JPH0933464A - Method for measuring surface scale of steel plate and method for measuring material quality - Google Patents

Method for measuring surface scale of steel plate and method for measuring material quality

Info

Publication number
JPH0933464A
JPH0933464A JP7185195A JP18519595A JPH0933464A JP H0933464 A JPH0933464 A JP H0933464A JP 7185195 A JP7185195 A JP 7185195A JP 18519595 A JP18519595 A JP 18519595A JP H0933464 A JPH0933464 A JP H0933464A
Authority
JP
Japan
Prior art keywords
temperature
emissivity
wavelength
steel sheet
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7185195A
Other languages
Japanese (ja)
Inventor
Akira Torao
彰 虎尾
Miki Ootsuki
未来 大月
Hideya Furusawa
英哉 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7185195A priority Critical patent/JPH0933464A/en
Publication of JPH0933464A publication Critical patent/JPH0933464A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To continuously measure on line not only a scale thickness, but a crystal particle size and a hardness of a stainless steel plate after annealing. SOLUTION: An infrared emission light from a surface of a steel plate 2 is detected in an anneal furnace 3. A quality of the steel plate is measured based on the emission light according to this steel quality-measuring method. A luminance temperature at a wavelength whereby an emissivity is approximately constant even when a scale thickness changes, and a luminance temperature at a wavelength whereby the emissivity changes to a change of the scale thickness are measured by a measuring device 1. A soaking temperature of the steel plate is calculated based on preliminarily obtained emissivity and luminance temperature at the former wavelength. The emissivity at the wavelength is calculated based on the soaking temperature and the latter luminance temperature, based on which the scale thickness is obtained. A soaking period from a predetermined temperature of the steel plate to the soaking temperature is calculated based on the scale thickness and soaking temperature. A quality of the steel plate is measured based on the soaking period and the soaking temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋼板の表面スケー
ル測定方法及び材質測定方法、特に焼鈍後のステンレス
鋼板について、その表面に形成されるスケールの厚さ、
及び結晶粒径や硬度の材質をオンラインで連続的に測定
する際に適用して好適な、鋼板の表面スケール測定方法
及び材質測定方法に関する。
TECHNICAL FIELD The present invention relates to a surface scale measuring method and a material measuring method for a steel sheet, particularly for a stainless steel sheet after annealing, the thickness of the scale formed on the surface thereof,
Also, the present invention relates to a surface scale measuring method and a material measuring method of a steel sheet, which are suitable to be applied when continuously measuring the material of crystal grain size and hardness online.

【0002】[0002]

【従来の技術】ステンレス鋼板の結晶粒を成長させ、機
械的強度等の材質特性を得るために、焼鈍処理が施さ
れ、その際に鋼板表面上に形成される、主として酸化物
からなるスケールを取り去るための酸洗処理が引き続き
行われる。これらの処理が連続して行われる工程は、一
般にCAP(Cold Anealing and Pickling )ライン
と呼ばれている。
2. Description of the Related Art In order to grow crystal grains of a stainless steel plate and obtain material properties such as mechanical strength, an annealing treatment is performed, and a scale mainly composed of oxide is formed on the surface of the steel plate at that time. The pickling treatment for removal is continued. A process in which these treatments are continuously performed is generally called a CAP (Cold Annealing and Pickling) line.

【0003】この焼鈍工程では、板温の昇温パターンを
適切に管理して、目標となる材質特性を得る必要があ
り、そのために焼鈍炉での板の最高到達温度(均熱温
度)Tss[℃]と、ある温度からTssへ到達するまでの
時間(均熱時間)Ts を調整するように、炉温制御がな
されている。
In this annealing step, it is necessary to appropriately control the temperature rise pattern of the plate temperature to obtain the target material characteristics, and for that purpose, the maximum attainable temperature (soaking temperature) Tss of the plate in the annealing furnace [Tss [ [° C], and the furnace temperature control is performed so as to adjust the time (soaking time) Ts from reaching a certain temperature to Tss.

【0004】本来、板温度を高精度に測定して板温制御
を実施することが望ましいが、炉内では表面に酸化スケ
ールが成長し、その成長程度、例えばスケール厚さの違
いにより、鋼板の放射率が変るために、放射率を固定し
た従来の放射温度計や二色温度計では、正確な板温を測
定できないことから、その代替として、上述した炉温制
御が行われている。
Originally, it is desirable to measure the plate temperature with high accuracy to control the plate temperature. However, in the furnace, oxide scale grows on the surface, and the degree of growth, for example, the difference in scale thickness causes Since the emissivity changes, conventional emissive thermometers and dichroic thermometers with a fixed emissivity cannot accurately measure the plate temperature. Therefore, the above-described furnace temperature control is performed instead.

【0005】このような炉温制御による焼鈍工程では、
焼鈍される鋼板の板厚や板幅等の寸法の違い、鋼板成分
の違い等により、同じ炉温下においても形成されるスケ
ールの厚さが異なったものとなり、次工程で酸洗する際
には、酸洗後のスケール残りの発生をなくすために、鋼
板の走行速度を抑制する傾向にあった。従って、生産能
率を阻害したり、スケールの性状によっては、酸洗が不
充分であるためにスケール残りが生じて、ステンレス鋼
板の表面品質特性の悪化、例えば光沢不良を発生させる
ことにもなっていた。
In the annealing process by controlling the furnace temperature as described above,
Due to the difference in plate thickness and width of the annealed steel plate, the difference in steel plate composition, etc., the thickness of the scale formed will differ even under the same furnace temperature. Had a tendency to suppress the traveling speed of the steel sheet in order to eliminate the generation of scale residue after pickling. Therefore, the production efficiency may be hindered, or depending on the scale properties, scale pickling may occur due to insufficient pickling, which may deteriorate surface quality characteristics of the stainless steel sheet, for example, cause poor gloss. It was

【0006】このような意味合いからも焼鈍後の鋼板の
形成されているスケールの厚さを正確に測定することが
極めて重要であるが、従来から、表面のスケール厚さを
非破壊で測定する手段はなく、表面分析装置による破壊
試験により、相対的なスケール厚さを求めたり、スケー
ル部の断面を光学顕微鏡で観察して厚さを測定すること
が行われていたに過ぎない。
From this point of view, it is extremely important to accurately measure the thickness of the scale formed on the steel sheet after annealing, but conventionally, means for nondestructively measuring the scale thickness of the surface has been known. Instead, the relative thickness of the scale was determined by a destructive test using a surface analyzer, and the thickness was measured by observing the cross section of the scale portion with an optical microscope.

【0007】CAPラインでのスケール厚さを測定する
技術に直接関係するものではないが、表面の酸化物をオ
ンラインで測定するのに好適な技術としては、特公昭6
2−34093に開示されている、鋼板等の被測定体の
除錆度を測定するために、550nm付近の波長帯域を
有する光を被測定体表面で反射させ、上記波長帯域にお
ける反射光の光量を測定し、被測定体表面の赤錆と黒皮
を、各々同程度の検出感度で検出する方法が参考とな
る。
Although it is not directly related to the technique for measuring the scale thickness on the CAP line, a technique suitable for measuring the surface oxide online is Japanese Patent Publication No.
In order to measure the degree of rust removal of an object to be measured such as a steel plate disclosed in 2-34093, light having a wavelength band near 550 nm is reflected on the surface of the object to be measured, and the amount of reflected light in the wavelength band is measured. The method for measuring red rust and black skin on the surface of the object to be measured with the same detection sensitivity is used as a reference.

【0008】又、ステレンス鋼板の品質特性を決定する
要因として、結晶粒度が重要であることから、オンライ
ンで結晶粒径を測定することが望まれており、そのため
の装置として超音波の後方散乱波の強度値から結晶粒径
を推定するものが、次の文献に提案されている。“The
Development and Marketing of New Technolog
y for the Inspection of Rolled Strip”BN
F 6th International Conference 。
Since the crystal grain size is important as a factor that determines the quality characteristics of the stainless steel sheet, it is desired to measure the crystal grain size online, and as a device therefor, ultrasonic backscattered waves are used. A method for estimating the crystal grain size from the strength value of is proposed in the following document. "The
Develoment and Marqueting of New Technolog
y for the Inspection of Rolled Strip "BN
F 6th Alternative Conference.

【0009】又、結晶粒径を測定する他の技術として
は、超音波の後方散乱ノイズを周波数分析し、特定の周
波数領域での後方散乱ノイズ強度の積分値と結晶粒径と
の関係を利用する方法が特開平4−95870に開示さ
れている。又、被測定鋼板の保磁力を測定し、その測定
値と既知の結晶粒径を有する鋼板での保磁力との相対比
から測定対象鋼板の結晶粒径を求める方法が特開平6−
213872に提案されている。更に、X線回折測定に
より、回折X線強度の計数率の変動幅から結晶粒径を推
定するオンライン測定方法が特開平5−142168に
開示されている。これらの結晶粒径を推定する手法は全
て、従来の顕微鏡観察による破壊試験に代わる非破壊試
験方法であるため、連続測定を行う際に有効に適用でき
ればオンライン測定に好適である。
As another technique for measuring the crystal grain size, the frequency of the backscattering noise of ultrasonic waves is analyzed, and the relationship between the integrated value of the backscattering noise intensity in a specific frequency range and the crystal grain size is used. A method of doing so is disclosed in Japanese Patent Laid-Open No. 4-95870. Further, there is a method in which the coercive force of a steel plate to be measured is measured and the crystal grain size of a steel plate to be measured is determined from the relative ratio between the measured value and the coercive force of a steel plate having a known crystal grain size.
213872. Further, JP-A-5-142168 discloses an on-line measuring method for estimating the crystal grain size from the fluctuation range of the count rate of the diffracted X-ray intensity by X-ray diffraction measurement. All of these methods for estimating the crystal grain size are non-destructive testing methods that replace the conventional destructive testing by microscope observation, and are therefore suitable for online measurement if they can be effectively applied when performing continuous measurement.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、前記特
公昭62−34093に開示されている測定方法は、表
面スケールを除去する、例えばショットブラスト装置等
により、機械的に鋼板の表面を除錆処理した後のスケー
ル残りの状態を定量的に評価するものであり、スケール
の組成としても、鉄の酸化物を対象とするものである。
又、この方法は、斜めの方向から光を照射して、その反
射光を正面で受光するので、これらの先行技術の対象の
ように、拡散反射の多い鋼板を測定する場合には良い
が、ステンレス鋼板のスケールのように、光沢性が高
く、拡散反射成分の少ない表面を測定する際には、反射
光量が弱くなり、測定感度が劣るという問題点も有す
る。
However, in the measuring method disclosed in Japanese Patent Publication No. 62-34093, the surface of the steel sheet is mechanically derusted by removing the surface scale, for example, by a shot blasting device. It is for quantitatively evaluating the state of the remaining scale afterward, and the oxide of iron is also targeted as the composition of the scale.
In addition, this method irradiates light from an oblique direction and receives the reflected light from the front, so it is good when measuring a steel plate with a lot of diffuse reflection, as in the objects of these prior arts. When measuring a surface having a high gloss and a small diffuse reflection component, such as a scale of a stainless steel plate, there is a problem that the amount of reflected light becomes weak and the measurement sensitivity is poor.

【0011】更に、上記特公昭62−34093の方法
では、使用波長を550nm付近と限定しているが、C
APラインで生じるスケールは、主として、鋼板の成分
でもある、CrやMn、Ni、Si等の酸化物を主成分
としており、分光反射スペクトル解析等の結果によれ
ば、可視波長域よりも、紫外又は赤外域に吸収が大きく
なることから、その特性を利用した測定が好ましい。従
って、550nmの緑色光や白色光全体を用いた反射測
定は、CAPラインでのスケール厚さ測定には適さず、
高感度なスケール厚さの測定は困難であった。
Further, in the method of Japanese Patent Publication No. 62-34093, the wavelength used is limited to around 550 nm.
The scale generated in the AP line is mainly composed of oxides of Cr, Mn, Ni, Si, etc., which are also components of the steel sheet, and according to the results of the spectral reflection spectrum analysis and the like, the ultraviolet is more visible than the visible wavelength range. Alternatively, since the absorption becomes large in the infrared region, it is preferable to perform the measurement using the characteristic. Therefore, the reflection measurement using the green light of 550 nm and the whole white light is not suitable for the scale thickness measurement on the CAP line,
It was difficult to measure the scale thickness with high sensitivity.

【0012】又、前述した鋼板の材質測定の場合は、前
記文献に提案されている超音波後方散乱波の強度から結
晶粒径を測定する方法には、鋼板のパスライン変動や表
面のスケール性状等の影響を受け易いため、結晶粒径の
測定精度は約±10μm程度と悪く、実用化には至って
ないという問題がある。
Further, in the case of measuring the material quality of the steel sheet described above, the method of measuring the crystal grain size from the intensity of the ultrasonic backscattered wave proposed in the above literature includes the pass line variation of the steel sheet and the scale property of the surface. Since it is easily affected by the above, the measurement accuracy of the crystal grain size is as bad as about ± 10 μm, and there is a problem that it has not been put to practical use.

【0013】又、特開平4−95870に開示されてい
る方法には、超音波探触子を被測定物上に載置させるた
めに鋼板が走行しているときには測定できず、更に、測
定場所がずれると測定誤差が大きくなるという問題があ
る。
Further, in the method disclosed in Japanese Patent Laid-Open No. 4-95870, the measurement cannot be performed when the steel plate is running because the ultrasonic probe is placed on the object to be measured, and further, the measurement location If there is a deviation, there is a problem that the measurement error becomes large.

【0014】又、特開平6−213872に開示されて
いる保磁力を利用する方法では、測定対象と検出ヘッド
間の距離を高精度に制御する必要があるため、オンライ
ン測定に適用する際に運用上の問題がある。
Further, in the method utilizing the coercive force disclosed in Japanese Patent Laid-Open No. 6-213872, it is necessary to control the distance between the measuring object and the detection head with high accuracy, and therefore, it is used when applied to online measurement. There is a problem above.

【0015】更に、X線回折を利用する特開平5−14
2168に提案されている方法は、X線を使用するため
に装置管理が容易ではなく、その上高価であるという欠
点を有している。
Further, JP-A-5-14 utilizing X-ray diffraction
The method proposed in 2168 has the drawback that the device management is not easy due to the use of X-rays and is also expensive.

【0016】以上のように、結晶粒径を測定する多くの
方法が提案されているが、それぞれに問題があり、実用
化されていないのが実状である。
As described above, many methods for measuring the crystal grain size have been proposed, but each of them has its own problems and is not in practical use.

【0017】本発明は、前記従来の問題点を解決するべ
くなされたもので、特に、ステンレス鋼板等の鋼材の焼
鈍後のCr、Mn、Ni、Si等の酸化スケール厚さ
を、非破壊で高精度に測定可能とする技術を提供するこ
とを第1課題とする。
The present invention has been made to solve the above-mentioned conventional problems. In particular, the thickness of oxide scale of Cr, Mn, Ni, Si, etc. after annealing of a steel material such as a stainless steel plate is non-destructive. The first object is to provide a technique that enables highly accurate measurement.

【0018】本発明は、又、鋼板の焼鈍状態を全体的に
把握し、対象鋼板の結晶粒径等の材質特性をオンライン
で測定し、鋼板品質を総合的に評価することができる技
術を提供することを第2課題とする。
The present invention also provides a technique capable of comprehensively evaluating the quality of a steel sheet by grasping the annealed state of the steel sheet as a whole and measuring the material properties such as the crystal grain size of the target steel sheet online. The second task is to do so.

【0019】[0019]

【課題を解決するための手段】請求項1の発明は、鋼板
の表面から放射される赤外放射光を検出し、該放射光に
基づいて鋼板に形成されている表面スケールの厚さを測
定する鋼板の表面スケール測定方法であって、スケール
厚さが変化しても放射率が略同一値である波長λ1 にお
ける輝度温度S1 と、スケール厚さの変化に対して放射
率が変化する波長λ2 における輝度温度S2 とを測定
し、予め求めた前者の波長λ1 における放射率ε1 及び
前者の輝度温度S1 に基づいて鋼板温度を算出し、該鋼
板温度及び後者の輝度温度S2 とに基づいて波長λ2 に
おける放射率ε2 を算出し、該放射率ε2 に基づいてス
ケールの厚さを求めることにより、前記第1の課題を解
決したものである。
The invention according to claim 1 detects infrared radiation emitted from the surface of a steel sheet and measures the thickness of a surface scale formed on the steel sheet based on the radiation. A method for measuring the surface scale of a steel sheet, wherein the brightness temperature S1 at the wavelength λ1 at which the emissivity is substantially the same even if the scale thickness changes, and the wavelength λ2 at which the emissivity changes with the change of the scale thickness. And the brightness temperature S2 at the wavelength λ1 of the former, and the steel plate temperature is calculated based on the former emissivity ε1 at the wavelength λ1 and the brightness temperature S1 of the former, and the wavelength λ2 is calculated based on the steel plate temperature and the brightness temperature S2 of the latter. The first problem has been solved by calculating the emissivity ε 2 in Eq. 1 and determining the thickness of the scale based on the emissivity ε 2.

【0020】請求項2の発明は、請求項1において、鋼
板がステンレス鋼板であり、スケール厚さが変化しても
放射率が略同一値となる波長λ1 が12〜20μmの範
囲であり、スケール厚さの変化に対して放射率が変化す
る波長λ2 が2.5〜4μmの範囲であるようにしたも
のである。
According to a second aspect of the present invention, in the first aspect, the steel plate is a stainless steel plate, and the wavelength λ1 at which the emissivity becomes substantially the same value even if the scale thickness changes is in the range of 12 to 20 μm. The wavelength .lambda.2 at which the emissivity changes with the change in thickness is in the range of 2.5 to 4 .mu.m.

【0021】請求項3の発明は、焼鈍炉内において、鋼
板の表面から放射される赤外放射光を検出し、該放射光
に基づいて鋼板材質を測定する鋼板の材質測定方法であ
って、スケール厚さが変化しても放射率が略同一値とな
る波長λ1 における輝度温度S1 と、スケール厚さの変
化に対して放射率が変化する波長λ2 における輝度温度
S2 とを測定し、予め求めた前者の波長λ1 における放
射率ε1 及び前者の輝度温度S1 に基づいて鋼板の均熱
温度を算出し、該鋼板の均熱温度及び後者の輝度温度S
2 とに基づいて波長λ2 における放射率ε2 を算出し、
該放射率ε2 に基づいてスケールの厚さを求め、該スケ
ール厚みと前記鋼板の均熱温度とに基づいて所定の鋼板
温度から前記鋼板の均熱温度に到達するまでの均熱時間
を算出し、該均熱時間と前記鋼板の均熱温度に基づいて
鋼板の材質を測定することにより、前記第2の課題を解
決したものである。
A third aspect of the present invention is a steel sheet material measuring method for detecting infrared radiation emitted from the surface of a steel sheet in an annealing furnace and measuring the steel sheet material based on the radiation light. The brightness temperature S1 at the wavelength λ1 at which the emissivity is approximately the same value even if the scale thickness changes and the brightness temperature S2 at the wavelength λ2 at which the emissivity changes with the change in the scale thickness are measured and determined in advance. The soaking temperature of the steel sheet is calculated based on the emissivity ε1 at the wavelength λ1 of the former and the luminance temperature S1 of the former, and the soaking temperature of the steel sheet and the luminance temperature S of the latter are calculated.
The emissivity ε2 at the wavelength λ2 is calculated based on
Calculate the thickness of the scale based on the emissivity ε2, and calculate the soaking time from the predetermined steel plate temperature to the soaking temperature of the steel plate based on the scale thickness and the soaking temperature of the steel plate. The second problem is solved by measuring the material of the steel sheet based on the soaking time and the soaking temperature of the steel sheet.

【0022】請求項4の発明は、請求項3において、鋼
板がステンレス鋼板であり、スケール厚さが変化しても
放射率が略同一値となる波長λ1 が12〜20μmの範
囲であり、スケール厚さの変化に対して放射率が変化す
る波長λ2 が2.5〜4μmの範囲であるようにしたも
のである。
According to a fourth aspect of the present invention, in the third aspect, the steel plate is a stainless steel plate, and the wavelength λ1 at which the emissivity becomes substantially the same value even if the scale thickness changes is in the range of 12 to 20 μm. The wavelength .lambda.2 at which the emissivity changes with the change in thickness is in the range of 2.5 to 4 .mu.m.

【0023】[0023]

【発明の実施の形態】以下に本発明の基本原理について
詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The basic principle of the present invention will be described in detail below.

【0024】まず、請求項1の発明を説明するに当り、
測定対象の一例として、ステンレス鋼板のうちの一種で
あるオーステナイト系ステンレス鋼板(以下SUS30
4と称する)を取り上げる。この鋼板の特徴としては、
その成分に約18%のCrと、約8%のNiが含まれる
ことが挙げられる。このCr、Niの量と、その他の含
有成分であるC、N、Si、Mnの量等の成分バランス
から、材料特性の異なる亜鋼種が複数存在する。
First, in explaining the invention of claim 1,
As an example of the measurement target, an austenitic stainless steel plate (hereinafter, SUS30), which is a kind of stainless steel plate, is used.
4). The characteristics of this steel plate are:
It can be mentioned that the component contains about 18% Cr and about 8% Ni. There are a plurality of sub-steel species having different material properties from the balance of the components such as the amounts of Cr and Ni and the other components such as C, N, Si and Mn.

【0025】これら鋼板に含まれる化学成分を表わす指
標として、各構成元素の割合値を用いてオーステナイト
安定度を定量的に表現する値であるM値を、次の(1)
式で定義することができる。この(1)式でf1は一定
の関数形であり、各変数は化学成分のmass%値を用いて
いる。
As an index representing the chemical composition contained in these steel sheets, the M value, which is a value that quantitatively expresses the austenite stability by using the ratio value of each constituent element, is given by the following (1)
It can be defined by an expression. In this equation (1), f1 has a constant function form, and each variable uses the mass% value of the chemical component.

【0026】 M=f1(%C,%N,%Si,%Mn,%Cr, %Ni,%Cu,%Mo,%Nd) …(1)M = f1 (% C,% N,% Si,% Mn,% Cr,% Ni,% Cu,% Mo,% Nd) (1)

【0027】又、鋼板は、仕上焼鈍の前工程である冷間
圧延工程において圧下され、歪みエネルギを蓄えること
になるので、そのエネルギが焼鈍時の結晶粒の再結晶過
程に影響を及ぼす。そこで、圧下を表わす指標として、
冷間圧延前の板厚Hと圧延後の板厚hを用いて次の(1
0)式に示される冷間圧下率R[%]を定義する。
Further, since the steel sheet is rolled down in the cold rolling process which is a pre-process of finish annealing and stores strain energy, the energy affects the recrystallization process of crystal grains during annealing. Therefore, as an indicator of reduction,
Using the plate thickness H before cold rolling and the plate thickness h after rolling, the following (1
The cold reduction rate R [%] shown in the equation 0) is defined.

【0028】 R=[(H−h)/H]×100 …(2)R = [(H−h) / H] × 100 (2)

【0029】上述したM値とR値の2つは、焼鈍前の鋼
板の材質を決定する上で主要な指標であると言える。
It can be said that the above-mentioned two values, M value and R value, are the main indexes in determining the material of the steel sheet before annealing.

【0030】各種の焼鈍条件下、即ち板の異なる最高到
達温度(均熱温度)Tss[℃](1050〜1150
℃)、ある温度からTssに到達するまでの時間(均熱時
間)Ts [sec ](15〜65sec )で製造されたSU
S304のスケールを、各種表面分析装置、例えばGD
S(グロー放電発光分析装置)やX線回折装置、更に、
被膜の光学特性(例えば屈折率)を測定する分光エリプ
ソメータや、反射特性を測定する分光器により測定した
結果、以下の点が明らかにされた。
Under various annealing conditions, that is, the maximum ultimate temperature (soaking temperature) Tss [° C.] (1050 to 1150) of different plates.
SU) manufactured in a time (soaking time) Ts [sec] (15 to 65 sec) from a certain temperature to Tss.
The scale of S304 is applied to various surface analyzers such as GD
S (glow discharge emission spectrometer), X-ray diffractometer,
As a result of measurement by a spectroscopic ellipsometer for measuring the optical characteristics (for example, refractive index) of the coating and a spectroscope for measuring the reflection characteristics, the following points were clarified.

【0031】1)スケールは、主としてCrやMn、F
e等の酸化物から構成される。 2)スケール層内に複数の層が存在するが、その膜厚は
主としてCr2 3 層の厚さで代表され、その膜厚値は
0.1〜0.5μmである。 3)紫外から可視の短波長域及び、近赤外から中赤外の
赤外波長域にスケール膜による吸収特性を有する。 4)鋼板を加熱して、約800〜1100℃の板温で放
射率を測定したところ、遠赤外領域(λ=12〜20μ
m)では表面のスケール厚さによらず、放射率が変動せ
ずほぼ一定であるのに対して、中赤外領域(λ=2.5
〜4μm)ではスケール厚さに応じて放射率が変化す
る。ここで放射率は同じ温度の黒体からの輝度との相対
値で定義される。 5)GDS法によりスケールをスパッタリングする際、
スケール被膜と地鉄との界面に濃化する元素、例えばS
iに着目して、該Siの発光強度のピーク値に達するま
でのスパッタリング時間からスケール膜厚を定量評価す
ることができる。
1) The scale is mainly Cr, Mn, F
It is composed of an oxide such as e. 2) A plurality of layers are present in the scale layer, but the thickness thereof is mainly represented by the thickness of the Cr 2 O 3 layer, and the thickness value is 0.1 to 0.5 μm. 3) It has absorption characteristics by the scale film in the short wavelength region from ultraviolet to visible and the infrared wavelength region from near infrared to mid infrared. 4) When the steel plate was heated and the emissivity was measured at a plate temperature of approximately 800 to 1100 ° C., the far infrared region (λ = 12 to 20 μm) was measured.
In m), the emissivity is almost constant regardless of the scale thickness of the surface, whereas in the mid-infrared region (λ = 2.5
.About.4 .mu.m), the emissivity changes depending on the scale thickness. Here, the emissivity is defined by the relative value with the brightness from a black body at the same temperature. 5) When sputtering the scale by the GDS method,
An element that concentrates at the interface between the scale film and base iron, such as S
Focusing on i, the scale film thickness can be quantitatively evaluated from the sputtering time until the peak value of the emission intensity of Si is reached.

【0032】一般に、放射温度計を用いて放射測温を実
施する際には、測定対象物の温度T[K]、輝度温度S
[K]、放射率ε、測定波長λ[μm]等の間には次の
(3)式の関係がある。
Generally, when performing radiation temperature measurement using a radiation thermometer, the temperature T [K] of the object to be measured and the brightness temperature S are measured.
[K], emissivity ε, measurement wavelength λ [μm], and the like have the relationship of the following expression (3).

【0033】 T[K]=(C2 /λ) ÷ln[ε{exp (C2 /(λ・S))−1}+1] …(3) ここで、C2はPlankの第2定数である。 C2=1.4388×104 [μm・K] …(4)T [K] = (C2 / λ) ÷ ln [ε {exp (C2 / (λ · S))-1} +1] (3) where C2 is the second constant of Plank. C2 = 1.4388 × 10 4 [μm · K] (4)

【0034】今、前記4)に示した知見を基にして、遠
赤外領域のうちの波長を選び(λ=λ1 とする)、予め
SUS304の放射率ε1 を測定しておき、その値を設
定しておけば、λ=λ1 での輝度温度S1を測定するこ
とにより、SUS304鋼板の均熱板温Tssを、前記
(3)式から導いた次の(5)式で求めることができ
る。
Now, based on the knowledge shown in 4) above, a wavelength in the far infrared region is selected (λ = λ1), the emissivity ε1 of SUS304 is measured in advance, and the value is determined. If set, by measuring the brightness temperature S1 at λ = λ1, the soaking plate temperature Tss of the SUS304 steel plate can be obtained by the following formula (5) derived from the formula (3).

【0035】 Tss[℃]=(C2 /λ1 ) ÷ln[ε1 {exp (C2 /(λ1 ・S1 ))−1}+1] −273 =f3 (ε1 ,S1 ) …(5)Tss [° C.] = (C2 / λ1) ÷ ln [ε1 {exp (C2 / (λ1.S1))-1} +1] -273 = f3 (ε1, S1) (5)

【0036】このようにして、均熱板温度Tssを求める
と同時に、次に同じく前記4)の知見から、中赤外領域
のうちの波長を選び(λ=λ2 とする)、λ=λ2 での
輝度温度S2 を測定することにより、該波長λ2 での放
射率ε2 は、前記(3)式より導いた次の(6)式に前
記Tss及びS2 を代入することにより求められることに
なる。
In this way, at the same time as obtaining the soaking plate temperature Tss, the wavelength in the mid-infrared region is also selected (assuming λ = λ2) from the knowledge of the above 4), and λ = λ2. By measuring the brightness temperature S2 of the above, the emissivity ε2 at the wavelength λ2 can be obtained by substituting Tss and S2 into the following formula (6) derived from the formula (3).

【0037】 ε2 =[exp {C2 /(λ2 (Tss+273))}−1] ÷[exp {C2 /(λ2 ・S2 )}−1] =f4 (S2 ,Tss) …(6)Ε 2 = [exp {C 2 / (λ 2 (Tss + 273))}-1] ÷ [exp {C 2 / (λ 2 · S 2)}-1] = f 4 (S 2, Tss) (6)

【0038】このようにして求められた波長λ2 におけ
る放射率ε2 と、鋼板のスケール厚みdsc[μm]との
関係を調べ、更に鋼板の成分元素量を示すM値の影響も
合わせて回帰式を作成して、次の(7)式に示す関係を
得た。
The relationship between the emissivity ε 2 at the wavelength λ 2 thus obtained and the scale thickness dsc [μm] of the steel sheet was investigated, and the regression equation was calculated by also considering the influence of the M value indicating the amount of the constituent elements of the steel sheet. It was created to obtain the relationship shown in the following formula (7).

【0039】 dsc=f5 (ε2 ,M)=A5 ・ε2 +B5 …(7)Dsc = f5 (ε2, M) = A5ε2 + B5 (7)

【0040】ここでA5 ,B5 はMの関数であり、それ
ぞれ次の(7A)、(7B)式で与えられる。
Here, A5 and B5 are functions of M and are given by the following equations (7A) and (7B), respectively.

【0041】 A5 =A51×M+A52 …(7A) B5 =B51×M+B52 …(7B) ここで、A51、A52、B51、B52は定数である。A5 = A51 × M + A52 (7A) B5 = B51 × M + B52 (7B) where A51, A52, B51 and B52 are constants.

【0042】以上より、予めM及びε1 の値を求めてお
き、前記(5)〜(7)式を用いることにより、2波長
での輝度温度S1 、S2 を測定することで均熱温度Tss
及びスケール厚みdscを算出することができる。
From the above, the values of M and ε1 are obtained in advance, and the soaking temperature Tss is obtained by measuring the brightness temperatures S1 and S2 at two wavelengths by using the equations (5) to (7).
And the scale thickness dsc can be calculated.

【0043】従って、焼鈍中に板温とスケール厚みの同
時測定が可能となり、板温制御とスケール厚み管理によ
る焼鈍状況の把握により、焼鈍条件の適正化と鋼板品質
管理の向上を図ることができる。
Therefore, it is possible to simultaneously measure the plate temperature and the scale thickness during the annealing, and it is possible to optimize the annealing conditions and improve the quality control of the steel plate by grasping the annealing condition by controlling the plate temperature and controlling the scale thickness. .

【0044】ここで、前記4)の知見に示したスケール
厚さが変化しても放射率が略同一値である波長λ1 及び
スケール厚さの変化に応じて放射率が変化する波長λ2
の好適な範囲について説明する。
Here, the wavelength λ1 at which the emissivity is substantially the same value even when the scale thickness is changed as shown in the above 4) and the wavelength λ2 at which the emissivity is changed according to the change of the scale thickness.
The preferred range of is described.

【0045】(1)λ1 を変えながら放射率ε1 を測定
し、その測定値を用いて板温Tを算出した結果、その実
測値からの誤差ΔTの2σ(σ:標準偏差)と波長との
間に図1の関係があった。そこで、温度制御上ΔTの2
σ=±10℃が十分な精度であることから、ΔTの2σ
≦10℃となる条件で波長を制限し、好適な範囲をλ1
=12〜20μmとした。
(1) The emissivity ε1 was measured while changing λ1, and the plate temperature T was calculated using the measured value. As a result, the error ΔT from the measured value of 2σ (σ: standard deviation) and the wavelength were calculated. There was a relationship in Figure 1 between them. Therefore, in terms of temperature control, ΔT of 2
Since σ = ± 10 ° C. has sufficient accuracy, 2σ of ΔT
The wavelength is limited under the condition of ≤10 ° C, and the preferable range is λ1.
= 12 to 20 μm.

【0046】(2)λ2 は、図2に示すように、ΔTの
2σ≦10℃になる条件下(λ1 =1〜20μm)に
て、品質管理上Δdscの2σ=0.04μmが十分な精
度であることから、スケール厚さdscの推定誤差Δdsc
の2σ≦0.04μmになる条件で制限し、その好適な
範囲をλ2 =2.5〜4μmとした。
(2) As shown in FIG. 2, λ2 has a sufficient accuracy of 2σ = 0.04 μm of Δdsc for quality control under the condition that 2σ of ΔT ≦ 10 ° C. (λ1 = 1 to 20 μm). Therefore, the estimation error Δdsc of the scale thickness dsc is
2σ ≦ 0.04 μm, and the preferable range is λ2 = 2.5-4 μm.

【0047】次に、請求項3の発明について詳述する。
この発明は、各種条件により圧延、焼鈍された成分系の
異なる複数種類のステンレス鋼板について、スケール厚
さ、放射率、均熱温度(板温)、均熱時間等を調べ、そ
れぞれの値と結晶粒径、硬度等の材質特性との間に一定
の関係があることを知見してなされたものである。
Next, the invention of claim 3 will be described in detail.
This invention examines the scale thickness, emissivity, soaking temperature (sheet temperature), soaking time, etc. of a plurality of types of stainless steel sheets with different component systems that have been rolled and annealed under various conditions, and each value and crystal It was made by finding that there is a certain relationship with material characteristics such as particle size and hardness.

【0048】まず、均熱時間の推定方法について説明す
る。各種の均熱温度Tss、均熱時間Ts の条件下で焼鈍
処理されたSUS304を使用し、各鋼板のスケール厚
みdsc測定値とTss、Ts 等との関係を調べ、更にスケ
ールの酸化増量、酸化速度定数及びその温度依存性等の
関係を速度論的に解析したところ、次の(8)式の関係
を得た。ここで、A6、B6は定数である。
First, the method of estimating the soaking time will be described. Using SUS304 annealed under the conditions of various soaking temperature Tss and soaking time Ts, the relationship between the scale thickness dsc measurement value of each steel sheet and Tss, Ts, etc. was investigated, and further oxidation increase and oxidation of the scale were performed. When the relationship between the rate constant and its temperature dependence, etc. was analyzed kinetically, the following equation (8) was obtained. Here, A6 and B6 are constants.

【0049】 Ts =f6(Tss,dsc) =A6 exp {B6 /(Tss+273)}・dsc2 …(8)Ts = f6 (Tss, dsc) = A6 exp {B6 / (Tss + 273)} · dsc 2 (8)

【0050】上記(8)式のTs は、一般にある温度T
soから最高温度(均熱温度)Tssへ至るまでの時間と定
義されるが、CAPラインでは、板温計の設置台数に限
りがあり、又精度的にも問題があるので、Tsoにどの時
点で到達したかは不明である。そのためにTs を実測す
ることは困難であるが、上記(8)式に前記Tss、dsc
を代入することによりTs が推定可能となる。
Ts of the above equation (8) is generally a temperature T
It is defined as the time from so to the maximum temperature (soaking temperature) Tss, but there is a limit to the number of plate thermometers installed in the CAP line, and there is also a problem with accuracy, so what time is Tso It is unknown if it was reached by. Therefore, it is difficult to actually measure Ts, but in the above equation (8), Tss, dsc
By substituting for, Ts can be estimated.

【0051】次に、鋼板の材質、即ち結晶粒径や硬度を
推定する方法について説明する。各種条件で焼鈍された
前記SUS304鋼板の結晶粒径d[μm]やビッカー
ス硬度Hv[−]を実測し、焼鈍条件Tss、Ts や焼鈍
前の鋼板の特性を表わす指標である前記M値、R値等と
の関係を調査し、更に結晶粒の成長を熱活性化過程とし
て取り扱うことにより、結晶粒径d及びビッカース硬度
Hvを表わす関係式として次の(9)、(10)式を得
た。又、具体的な関数式として(9A)式を得た。な
お、この(9A)式における係数A、B、Cは、上記
M、Rの関数である。
Next, a method for estimating the material of the steel sheet, that is, the crystal grain size and hardness will be described. The crystal grain size d [μm] and Vickers hardness Hv [−] of the SUS304 steel sheet annealed under various conditions were measured, and the M value, R, which is an index showing the annealing conditions Tss, Ts and the characteristics of the steel sheet before annealing, R By investigating the relationship with the values, etc., and further treating the growth of crystal grains as a thermal activation process, the following equations (9) and (10) were obtained as relational expressions expressing the crystal grain size d and the Vickers hardness Hv. . Further, as a specific functional expression, expression (9A) was obtained. The coefficients A, B and C in the equation (9A) are functions of M and R described above.

【0052】 d=f7(Tss,Ts ,M,R) =A7 exp {−B7 /(Tss+273)}・Ts +C7 …(9) Hv=f8(Tss,Ts ,M,R) =A8 [A7 exp {−B7 /(Tss+273)} ・Ts +C7 ]-1/2+B8 …(10)D = f7 (Tss, Ts, M, R) = A7 exp {-B7 / (Tss + 273)} Ts + C7 (9) Hv = f8 (Tss, Ts, M, R) = A8 [A7 exp {-B7 / (Tss + 273)}. Ts + C7] -1 / 2 + B8 (10)

【0053】上記(9)、(10)式の係数A7 、B7
、C7 、A8 及びB8 、はそれぞれM、Rの関数で以
下の式で与えられる。
Coefficients A7 and B7 in the above equations (9) and (10)
, C7, A8 and B8 are functions of M and R, respectively, and are given by the following equations.

【0054】 A7 =exp (A71×M+A72×R+A73) …(9A) B7 =B71×M+B72×R+B73 …(9B) C7 =C71×R+C72 …(9C) A8 =A81×M+A82 …(10A) B8 =B81×M+B82 …(10B) ここで、A71、A72、A73、B71、B72、B73、C71、
C72、A81、A82、B81、B82は定数である。
A7 = exp (A71 × M + A72 × R + A73) (9A) B7 = B71 × M + B72 × R + B73 (9B) C7 = C71 × R + C72 (9C) A8 = A81 × M + A82 (10A) B8 = B81 × M + B82 (10B) where A71, A72, A73, B71, B72, B73, C71,
C72, A81, A82, B81, B82 are constants.

【0055】以上述べたように、(3)〜(10)式を
用いることにより、輝度温度を2つの異なる波長帯で同
時にオンライン測定し、予め得られている関係式fi
(i=5,6,7,8)や測定対象鋼板の焼鈍前の特性
である化学成分や冷間圧下率情報を元にして、焼鈍中の
板温、スケール厚みばかりでなく、焼鈍後の鋼板の結晶
粒径や硬度等の材質特性を連続的に推定することが可能
になる。
As described above, by using the equations (3) to (10), the brightness temperature is simultaneously measured online in two different wavelength bands, and the relational expression fi obtained in advance is obtained.
(I = 5, 6, 7, 8) and based on the chemical composition and cold rolling reduction information, which are the characteristics of the steel sheet to be measured before annealing, not only the sheet temperature and scale thickness during annealing but also the It is possible to continuously estimate the material properties such as the crystal grain size and hardness of the steel sheet.

【0056】以下、図面を参照して、より具体的な実施
の形態の例を詳細に説明する。
Hereinafter, a more specific example of the embodiment will be described in detail with reference to the drawings.

【0057】図3は、本発明に係る一実施形態に適用さ
れるCAPラインの概略構成を示す配置図である。
FIG. 3 is a layout diagram showing a schematic configuration of a CAP line applied to one embodiment according to the present invention.

【0058】上記CAPラインでは、2つの異なる波長
帯域から、それぞれの中心波長がλ1 =16μm、λ2
=3μmを利用して、輝度温度を測定する赤外放射輝度
測定装置1が所定位置に設置されている。そして、測定
対象であるステンレス鋼板2は、焼鈍炉3の中を走行
し、その輝度温度が水冷管4を通して赤外放射輝度測定
装置1により測定されるようになっている。上記水冷管
4は、炉3内で鋼板2の近傍にまで延ばされて設置され
ているので、上記輝度測定装置1により測定する際に炉
壁等からの背光雑音の影響を小さくすることができる。
In the CAP line, the central wavelengths of the two different wavelength bands are λ1 = 16 μm and λ2, respectively.
= 3 μm, the infrared radiance measuring device 1 for measuring the brightness temperature is installed at a predetermined position. The stainless steel plate 2 to be measured travels in the annealing furnace 3, and the brightness temperature thereof is measured by the infrared radiance measuring device 1 through the water cooling pipe 4. Since the water cooling pipe 4 is installed in the furnace 3 so as to extend to the vicinity of the steel plate 2, it is possible to reduce the influence of the background light from the furnace wall or the like when measuring with the brightness measuring device 1. it can.

【0059】赤外放射輝度測定装置1は、2つの異なる
波長λ1 とλ2 での輝度温度S1 、S2 を連続的に測定
するため、図4に示すように、2つの光学式バンドパス
フィルタ5及び6が取付けられているチョッパ7を有
し、そのチョッパ7をモータ8により回転させて、赤外
検出素子の一種である焦電素子9により2波長での輝度
温度を交互に連続的に測定する。鋼板までの測定距離L
と測定面積は、凹面ミラー10の焦点距離fと、筐体1
1内に装着されたアパーチャ12の有効径、及び、凹面
ミラー10と焦電素子9の間の距離l等の値により規定
される。又、チョッパ7の回転数は、焦電素子9の時定
数を考慮して決定され、回転制御装置13により安定制
御される。又、S/N向上のためにロックイン増幅器1
4により位相検波増幅されて、S1 、S2 の値が信号処
理装置15へ転送される。
Since the infrared radiance measuring apparatus 1 continuously measures the brightness temperatures S1 and S2 at two different wavelengths λ1 and λ2, as shown in FIG. 4, two optical bandpass filters 5 and 6 has a chopper 7 attached thereto, the chopper 7 is rotated by a motor 8, and a pyroelectric element 9 which is a kind of infrared detecting element measures the brightness temperature at two wavelengths alternately and continuously. . Measuring distance to steel plate L
And the measurement area are the focal length f of the concave mirror 10 and the housing 1
It is defined by the effective diameter of the aperture 12 mounted in the lens 1 and the distance l between the concave mirror 10 and the pyroelectric element 9. The rotation speed of the chopper 7 is determined in consideration of the time constant of the pyroelectric element 9 and is stably controlled by the rotation control device 13. Further, in order to improve the S / N, the lock-in amplifier 1
The phase detection amplification is performed by 4, and the values of S1 and S2 are transferred to the signal processing device 15.

【0060】図5は、スケール厚さの分析値と、2つの
波長λ2 =3μm、λ1 =16μmでの放射率との関係
を示す図である。これにより、遠赤外領域では放射率ε
1 (λ=λ1 =16μm)がほぼ一定であるのに対し
て、中赤外領域では放射率ε2(λ=λ2 =3μm)で
はスケール厚さdscと一定の関係が有り、この関係を前
記(7)式に示す関係式f5 として用いることができ
る。但し、この場合はM値が一定であるので、異なるM
値を有するステンレス鋼板の場合は、dscと、S2、M
の関係は回帰式により別に求めておけば良い。
FIG. 5 is a diagram showing the relationship between the analysis value of the scale thickness and the emissivity at two wavelengths λ2 = 3 μm and λ1 = 16 μm. Therefore, in the far infrared region, the emissivity ε
1 (λ = λ1 = 16 μm) is almost constant, while the emissivity ε2 (λ = λ2 = 3 μm) has a constant relationship with the scale thickness dsc in the mid-infrared region. It can be used as the relational expression f5 shown in the expression (7). However, in this case, since the M value is constant, different M
In the case of a stainless steel plate having a value, dsc, S2, M
The relationship of can be obtained separately using a regression equation.

【0061】信号処理装置15には、予め求めたε1 の
値が設定されており、転送された前記輝度温度測定値S
1 から前記(5)式の関数f3 を用いてTssが求めら
れ、このTssと前記S2 とから前記(6)式の関数f4
によりε2 が得られる。前記(1)、(2)式に示す
M、Rの値は、上位計算機16から信号処理装置15へ
送られて記憶されており、求められたS2 とMの値とか
ら、前記(7)式の関数f5 を用いてdscが算出された
後、先に得られているTssとdscとから、前記(8)式
の関数f6 を用いてTs の値が算出される。更に、この
Ts とTss、M、R等の値とから関数f7 、f8 を用い
て、最終的に結晶粒計dや硬度Hvの値が推定されるこ
とになる。
The signal processing device 15 is set with a value of ε 1 obtained in advance, and the transferred brightness temperature measurement value S
Tss is obtained from 1 using the function f3 of the equation (5), and from this Tss and S2, the function f4 of the equation (6) is obtained.
Gives ε 2. The values of M and R shown in the above equations (1) and (2) are sent from the host computer 16 to the signal processing device 15 and stored therein. From the obtained values of S2 and M, the above (7) After dsc is calculated using the function f5 of the equation, the value of Ts is calculated from the previously obtained Tss and dsc using the function f6 of the equation (8). Furthermore, the values of the crystal grain meter d and the hardness Hv are finally estimated from the Ts and the values of Tss, M, R, etc. by using the functions f7, f8.

【0062】表1に、本実施形態を満足する波長を用い
て、SUS304の異なる亜鉛種の2鋼板(AとB)に
ついて、スケール厚みdscと硬度Hv、結晶粒計dの測
定結果を示した。
Table 1 shows the measurement results of the scale thickness dsc, the hardness Hv, and the crystal grain meter d for two steel sheets (A and B) of different zinc types of SUS304 using wavelengths satisfying this embodiment. .

【0063】[0063]

【表1】 [Table 1]

【0064】上記表1に表されるように、スケール厚
は、誤差Δdscの2σ(σ:標準偏差)が0.04μm
以内、推定された結晶粒径dの値と顕微鏡を用いて実測
された結晶粒径の値との誤差Δdの2σは、約±5μm
以内、推定されたHvとオフラインにてビッカース硬度
計にて測定した硬度との誤差の2σは20Hv以内であ
った。
As shown in Table 1, the scale thickness has an error Δdsc of 2σ (σ: standard deviation) of 0.04 μm.
Within the difference Δd between the estimated value of the crystal grain size d and the value of the crystal grain size actually measured using a microscope, 2σ is about ± 5 μm.
The error 2σ between the estimated Hv and the hardness measured with a Vickers hardness meter off-line was within 20 Hv.

【0065】算出されたTss、dsc、d、Hv等の値
は、出力装置17に出力されると共に、上位計算機16
へ転送され、操業監視や品質管理のために活用されると
共に、炉温設定や板速等プロセス状態量を変更するため
のアクチュエータ18へ送られて、焼鈍の最適化が図ら
れる。
The calculated values of Tss, dsc, d, Hv, etc. are output to the output device 17 and the host computer 16
Is transferred to the actuator 18 for changing the process state quantity such as the furnace temperature setting and the plate speed, and the annealing is optimized.

【0066】測定、処理、出力等を行う全体システムの
ブロック図を図4に示す。又、信号処理装置15内で各
パラメータが算出されるフローを図5に示す。
FIG. 4 shows a block diagram of the entire system for performing measurement, processing, output and the like. Further, FIG. 5 shows a flow in which each parameter is calculated in the signal processing device 15.

【0067】以上に述べた各パラメータを変換して演算
するための関係式fi(i=5,6,7,8)は、予め
オフラインで焼鈍実験を行い最適な形に決定することに
なるが、より精度を高めるためには実操業データを用い
て決定すれば良い。
The relational expression fi (i = 5, 6, 7, 8) for converting and calculating each parameter described above is determined in advance by an off-line annealing experiment. In order to improve the accuracy, the actual operation data may be used for the determination.

【0068】本発明の方式は、別の種類のステンレス鋼
板、例えばフェライト系の鋼板SUS430にも適用可
能であり、その場合には化学成分を表わす指標や設定放
射率、関数形fi(i=5,6,7,8)等を別に置き
換えれば良く、上位計算機からの設定により処理するこ
とも可能である。
The method of the present invention can also be applied to another type of stainless steel plate, for example, a ferritic steel plate SUS430. In that case, an index representing a chemical component, a set emissivity, and a function form fi (i = 5). , 6, 7, 8) and the like may be replaced separately, and processing can be performed by setting from a host computer.

【0069】以上詳述した如く、本実施形態によれば、
焼鈍後の板温やスケール厚さをオンラインで測定できる
と共に、これらの値を使用して、焼鈍後の材質特性、例
えば結晶粒径、硬度等をオンラインで測定可能になるの
で、品質の良否を迅速に把握して品質保証体制を構築可
能になるばかりでなく、炉温設定や板速度を変更する制
御系にフィードバックして焼鈍の安定化を図り、均質な
鋼板製造へ寄与することができる。
As described in detail above, according to this embodiment,
The sheet temperature and scale thickness after annealing can be measured online, and these values can be used to measure the material properties after annealing, such as crystal grain size and hardness, online. Not only is it possible to quickly grasp and build a quality assurance system, but it is also possible to contribute to homogeneous steel plate production by feeding back to a control system that changes the furnace temperature setting and plate speed to stabilize annealing.

【0070】[0070]

【発明の効果】以上説明したとおり、本発明の表面スケ
ール測定方法によれば、酸化スケール厚さを非破壊で高
精度に測定することができる。
As described above, according to the surface scale measuring method of the present invention, the oxide scale thickness can be measured nondestructively and with high accuracy.

【0071】又、本発明の材質測定方法によれば、焼鈍
後のステンレス鋼板の結晶粒径や硬度をオンラインで連
続的に測定することができる。
According to the material measuring method of the present invention, the crystal grain size and hardness of the annealed stainless steel sheet can be continuously measured online.

【図面の簡単な説明】[Brief description of drawings]

【図1】波長λ1 の制限根拠を説明するための線図[Figure 1] Diagram for explaining the grounds for limiting wavelength λ1

【図2】波長λ2 の制限根拠を説明するための線図[Fig. 2] Diagram for explaining the grounds for limiting wavelength λ 2.

【図3】CAPにおける測定装置の配置状態を示す説明
FIG. 3 is an explanatory diagram showing a state of arrangement of measuring devices in CAP.

【図4】測定装置と演算処理系の概略構成を示す説明図FIG. 4 is an explanatory diagram showing a schematic configuration of a measuring device and an arithmetic processing system.

【図5】スケール厚さと放射率との関係を示す線図FIG. 5 is a diagram showing the relationship between scale thickness and emissivity.

【図6】測定、処理、出力等を行う全体システムを示す
ブロック図
FIG. 6 is a block diagram showing an overall system that performs measurement, processing, output, etc.

【図7】測定装置を構成する信号処理装置等で各パラメ
ータが算出されるフローを示す説明図
FIG. 7 is an explanatory diagram showing a flow in which each parameter is calculated by a signal processing device or the like that constitutes the measuring device.

【符号の説明】[Explanation of symbols]

1…赤外放射輝度測定装置 2…ステンレス鋼板 3…焼鈍炉 4…水冷管 5、6…光学式バンドパスフィルタ 7…チョッパ 8…モータ 9…焦電素子 10…凹面ミラー 11…筐体 12…アパーチャ 13…回転制御装置 14…ロックイン増幅器 15…信号処理装置 16…上位計算機 17…出力装置 18…アクチュエータ DESCRIPTION OF SYMBOLS 1 ... Infrared radiance measuring device 2 ... Stainless steel plate 3 ... Annealing furnace 4 ... Water cooling pipe 5, 6 ... Optical bandpass filter 7 ... Chopper 8 ... Motor 9 ... Pyroelectric element 10 ... Concave mirror 11 ... Housing 12 ... Aperture 13 ... Rotation control device 14 ... Lock-in amplifier 15 ... Signal processing device 16 ... Host computer 17 ... Output device 18 ... Actuator

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】鋼板の表面から放射される赤外放射光を検
出し、該放射光に基づいて鋼板に形成されている表面ス
ケールの厚さを測定する鋼板の表面スケール測定方法で
あって、 スケール厚さが変化しても放射率が略同一値である波長
λ1 における輝度温度S1 と、スケール厚さの変化に対
して放射率が変化する波長λ2 における輝度温度S2 と
を測定し、 予め求めた前者の波長λ1 における放射率ε1 及び前者
の輝度温度S1 に基づいて鋼板温度を算出し、 該鋼板温度及び後者の輝度温度S2 とに基づいて波長λ
2 における放射率ε2を算出し、 該放射率ε2 に基づいてスケールの厚さを求めることを
特徴とする鋼板の表面スケール測定方法。
1. A surface scale measuring method for a steel sheet, which comprises detecting infrared radiation emitted from the surface of the steel sheet and measuring the thickness of the surface scale formed on the steel sheet based on the radiation. The brightness temperature S1 at the wavelength λ1 where the emissivity is approximately the same value even if the scale thickness changes and the brightness temperature S2 at the wavelength λ2 where the emissivity changes with the change in the scale thickness are measured and obtained in advance. The steel plate temperature is calculated based on the former emissivity ε1 at the wavelength λ1 and the former brightness temperature S1, and the wavelength λ is calculated based on the steel plate temperature and the latter brightness temperature S2.
2. A method for measuring a surface scale of a steel sheet, which comprises calculating the emissivity ε2 in 2 and obtaining the scale thickness based on the emissivity ε2.
【請求項2】請求項1において、 鋼板がステンレス鋼板であり、スケール厚さが変化して
も放射率が略同一値となる波長λ1 が12〜20μmの
範囲であり、スケール厚さの変化に対して放射率が変化
する波長λ2 が2.5〜4μmの範囲であることを特徴
とする鋼板の表面スケール測定方法。
2. The steel plate according to claim 1, wherein the steel plate is a stainless steel plate, and the wavelength λ1 at which the emissivity becomes substantially the same value even if the scale thickness changes is in the range of 12 to 20 μm. On the other hand, the wavelength .lambda.2 at which the emissivity changes is in the range of 2.5 to 4 .mu.m.
【請求項3】焼鈍炉内において、鋼板の表面から放射さ
れる赤外放射光を検出し、該放射光に基づいて鋼板材質
を測定する鋼板の材質測定方法であって、 スケール厚さが変化しても放射率が略同一値となる波長
λ1 における輝度温度S1 と、スケール厚さの変化に対
して放射率が変化する波長λ2 における輝度温度S2 と
を測定し、 予め求めた前者の波長λ1 における放射率ε1 及び前者
の輝度温度S1 に基づいて鋼板の均熱温度を算出し、 該鋼板の均熱温度及び後者の輝度温度S2 とに基づいて
波長λ2 における放射率ε2 を算出し、 該放射率ε2 に基づいてスケールの厚さを求め、該スケ
ール厚みと前記鋼板の均熱温度とに基づいて所定の鋼板
温度から前記鋼板の均熱温度に到達するまでの均熱時間
を算出し、 該均熱時間と前記鋼板の均熱温度に基づいて鋼板の材質
を測定することを特徴とする鋼板の材質測定方法。
3. A steel sheet material measuring method in which infrared radiation emitted from the surface of a steel sheet is detected in an annealing furnace, and the steel sheet material is measured based on the radiation, wherein the scale thickness is changed. Even if the brightness temperature S1 at the wavelength λ1 at which the emissivity is approximately the same value and the brightness temperature S2 at the wavelength λ2 at which the emissivity changes with changes in the scale thickness are measured, the former wavelength λ1 The soaking temperature of the steel sheet is calculated based on the emissivity ε1 and the brightness temperature S1 of the former, and the emissivity ε2 at the wavelength λ2 is calculated based on the soaking temperature of the steel sheet and the brightness temperature S2 of the latter. Calculate the thickness of the scale based on the rate ε2, calculate the soaking time to reach the soaking temperature of the steel sheet from a predetermined steel sheet temperature based on the scale thickness and the soaking temperature of the steel sheet, Soaking time and soaking temperature of the steel sheet Material quality measuring method of the steel sheet, characterized by measuring the material of the steel sheet Zui.
【請求項4】請求項3において、 鋼板がステンレス鋼板であり、スケール厚さが変化して
も放射率が略同一値となる波長λ1 が12〜20μmの
範囲であり、スケール厚さの変化に対して放射率が変化
する波長λ2 が2.5〜4μmの範囲であることを特徴
とする鋼板の材質測定方法。
4. The steel plate according to claim 3, wherein the steel plate is a stainless steel plate, and the wavelength λ1 at which the emissivity becomes substantially the same value even if the scale thickness changes is in the range of 12 to 20 μm, On the other hand, the wavelength λ2 at which the emissivity changes is in the range of 2.5 to 4 μm.
JP7185195A 1995-07-21 1995-07-21 Method for measuring surface scale of steel plate and method for measuring material quality Pending JPH0933464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7185195A JPH0933464A (en) 1995-07-21 1995-07-21 Method for measuring surface scale of steel plate and method for measuring material quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7185195A JPH0933464A (en) 1995-07-21 1995-07-21 Method for measuring surface scale of steel plate and method for measuring material quality

Publications (1)

Publication Number Publication Date
JPH0933464A true JPH0933464A (en) 1997-02-07

Family

ID=16166529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7185195A Pending JPH0933464A (en) 1995-07-21 1995-07-21 Method for measuring surface scale of steel plate and method for measuring material quality

Country Status (1)

Country Link
JP (1) JPH0933464A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007096929A2 (en) * 2006-02-24 2007-08-30 Consiglio Nazionale Delle Ricerche Optical method for evaluating the surface-hardening of a metallic or a metal-containing material
JP2012093177A (en) * 2010-10-26 2012-05-17 Nippon Steel Corp Method and apparatus for measuring surface temperature of steel material in furnace
JP2013036850A (en) * 2011-08-08 2013-02-21 Midori Seimitsu:Kk Method and device for inspecting surface flaw of hot steel material
WO2018199187A1 (en) * 2017-04-25 2018-11-01 新日鐵住金株式会社 Scale composition determining system, scale composition determining method, and program
KR20190113883A (en) * 2017-04-25 2019-10-08 닛폰세이테츠 가부시키가이샤 Scale composition determination system, scale composition determination method, and program
CN112716293A (en) * 2021-01-27 2021-04-30 上海朴道水汇环保科技股份有限公司 Method and system for detecting scale of heating hot liner of water dispenser
CN112823270A (en) * 2018-11-09 2021-05-18 株式会社神户制钢所 Oxide film thickness measuring device and method
WO2022079680A1 (en) 2020-10-16 2022-04-21 Arcelormittal Method for estimating the temperature and the oxide thickness of a steel strip
RU2806259C1 (en) * 2020-10-16 2023-10-30 Арселормиттал Method for assessing temperature and oxide thickness of steel strip

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007096929A2 (en) * 2006-02-24 2007-08-30 Consiglio Nazionale Delle Ricerche Optical method for evaluating the surface-hardening of a metallic or a metal-containing material
WO2007096929A3 (en) * 2006-02-24 2007-11-08 Consiglio Nazionale Ricerche Optical method for evaluating the surface-hardening of a metallic or a metal-containing material
JP2012093177A (en) * 2010-10-26 2012-05-17 Nippon Steel Corp Method and apparatus for measuring surface temperature of steel material in furnace
JP2013036850A (en) * 2011-08-08 2013-02-21 Midori Seimitsu:Kk Method and device for inspecting surface flaw of hot steel material
KR20190123766A (en) * 2017-04-25 2019-11-01 닛폰세이테츠 가부시키가이샤 Scale composition determination system, scale composition determination method, and computer-readable storage medium
US11454542B2 (en) 2017-04-25 2022-09-27 Nippon Steel Corporation Scale composition determination system, scale composition determination method, and program
KR20190113883A (en) * 2017-04-25 2019-10-08 닛폰세이테츠 가부시키가이샤 Scale composition determination system, scale composition determination method, and program
CN110312927A (en) * 2017-04-25 2019-10-08 日本制铁株式会社 Oxide skin forms decision-making system, oxide skin composition determination method and program
WO2018199187A1 (en) * 2017-04-25 2018-11-01 新日鐵住金株式会社 Scale composition determining system, scale composition determining method, and program
EP3617693A4 (en) * 2017-04-25 2021-01-27 Nippon Steel Corporation Scale composition determining system, scale composition determining method, and program
US11474032B2 (en) 2017-04-25 2022-10-18 Nippon Steel Corporation Scale composition determination system, scale composition determination method, and program
JP6424998B1 (en) * 2017-04-25 2018-11-21 新日鐵住金株式会社 Scale composition determination system, scale composition determination method, and program
US11029212B2 (en) 2017-04-25 2021-06-08 Nippon Steel Corporation Scale composition determination system, scale composition determination method, and program
CN112823270A (en) * 2018-11-09 2021-05-18 株式会社神户制钢所 Oxide film thickness measuring device and method
WO2022079478A1 (en) 2020-10-16 2022-04-21 Arcelormittal Method for estimating the temperature and the oxide thickness of a steel strip
WO2022079680A1 (en) 2020-10-16 2022-04-21 Arcelormittal Method for estimating the temperature and the oxide thickness of a steel strip
RU2806259C1 (en) * 2020-10-16 2023-10-30 Арселормиттал Method for assessing temperature and oxide thickness of steel strip
CN112716293A (en) * 2021-01-27 2021-04-30 上海朴道水汇环保科技股份有限公司 Method and system for detecting scale of heating hot liner of water dispenser
CN112716293B (en) * 2021-01-27 2022-12-06 上海朴道水汇环保科技股份有限公司 Method and system for detecting scale of heating hot liner of water dispenser

Similar Documents

Publication Publication Date Title
RU2702818C2 (en) Method of producing steel products, comprising a step of obtaining characteristics of a layer of oxides on a moving steel substrate
US20100219567A1 (en) Process line control apparatus and method for controlling process line
TWI360654B (en) Apparatus and method for measuring material qualit
JPH0933464A (en) Method for measuring surface scale of steel plate and method for measuring material quality
Delgado et al. Distinction strategies based on discriminant function analysis for particular steel grades at elevated temperature using stand-off LIBS
Zhu et al. Spectral emissivity model of steel 309S during the growth of oxide layer at 800–1100 K
Cabalín et al. Stand-off laser-induced breakdown spectroscopy for steel-grade intermix detection in sequence casting operations. At-line monitoring of temporal evolution versus predicted mathematical model
RU2083961C1 (en) Method of measurement of temperature and emissivity of surface
JPH0933517A (en) Method for measuring quality of steel plate
JP2007086029A (en) Material measuring instrument of metal processing material
JPH10206125A (en) Apparatus and method for measurement of thickness of oxide film
JPH07270130A (en) Method of measuring thickness of oxide film
JP2007010464A (en) Method and apparatus for measuring thickness of oxide film on surface of sheet steel
Lu et al. In suit monitoring of solidification mode, porosity and clad height during laser metal deposition of AISI 316 stainless steel
JPH06222053A (en) Deterioration diagnostic method for ferrite based heat-resistant steel
JPH03108639A (en) Easy and quick method of estimating generation amount of internal oxide layer of electromagnetic steel plate
CN116888457A (en) System and method for determining chemical composition of liquid metallurgical product
JPH08219891A (en) Surface condition measuring method for steel sheet and steel sheet temperature measuring method
Suleiman et al. Effect of dew point on the evolving spectral emissivity of advanced high strength steel during intercritical annealing
JPH0626945A (en) Method for measuring residual stress, and measuring device used for this method
JPH06331447A (en) Method and apparatus for evaluating precision of radiation thermometer
JPH08254502A (en) Method and apparatus for measurement of scale property of steel material
RU2816834C1 (en) Determination of steel product temperature
US20240118139A1 (en) Estimation of the temperature of a steel product
JP4686924B2 (en) Thickness measuring method, thickness measuring device and thickness control method for hot rolled steel sheet

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Effective date: 20050630

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100715

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110715

LAPS Cancellation because of no payment of annual fees