔTが通常200℃超のレベルで大きく、φCGはほと
んど室温中の材料の放射率と等しい値とみなすことがで
き、一方、均熱帯内ではΔTが100℃以下と急激に小さ
くなり、かつΔTは在炉時間とともに0に漸近して行
く。原理上は、ΔT=0のときφCG=1.0になるので、
均熱帯ではΔTが0に漸近することがφCGを連続的に増
大させていくものと考えられる。これらΔTとφCGとの
相関の一例を第2図に示す。この図から、φCGはΔT>
200℃の領域でほぼ一定値となること、およびΔ値≒0
゜でφCG=1.0に漸近することが明らかである。
These phenomena can be unifiedly interpreted by the difference ΔT between the furnace temperature TF and the material surface temperature T. In other words, larger level ΔT is usually 200 ° C. greater than the heating zone, phi CG can be almost regarded as equal to the emissivity of the material in room temperature, whereas, rapid and ΔT is 100 ° C. or less in soaking zone And ΔT gradually approaches 0 with the furnace time. In principle, φ CG = 1.0 when ΔT = 0, so
In soaking zone it is considered that will continuously increase the phi CG that ΔT gradually approaches 0. An example of correlation between these ΔT and phi CG illustrated in Figure 2. From this figure, phi CG is [Delta] T>
It is almost constant in the region of 200 ° C., and Δ value ≒ 0
It is clear that φ CG approaches 1.0 at に.

このように、φCGが加熱帯でほぼ一定となり、均熱帯
でほぼ直線的に増大することから、φCG表式として、下
記式 φCG=φ exp(−a/ΔT) を与え得ることを結論した。
As described above, since φ CG becomes almost constant in the heating zone and increases almost linearly in the solitary zone, the following equation φ CG = φ 0 exp (−a / ΔT) can be given as φ CG expression. Was concluded.

したがって、〔TX〕とε(ただし、X=H,K)より
換算して求めた被加熱材の表面温度THa,TKaと、T0CG
より昇温計算で求めた材料平均温度Hb,Kbより変換
した表面温度THb,TKbとで、それぞれ等価となる下記に
示す2つの方程式、すなわち、 THa=THb TKa=TKb より、2つのパラメータaとφを決定することが可能
である。
Therefore, the surface temperatures T Ha , T Ka and T 0 , φ CG of the material to be heated obtained by converting from [T X ] and ε X (where X = H, K)
From the following two equations, which are equivalent to the surface temperatures T Hb and T Kb converted from the material average temperatures Hb and Kb obtained by the temperature increase calculation, respectively, that is, T Ha = T Hb T Ka = T Kb It is possible to determine two parameters a and φ 0 .

ところで、発明者らが総括熱吸収率φCGと放射率εと
の関係について種々検討したところ、総括熱吸収率φCG
と放射率εとは一般に特定の関係式で結合されることを
見出した。そこで、未知数はφCGのみに限定され、結局
φCG表式中の2つの未知のパラメータaとφのみに限
定することができるわけである。
By the way, the present inventors have conducted various studies on the relationship between the overall heat absorption rate φ CG and the emissivity ε, and found that the overall heat absorption rate φ CG
And emissivity ε are generally found to be combined by a specific relational expression. Thus, the unknown is limited to only φ CG , and in the end, can be limited to only two unknown parameters a and φ 0 in the φ CG expression.

以下に、本発明における昇温パターンの同定の基本手
順について説明する。
Hereinafter, a basic procedure for identifying a temperature rise pattern in the present invention will be described.

加熱帯出側(すなわち均熱帯入側)と均熱帯出側にそ
れぞれ放射温度計を配置して、被加熱材の材料表面温度
を連続して計測し、それらの測温値を以下の手順により
演算する。
Radiation thermometers are placed on the exit side of the heating zone (that is, on the exit side of the soaking zone) and on the exit side of the soaking zone, respectively, to continuously measure the material surface temperature of the material to be heated, and calculate the measured values by the following procedure. I do.

まず、放射温度計の設定放射率〔ε〕を、それぞれ
任意でよいが、取扱上最も簡便な1.0と設定して、それ
ぞれ加熱帯出側放射温度計と均熱帯出側放射温度計の検
出値(すなわち輝度温度)〔TH〕,〔TK〕をリアルタイ
ムでデータロギングする。
First, the emissivity [ε] of the radiation thermometer may be set arbitrarily, but it is set to 1.0, which is the simplest in handling, and the detected values of the heating zone emission thermometer and the soaking zone emission thermometer ( That is, the data of the brightness temperature [T H ] and [T K ] are logged in real time.

一方、放射温度計の検出素子の吸収波長λ0,材料厚
さd,板幅W,加熱帯在時間tH,均熱帯在炉時間tS,材料の熱
的物性値(熱伝導率λ,温度伝播率a0など),加熱帯入
側材料表面温度T0,加熱帯炉内温度TFH、均熱帯炉内温度
TFKなどを入力する。
On the other hand, the absorption wavelength λ 0 of the detection element of the radiation thermometer, the material thickness d, the plate width W, the heating zone time t H , the soaking zone furnace time t S , the thermal properties of the material (thermal conductivity λ, Temperature propagation rate a 0 ), heating zone material surface temperature T 0 , heating zone furnace temperature T FH , soaking zone furnace temperature
Enter T FK etc.

次いで、未知のパラメータaとφの仮の組み合わ
せ(a′,φ′)を選択する。
Next, a temporary combination (a ′, φ 0 ′) of the unknown parameter a and φ 0 is selected.

加熱帯および均熱帯をそれぞれn個の小区間に分割
し、1〜n分区とする。第1分区ではT0とTF1よりΔT1
=TF1−T0を求め、例えば下記(1)式で示すφCG(a
φ0,ΔT)の関数を用いてφCG1を計算する。
The heating zone and the solitary zone are each divided into n small sections, which are divided into 1 to n sections. In the first division, ΔT 1 from T 0 and T F1
= T F1 −T 0, and, for example, φ CG (a
φ CG1 is calculated using the function of (φ 0 , ΔT).

φCG=φ exp(−a/ΔT) ……(1) ただし、ΔT=TF−T このφCGを第1分区での平均CG1とみなし、第1分
区での平均熱伝達率を例えば下記(2)式で表すα
(Ti-1,TFi)のボルツマンの熱輻射式とニュー
トンの伝熱式とを結合した放射熱伝達率式を用いて換算
する。
φ CG = φ 0 exp (−a / ΔT) (1) where ΔT = TF− T This φ CG is regarded as the average CG1 in the first division, and the average heat transfer coefficient 1 in the first division is For example, α expressed by the following equation (2)
i (T i−1 , T Fi , φ i ) is converted using a radiant heat transfer coefficient equation that combines the Boltzmann's heat radiation equation and Newton's heat transfer equation.

α=φCGi・σ{(Ti-1+273)+ (TFi+273)}・(Ti-1+TFi+546) (k cal/m2h℃) ……(2) ここで、 σ :ステファン・ボルツマン定数 (=4.88×10-8k cal/m2hk4) TFi:加熱帯あるいは均熱帯各分区炉内温度 (℃) さらに第1分区出口での材料内の平均温度を例え
ば下記(3)式で示すi-1,ti,d,TFi)の
熱伝導解析解昇温計算式により予測演算する。
α i = φCGi · σ {(T i-1 +273) 2 + (T Fi +273) 2 } · (T i-1 + T Fi +546) (k cal / m 2 h ° C) …… (2) , Σ: Stefan-Boltzmann constant (= 4.88 × 10 −8 kcal / m 2 hk 4 ) T Fi : Temperature in the heating zone or each zone of the solitary zone (° C) Furthermore, the average temperature in the material at the exit of the first zone i indicating one example by the following equation (3) (i-1, t i, d, T Fi, α i) for prediction calculation by heat conduction analysis KaiNoboru temperature calculation formula.

=(i-1−TFi)・exp(−k・ti)+TFi ……(3) ここで、 K =μ・a0・Y2/8d2 Y2 =f(N,m) N =(α・d/λ)×10-3 μ=8.889×103 a0:温度伝播率(m2/h) ti:炉分区内滞在時間(s) m :材料の形状係数 さらに第1分区出口での材料表面温度T1を例えば下記
(4)式で示すTiii,d,TFi)の関数で換算す
る。
i = ( i−1− T Fi ) · exp (−k · t i ) + T Fi (3) where K = μ 0 · a 0 · Y 2 / 8d 2 Y 2 = f (N, m ) N = (α i · d / λ) × 10 -3 μ 0 = 8.889 × 10 3 a 0: temperature propagation rate (m 2 / h) t i : furnace partial wards residence time (s) m: materials shape coefficient Further T i indicating the material surface temperature T 1 of the first minute ku outlet for example by the following equation (4) (i, α i, d, T Fi) is converted as a function of.

ここで、 Ni=(α・d/λ)×10-3 d :材料外径 λ:熱伝導率 :平均温度位置係数 引続き第2分区ではΔT2=TF2−T1として上記
(1)式よりCG2を計算し、と同様の作業により第
2分区での平均熱伝達率2,第2分区出口での材料平均
温度と表面温度T2を計算する。
Where N i = (α i · d / λ) × 10 −3 d: material outer diameter λ: thermal conductivity : Average temperature position coefficient In the second section, CG2 is calculated from the above equation (1) by setting ΔT 2 = T F2 −T 1 , and the average heat transfer coefficient 2 in the second section and the exit of the second section are obtained in the same manner as described above. Calculate the material average temperature 2 and the surface temperature T 2 at.

逐次の作業を繰り返し、第n分区までの全分区で
の平均CGiと平均熱伝達率i,全分区出口での材料平
均温度と表面温度Tiを計算し、2つの測温点におけ
る総括熱吸収率φCGHとφCGKおよび材料表面温度THb,T
Kbを抽出する。
Repeated successive operations, the average heat transfer coefficient and the average CGi in all sub-district up to the n partial ku i, the material average temperature i and the surface temperature T i of the total amount ku outlet was calculated and summarized in the two temperature measuring points fever Absorption rate φ CGH and φ CGK and material surface temperature T Hb , T
Extract Kb .

つぎに、各測温位置での放射率εHを例えば下
記(5)式で示すε(φCG,W)の関数を用いて換算す
る。ここで、Wは被加熱材料の板幅である。
Next, the emissivity ε H , ε K at each temperature measurement position is converted using, for example, a function of ε (φ CG , W) shown in the following equation (5). Here, W is the plate width of the material to be heated.

まず、一般に材料の放射率εは下記(5−a)式で表
される。
First, the emissivity ε of a material is generally expressed by the following equation (5-a).

ε={φCG -1+1−CF -1−(εF -1−1)・ FM/FF-1 ……(5−a) ここで、CFは被加熱材料と炉壁間の熱量授受の状態を
評価するパラメータで、一般に形態係数といわれるもの
であり、矩形断面の炉で鋼板等マクロな凹面を有しない
材料を完全に包囲している場合には、CF≒1.0とみなせ
る。εはレンガで造られた炉壁の放射率であり、通常
0.8〜0.9の範囲に特定されるので一定値として与えるこ
とができる。FM/FFは材料表面積と炉壁表面積との比で
あり、予め既知として扱える。
ε = {φ CG -1 +1 -C F -1-F -1 -1) F M / F F-1 ... (5-a) where CF is the material to be heated and the furnace wall This parameter is used to evaluate the state of heat transfer between the elements, and is generally called the view factor.When a furnace having a rectangular cross section completely surrounds a material that does not have a macro concave surface such as a steel plate, C F ≒ 1.0 Can be considered ε F is the emissivity of the furnace wall made of brick, usually
Since it is specified in the range of 0.8 to 0.9, it can be given as a constant value. F M / F F is the ratio between the surface area of the material and the surface area of the furnace wall, and can be treated as known in advance.

結局、εはφCGと材料寸法の関数として与えることが
でき、例えば薄い板の場合には、板厚(d)≪板幅
(W)であるから、εは下記(5)式のようにφCGとW
の関数で計算できる。
After all, ε can be given as a function of φ CG and the material size. For example, in the case of a thin plate, the thickness (d) ≪the width (W), so ε is given by the following equation (5). φ CG and W
Can be calculated by the function

ε=(φCG -1=bH・W)-1 ……(5) ここで、bH:正定数 ついで、加熱帯出側および均熱帯出側材料表面温度
THa,TKaを、例えば下記(6)式で示すTX(〔TX〕,
εx)の関数を用いて換算する。
ε = (φ CG −1 = b H · W) −1 (5) where b H is a positive constant, and then the surface temperature of the material on the exit side of the heating zone and on the level of the tropical zone.
T Ha and T Ka are represented by, for example, T X ([T X ],
ε x , λ 0 ).

TX={(〔TX〕+273)-1 +λ0/C2・lnε-1−273(℃) ……(6) ここで、 λ0:放射温度計の検出素子の吸収波長 (μm) C2 :1.43×104 (μm・deg) ステップで求められた加熱帯出側および均熱帯出
側の各表面温度THa,TKaと前記ステップで予測計算さ
れた平均温度Hb,Kbより換算された表面温度THb,TKb
とをそれぞれ比較して、両者の差が許容誤差δ内に収ま
るかどうかを判断させ、収まるまで総括熱吸収率のパラ
メータa′とφ′の選択を繰り返す。
T X = {([T X] +273) -1 + λ 0 / C 2 · l n ε X} -1 -273 (℃) ...... (6) where, lambda 0: absorption of the detector elements of the radiation thermometer Wavelength (μm) C 2 : 1.43 × 10 4 (μm · deg) The surface temperatures T Ha and T Ka on the heating outgoing side and the solitary outgoing side obtained in the step and the average temperature Hb predicted and calculated in the above step, Surface temperature converted from Kb T Hb , T Kb
Are compared with each other to determine whether or not the difference is within the allowable error δ, and the selection of the parameters a ′ and φ 0 ′ of the overall heat absorption rate is repeated until the difference is satisfied.

なお、両者の評価関数として、例えば下記の(7)式 J=(THa−THb+(TKa−TKb≦δ……(7) を用いるとよい。ここで、δは例えば1℃とすればよ
い。
In addition, for example, the following equation (7) J = (T Ha −T Hb ) 2 + (T Ka −T Kb ) 2 ≦ δ (7) may be used as both evaluation functions. Here, δ may be, for example, 1 ° C.

前記THaとTHbの差およびTKaとTKbの差がともに所要
精度内で一致したら、そのときのa′,φ′をそれぞ
れ同定すべきa,φとして、加熱帯出側材料表面温度TH
(=THb)および材料内平均温度=(=Hb)なら
びに均熱帯出側材料表面温度TK(=TKb)および材料内
平均温度(=Kb)を決定し、同時に出力する。
When the difference between T Ha and T Hb and the difference between T Ka and T Kb coincide with each other within required accuracy, a ′ and φ 0 ′ at that time are respectively identified as a and φ 0 to be identified, and the surface of the material on the heating exit side is defined. Temperature T H
(= T Hb ) and the average temperature in the material H = (= Hb ), and the soaking zone material surface temperature T K (= T Kb ) and the average temperature in the material K (= Kb ) are determined and output simultaneously.

併せて加熱・均熱帯全域の昇温パターンを出力し、
これに基づいて炉内温度分布を調整する。
At the same time, it outputs the heating and heating pattern of the whole area
The furnace temperature distribution is adjusted based on this.

これらの基本手順をフローにまとめて第1図に示し
た。
These basic procedures are summarized in a flow chart and shown in FIG.

このような手順を用いれば、加熱・均熱炉内の材料表
面温度と平均温度を高精度に検出することが可能であ
る。また、ここで用いる演算式はすべて解析解であるか
ら、前記特公昭61−43649号公報に記載されているよう
な偏微分方程式を解く場合に比べて計算時間が極めて短
く、小刻みなフィードバック制御が行えるので、迅速か
つ高精度な材料温度制御には非常に有利であり、当然の
こととして簡易モデルと比べて高精度である。
By using such a procedure, it is possible to detect the material surface temperature and the average temperature in the heating and soaking furnace with high accuracy. Further, since all the arithmetic expressions used here are analytical solutions, the calculation time is extremely short as compared with the case of solving a partial differential equation as described in JP-B-61-43649, and a gradual feedback control is performed. Since it can be performed, it is very advantageous for quick and high-precision material temperature control. Naturally, the accuracy is higher than that of the simple model.

なお、より正確な表現によれば、前出(5)式におけ
る放射率は全放射率ε、(6)式における放射率は分光
放射率ελであり、いわゆる灰色体であればελ=εな
ので、本記述の如くεで代表させることができる。しか
しながら、ελ≠εなる場合も少なからず存在する。こ
の場合にはελ/ε=として、前出(6)式における
εを・εの形で置換し、かつ対象材料毎にελ/ε=
の値を実験的に求めて与えてやれば、本発明技術は全
く問題なく使用することができる。
Incidentally, according to a more accurate representation, supra (5) emissivity in the expression total emissivity epsilon, (6) emissivity of formula is the spectral emissivity epsilon lambda, if a so-called gray body epsilon lambda = Since it is ε, it can be represented by ε as in this description. However, there are quite a few cases where ε λ ≠ ε. In this case, assuming that ε λ / ε =, ε in equation (6) above is replaced by the form of ε, and ε λ / ε =
Can be used without any problem if the value is determined experimentally and given.

また、加熱帯に予熱帯が付属している場合には、予熱
帯,加熱帯,均熱帯のそれぞれの出側の3点において輝
度温度を測定し、それらのうちいずれか2点の測定値を
用いるようにすれば本発明法を問題なく適用することが
できる。
If a pre-tropical zone is attached to the heating zone, the luminance temperature is measured at the three points on the exit side of the pre-tropical zone, the heating zone, and the solitary zone. If used, the method of the present invention can be applied without any problem.

さらに、例えば加熱帯のみの一体型炉の場合において
も、ゾーンとして2分割し、その分割ゾーンの出側の輝
度温度を測定するようにすればよい。
Further, for example, even in the case of an integrated furnace having only a heating zone, the zone may be divided into two zones, and the brightness temperature on the exit side of the split zone may be measured.

さらにまた、被加熱材が静置されているバッチ式の加
熱炉にも、走行加熱と同様に本発明法が適用できること
はいうまでもない。
Furthermore, it goes without saying that the method of the present invention can be applied to a batch-type heating furnace in which a material to be heated is left standing, similarly to the case of traveling heating.

以上の説明から明らかなように、本発明の特徴は相互
に関係し合っている総括熱吸収率,放射率,熱媒の熱伝
達率,材料の表面温度および平均温度を同時に決定する
ことが可能であり、従来技術の考えには全く存在しない
最も好ましい手法である。
As is apparent from the above description, the features of the present invention make it possible to simultaneously determine the interrelated overall heat absorption, emissivity, heat transfer coefficient of the heat medium, material surface temperature and average temperature. This is the most preferable method that does not exist at all in the idea of the prior art.

<実施例> 以下に、本発明方法の実施例について説明する。<Examples> Examples of the method of the present invention will be described below.

第3図は、薄鋼板の加熱・均熱焼鈍ラインに、本発明
方法を適用した場合の概要を示す側面図である。この図
において、被加熱材1の表面温度は加熱帯2出側(すな
わち均熱帯3入側)および均熱帯3出側にそれぞれ設置
された例えば吸収波長0.9μmのSi素子型の放射温度計5
a,5bによって測定され、その測温信号は熱電対9a〜9fに
よって測定された加熱・均熱帯炉内温度信号とともにデ
ータ採取装置10に入力されて、演算処理装置11において
演算処理される。この演算処理装置11からの制御信号は
制御装置12を介して加熱帯2と均熱帯3それぞれのガス
流量調節弁7a,7bにフィードバックされ、燃焼制御され
る。ペイオフリール21より送り出された被加熱材1は加
熱帯2,均熱帯3と順次通過して加熱・均熱された後、最
終的にテイクアップリール22に巻取られる。
FIG. 3 is a side view showing an outline when the method of the present invention is applied to a heating / soaking annealing line for a thin steel sheet. In this figure, the surface temperature of the material 1 to be heated is measured, for example, by an Si element type radiation thermometer 5 having an absorption wavelength of 0.9 μm, which is installed on the outlet side of the heating zone 2 (that is, on the inlet side of the soaking zone 3) and on the outlet side of the soaking zone 3.
The temperature measurement signals are measured by a and 5b, and the temperature measurement signals are input to the data collection device 10 together with the heating / soaking zone temperature signals measured by the thermocouples 9a to 9f, and are processed by the processing unit 11. The control signal from the arithmetic processing unit 11 is fed back to the gas flow control valves 7a and 7b of the heating zone 2 and the soaking zone 3 via the control unit 12, and the combustion is controlled. The material to be heated 1 sent out from the pay-off reel 21 passes through the heating zone 2 and the soaking zone 3 sequentially, is heated and soaked, and finally wound up on the take-up reel 22.

なお、図中、4a〜4cは炉内に設置されたガイドロー
ル、6a,6bは炉内外乱光を遮蔽するための冷却遮蔽管、8
a,8bは燃料とエアの噴出孔である。
In the figures, 4a to 4c are guide rolls installed in the furnace, 6a and 6b are cooling shielding tubes for shielding disturbance light inside and outside the furnace, 8
a and 8b are fuel and air outlets.

また、加熱帯2出口と均熱帯3出口に設置された放射
温度計5a,5bは本発明に係るもので、防熱対策が施さ
れ、それぞれ設定放射率〔ε〕を例えば1.0としてお
く。これら放射温度計5a,5bによるデータの採取は連続
して行うが、下記の点を配慮する。すなわち、 材料の同一箇所を2台の放射温度計が測定し得るよ
う、ともに被加熱材1の板幅方向の中央位置からの放射
を集光すべく配置する。
Further, the radiation thermometers 5a and 5b installed at the outlet of the heating zone 2 and the exit of the soaking zone 3 according to the present invention are provided with measures for preventing heat, and the set emissivity [ε] is set to, for example, 1.0. Data collection by these radiation thermometers 5a and 5b is performed continuously, taking the following points into consideration. In other words, the two materials are arranged so as to collect the radiation from the central position in the plate width direction of the material to be heated 1 so that two radiation thermometers can measure the same portion of the material.

下流側の均熱帯3出側における測定値としては、加
熱帯2出側からの材料の所要走行時間分だけ遅らせてデ
ータを採取して演算処理する。
As the measurement value at the downstream side of the soaking zone 3, the data is sampled with a delay by the required traveling time of the material from the heating zone 2 and the arithmetic processing is performed.

さらに、加熱帯2入側における被加熱材1の表面温度
は、通常50℃未満と小さく、かつ許容誤差が10〜20℃と
比較的大きいので、例えば接触温度計あるいは予め被加
熱材1の放射率が与えられた放射温度計により測温した
表面温度を与えるものとする。
Furthermore, since the surface temperature of the material 1 to be heated on the entrance side of the heating zone 2 is usually as small as less than 50.degree. C. and the tolerance is relatively large as 10 to 20.degree. The surface temperature measured by the radiation thermometer given the rate shall be given.

このように構成した材料温度測定装置を、加熱帯,均
熱帯長さがそれぞれ13m、炉高2.6m、炉幅2.3mで、ガス
を炉内で直接燃焼させるタイプの連続焼鈍炉に適用し
て、板厚1.0mm,板幅1030mmで21.2m/minのラインスピー
ドで走行させながら連続加熱されるフェライト系ステン
レス鋼板の表面温度を測定した。
The material temperature measuring device constructed in this way is applied to a continuous annealing furnace of a heating zone, a soaking zone length of 13 m, a furnace height of 2.6 m, a furnace width of 2.3 m, and a gas that burns directly in the furnace. The surface temperature of a ferritic stainless steel sheet which was continuously heated while traveling at a line speed of 21.2 m / min with a thickness of 1.0 mm and a width of 1030 mm was measured.

なお、この鋼板に予め熱電対を装着して、その測定値
を基準をなす真温度とした。
A thermocouple was attached to the steel sheet in advance, and the measured value was used as a reference true temperature.

また、比較のために、従来法の放射率を予め0.39に固
定設定した放射温度計を並列に取付けて測定した。
For comparison, a radiation thermometer in which the emissivity of the conventional method was fixed at 0.39 in advance was measured in parallel.

それらの測定結果を第1表に示す。 Table 1 shows the measurement results.

この表から明らかなように放射率をオンライン同定し
た本発明法に対し、放射率固定設定方式の従来法はいず
れも熱電対による測定値(真温度)に比較して大きな測
定誤差を有していることがわかる。これは、従来法で予
め設定した放射率が、加熱帯では本発明法で同定した放
射率より大きく、均熱帯では逆に小さくなっており、そ
の結果このような材料温度の大小関係になったものであ
る。したがって、本発明法を用いることにより、材料温
度の測定精度が向上し、とくに放射率の小さい加熱帯で
は顕著である。
As is clear from this table, in contrast to the method of the present invention in which the emissivity was identified on-line, all of the conventional methods of the fixed emissivity setting method have a large measurement error compared to the measurement value (true temperature) using a thermocouple. You can see that there is. This is because the emissivity preset by the conventional method is higher than the emissivity identified by the present invention method in the heating zone, and conversely lower in the solitary tropics, resulting in such a magnitude relationship of the material temperatures. Things. Therefore, by using the method of the present invention, the measurement accuracy of the material temperature is improved, and it is particularly remarkable in a heating zone having a small emissivity.

このように、本発明法はオンラインで加熱帯,均熱帯
それぞれに総括熱吸収率を同定し、これと同時に加熱帯
と均熱帯の放射測温点における放射率も同定できるの
で、精度の高い材料温度の測定が可能である。
As described above, according to the present invention, the overall heat absorption rate can be identified online for each of the heating zone and the soaking zone, and at the same time, the emissivity at the radiation temperature measuring point in the heating zone and the soaking zone can be identified. Measurement of temperature is possible.

さらに、この実測値に基づいて昇温パターンから得ら
れる目標材料温度との偏差を通常のフィードバックによ
る炉内温度制御を行うことにより、確実にその目標を縮
小させ、高精度の焼鈍処理を実現することができる。
Furthermore, by performing furnace temperature control based on the actual measurement value and the deviation from the target material temperature obtained from the temperature increase pattern using normal feedback, the target is reliably reduced and a high-precision annealing process is realized. be able to.

なお、本実施例では、鋼板を直接燃焼雰囲気炉で加熱
する場合について述べたが、本発明はこれに限定され
ず、鋼板以外の形状例えば丸棒および鉄鋼以外の金属や
非金属、あるいはラジアントチューブ方式等の異なる雰
囲気加熱方法に対しても、当然のことながら適用できる
ことはいうまでもない。
In the present embodiment, the case where the steel sheet is directly heated in the combustion atmosphere furnace is described. However, the present invention is not limited to this, and shapes other than the steel sheet, for example, metals and nonmetals other than round bars and steel, or radiant tubes are used. It goes without saying that the present invention can also be applied to different atmosphere heating methods such as a method.

また、上記実施例は加熱帯および均熱帯に2分割され
た連続加熱炉について説明したものであるが、加熱炉が
第4図に示すように加熱帯2の入側に予熱帯20が設けら
れた3分割の場合については、予熱帯20の出側に放射温
度計5cを取付けて被加熱材1の輝度温度を測定するとと
もに、熱電対9g〜9iによって炉内温度を測定するように
構成し、予熱帯出側,加熱帯出側,均熱帯出側の3点の
輝度温度を測定し、それらのうちの2点の測定値を演算
に用いるようにする。さらに、第5図に示すような一体
型の加熱炉の場合は、加熱帯2を2つのゾーン2a,2bに
分割し、各分割ゾーン出側の2点の放射温度計5a,5bお
よび熱電対9a〜9fによって、被加熱材輝度温度と炉内雰
囲気温度をそれぞれ測定するようにすればよい。なお、
この測定方法は、被加熱材1を静置加熱するバッチ式加
熱炉の場合についても同じである。
Although the above embodiment describes a continuous heating furnace divided into a heating zone and a solitary zone, a pre-tropical zone 20 is provided on the entrance side of the heating zone 2 as shown in FIG. In the case of three divisions, a radiation thermometer 5c is attached to the exit side of the pre-tropical zone 20 to measure the luminance temperature of the material to be heated 1 and to measure the furnace temperature by thermocouples 9g to 9i. The brightness temperature at three points, that is, the pre-tropical exit side, the heating zone exit side, and the solitary tropical exit side, is measured, and the measured values at two points are used for calculation. Further, in the case of an integrated heating furnace as shown in FIG. 5, the heating zone 2 is divided into two zones 2a and 2b, and two radiation thermometers 5a and 5b and thermocouples on the exit side of each divided zone are provided. The brightness temperature of the material to be heated and the atmosphere temperature in the furnace may be measured by 9a to 9f. In addition,
This measuring method is the same in the case of a batch-type heating furnace in which the material to be heated 1 is left standing and heated.

<発明の効果> 以上説明したように、本発明によれば、放射温度計を
用いた測温において不可欠な放射率をオンライン同定
し、かつ雰囲気加熱での昇温予測計算に不可欠な総括熱
吸収率をオンライン同定するようにしたので、炉出口で
の材料温度と炉内の昇温パターンを高精度に検出でき、
正確な炉内温度の修正に基づいた目標通りの熱処理を施
すことができ、その結果、高レベルでしかも変動の小さ
い製品品質を得ることができ、また熱エネルギーに無駄
がなく、さらに最高速での通板により高い生産性を保つ
ことができるなどの多くの効果を有する。
<Effects of the Invention> As described above, according to the present invention, emissivity indispensable for temperature measurement using a radiation thermometer is identified online, and overall heat absorption indispensable for temperature rise prediction calculation in atmosphere heating. Because the rate is identified online, the material temperature at the furnace outlet and the heating pattern inside the furnace can be detected with high accuracy.
Target heat treatment based on accurate furnace temperature correction can be performed, resulting in high-level, low-variation product quality, no waste of heat energy, and maximum speed. There are many effects such as high productivity can be maintained by passing through the plate.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法に係る基本手順を示す流れ図、第2
図は炉内温度と材料表面温度の差と総括熱吸収率との相
関を示す特性図、第3図は本発明方法の2分割連続加熱
炉への適用例の概要を示す側面図、第4図は本発明方法
の3分割連続加熱炉への適用例を示す側面図、第5図は
本発明方法の一体型加熱炉への適用例を示す側面図であ
る。 1……被加熱材,2……加熱帯, 3……均熱帯,4……ガイドロール, 5……放射温度計,6……外乱光遮蔽管, 7……ガス流量調節弁,8……ガス・エア噴出孔, 9……熱電対,10……データ採取装置, 11……演算処理装置,12……制御装置, 20……予熱帯,21……ペイオフリール, 22……テイクアップリール。
FIG. 1 is a flow chart showing a basic procedure according to the method of the present invention.
FIG. 3 is a characteristic diagram showing the correlation between the difference between the furnace temperature and the material surface temperature and the overall heat absorption rate. FIG. 3 is a side view showing an outline of an example of application of the method of the present invention to a two-piece continuous heating furnace. FIG. 5 is a side view showing an example of applying the method of the present invention to a three-piece continuous heating furnace, and FIG. 5 is a side view showing an example of applying the method of the present invention to an integrated heating furnace. 1 ... material to be heated, 2 ... heating zone, 3 ... uniform tropics, 4 ... guide roll, 5 ... radiation thermometer, 6 ... disturbance light shielding tube, 7 ... gas flow control valve, 8 ... ... gas and air vents, 9 ... thermocouple, 10 ... data sampling device, 11 ... arithmetic processing device, 12 ... control device, 20 ... pre-tropical, 21 ... payoff reel, 22 ... take-up reel.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−170023(JP,A) 特開 平2−73922(JP,A) 特開 昭62−222030(JP,A) 特開 平1−184233(JP,A) (58)調査した分野(Int.Cl.6,DB名) C21D 9/56,11/00 G05D 23/00 G01J 5/00 F27D 19/00──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-2-170023 (JP, A) JP-A-2-73922 (JP, A) JP-A-62-222030 (JP, A) JP-A-1- 184233 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C21D 9 / 56,11 / 00 G05D 23/00 G01J 5/00 F27D 19/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被加熱材を加熱する加熱炉における炉温制
御方法であって、 炉内を複数の小区間に分割してそれぞれの炉内雰囲気温
度を測定するとともに、被加熱材の放射熱エネルギーを
少なくとも異なる2点の温度レベルで測定し、 これら放射熱エネルギー測定点における被加熱材の温度
を総括熱吸収率計算モデルと熱伝導解析解温度計算モデ
ルを用いて予測計算する一方、測定放射熱エネルギーを
もとに換算し、 これら予測計算温度と換算温度とがそれぞれ等しくなる
ように前記総括熱吸収率計算モデルのパラメータを決定
し、 しかる後、全炉内における被加熱材の昇温パターンを決
定し、この昇温パターンになるように炉内温度分布を調
整することを特徴とする加熱炉における炉温制御方法。
A method for controlling a furnace temperature in a heating furnace for heating a material to be heated, the method comprising dividing the inside of the furnace into a plurality of small sections, measuring the atmosphere temperature in each furnace, and radiating heat of the material to be heated. Energy is measured at at least two different temperature levels, and the temperature of the material to be heated at these radiant heat energy measurement points is predicted and calculated using the overall heat absorption coefficient calculation model and the heat conduction analysis solution temperature calculation model. Based on the heat energy, the parameters of the overall heat absorption coefficient calculation model are determined so that the predicted calculation temperature and the converted temperature become equal to each other, and thereafter, the heating pattern of the material to be heated in the entire furnace is determined. And controlling the temperature distribution in the furnace so as to obtain the heating pattern.
【請求項2】前記加熱炉は加熱帯と均熱帯からなる連続
加熱炉とされ、前記放射熱エネルギー測定点は加熱帯出
側と均熱帯出側とされることを特徴とする請求項1記載
の加熱炉における炉温制御方法。
2. The heating furnace according to claim 1, wherein the heating furnace is a continuous heating furnace including a heating zone and a soaking zone, and the radiant heat energy measuring points are on a heating zone and a soaking zone. Furnace temperature control method in heating furnace.
【請求項3】前記加熱炉は予熱帯,加熱帯および均熱帯
からなる連続加熱炉とされ、前記放射熱エネルギー測定
点はそれぞれの出側位置の3点とされ、これら3点の測
定値の内少なくとも2点の測定値を用いることを特徴と
した請求項1記載の加熱炉における炉温制御方法。
3. The heating furnace is a continuous heating furnace comprising a pre-tropical zone, a heating zone, and a solitary zone, and the radiant heat energy measurement points are three points at respective outlet positions. 2. A method according to claim 1, wherein at least two measured values are used.
【請求項4】前記総括熱吸収率計算モデルとして下記式
を用いることを特徴とした請求項1,2,3記載の加熱炉に
おける炉温制御方法。 φCG=φ exp(−a/ΔT) ΔT=TF−T ここで、 φCG;総括熱吸収率 φ0 ;パラメータ (初期総括吸収率) a ;パラメータ (微係数) TF ;加熱炉雰囲気温度 (℃) T ;被加熱材表面温度 (℃)
4. The furnace temperature control method in a heating furnace according to claim 1, wherein the following equation is used as the overall heat absorption coefficient calculation model. φ CG = φ 0 exp (−a / ΔT) ΔT = TF −T where φ CG ; overall heat absorption rate φ 0 ; parameter (initial overall absorption rate) a; parameter (derivative coefficient) T F ; heating furnace Ambient temperature (° C) T; Surface temperature of material to be heated (° C)
JP2076994A 1990-03-28 1990-03-28 Furnace temperature control method in heating furnace Expired - Lifetime JP2823645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2076994A JP2823645B2 (en) 1990-03-28 1990-03-28 Furnace temperature control method in heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2076994A JP2823645B2 (en) 1990-03-28 1990-03-28 Furnace temperature control method in heating furnace

Publications (2)

Publication Number Publication Date
JPH03277722A JPH03277722A (en) 1991-12-09
JP2823645B2 true JP2823645B2 (en) 1998-11-11

Family

ID=13621335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2076994A Expired - Lifetime JP2823645B2 (en) 1990-03-28 1990-03-28 Furnace temperature control method in heating furnace

Country Status (1)

Country Link
JP (1) JP2823645B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5151048B2 (en) * 2006-03-15 2013-02-27 Jfeスチール株式会社 Indication value abnormality detection method and detection apparatus for radiation thermometer
JP6052023B2 (en) * 2013-03-29 2016-12-27 Jfeスチール株式会社 Heat treatment temperature control method for steel sheet

Also Published As

Publication number Publication date
JPH03277722A (en) 1991-12-09

Similar Documents

Publication Publication Date Title
CN106768380A (en) A kind of method that test result to infrared measurement of temperature equipment is modified
Landfahrer et al. Numerical and experimental investigation of scale formation on steel tubes in a real-size reheating furnace
Wang et al. Study on the multi-wavelength emissivity of GCr15 steel and its application on temperature measurement for continuous casting billets
JP2823645B2 (en) Furnace temperature control method in heating furnace
Durdán et al. Research of annealing process in laboratory conditions
JPH0663849B2 (en) Measuring method of material temperature in continuous heating furnace
Fu et al. Inverse analysis of non-uniform temperature distributions using multispectral pyrometry
Thiessen et al. Temperature measurement deviation during annealing of multiphase steels
JPH0933464A (en) Method for measuring surface scale of steel plate and method for measuring material quality
Hwang Methodology for the emissivity estimation of radiation-type thermometers using the latent heat generated during the phase transformation of steels
Xing et al. Emissivity model of steel 430 during the growth of oxide layer at 800–1100 K and 1.5 μm
Huang et al. An analytical radiometric thermometry model for quantitative prediction and correction of the gas emission and absorption effects
JPS63293114A (en) Method and device for controlling heat treatment temperature in continuous heat treatment apparatus
JPH0348126A (en) Identification of temperature rise pattern in heating furnace
KR100689153B1 (en) Method for estimating temperature of slab in heating furnace
JPH01184233A (en) Sheet temperature control method for continuously annealing furnace
Wang et al. Multi-spectral radiation thermometry based on the reconstructed spectral emissivity model
Xu et al. Establishment of the Temperature Field Model of 72LX Blooms in the Reheating Furnace
JPH06192751A (en) Method for estimating and controlling temperature of steel slab in steel slab continuous heating furnace
JPS6222089B2 (en)
Naizabekov et al. Mathematical Model of the Process of Heating Slabs
Hruška et al. The influence of oxide layer pattern size created on the surface of C45 steel on laser light absorption during laser quenching procedure
Lassila Effect of scale formation on the emissivity of austenitic stainless steels in an annealing furnace
JPH06147989A (en) Method and instrument for measuring surface temperature of comparatively low-temperature object
JPH07138655A (en) Method for giving crown to hearth roll for steel strip continuous annealing furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees