JPH0626945A - Method for measuring residual stress, and measuring device used for this method - Google Patents

Method for measuring residual stress, and measuring device used for this method

Info

Publication number
JPH0626945A
JPH0626945A JP107391A JP107391A JPH0626945A JP H0626945 A JPH0626945 A JP H0626945A JP 107391 A JP107391 A JP 107391A JP 107391 A JP107391 A JP 107391A JP H0626945 A JPH0626945 A JP H0626945A
Authority
JP
Japan
Prior art keywords
stress
measured
raman
residual stress
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP107391A
Other languages
Japanese (ja)
Inventor
Kyoji Matsuda
恭司 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP107391A priority Critical patent/JPH0626945A/en
Publication of JPH0626945A publication Critical patent/JPH0626945A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To quickly measure residual stress by providing a laser oscillator, a Raman spectrophotometer, a sample base for stress test, and an arithmetic device. CONSTITUTION:A sample base 12 for stress test is driven 14 to add a stress to a base 16. A stress value is inputted to an arithmetic device 13 from the device 14. The laser beam emitted to a sample 17 from a laser oscillator 10 in the state where the stress is added to the sample 17 generates a Raman scattered light 20 near the surface of the sample 17, and the scattered light 20 is converged by a converging mirror 15 and incident to a spectroscope 11a followed by spectral diffraction, and the light is detected by a multi-channel detector 11b, converted into an electric signal, and transmitted to the device 13. In the device 13, arithmetic processing is conducted on the basis of the measurement data of the change quantity in Raman shift based on the change of the lattice frequency transmitted from a spectrophotometer 11 and the data of stress value. In this way, even the residual stress of an extremely thin oxidized film such as MnCr2O4 in which elastic constant and mode Bruneisen's constant are not known can be easily and quickly measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、残留応力の測定方法及
び該方法に使用する測定装置に関し、より詳しくは薄
膜、特にMnCr2O4、Cr2O3、NiFe2O4、FeCr2O4、Ti2O3 等の酸
化皮膜にかかる残留応力の測定を可能にするための残留
応力の測定方法及び該方法に使用する測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a residual stress measuring method and a measuring apparatus used for the method, and more particularly to a thin film, particularly MnCr 2 O 4, Cr 2 O 3, NiFe 2 O 4, FeCr 2 O. 4. A method for measuring residual stress for enabling measurement of residual stress applied to an oxide film such as Ti 2 O 3 and a measuring device used for the method.

【0002】[0002]

【従来の技術】最近ではステンレス鋼の腐食抑制効果の
向上のために、予めMnCr2O4、Cr2O3、NiFe2O4、FeCr2O4、Ti
2O3 等の酸化皮膜をステンレス鋼の表面に生成させる方
法が用いられている。このとき、前記酸化皮膜と基板で
あるステンレス鋼との熱膨張係数の差により前記酸化皮
膜に応力がかかる場合があり、該酸化皮膜にかかる応力
は酸化皮膜の剥離や耐食性と密接な関係があることから
前記酸化皮膜にかかる応力の測定が必要とされている。
2. Description of the Related Art Recently, in order to improve the corrosion inhibitory effect of stainless steel, MnCr 2 O 4, Cr 2 O 3, NiFe 2 O 4, FeCr 2 O 4, and Ti have been previously prepared.
A method of forming an oxide film such as 2 O 3 on the surface of stainless steel is used. At this time, stress may be applied to the oxide film due to the difference in thermal expansion coefficient between the oxide film and the stainless steel that is the substrate, and the stress applied to the oxide film is closely related to peeling of the oxide film and corrosion resistance. Therefore, it is necessary to measure the stress applied to the oxide film.

【0003】従来、残留応力を測定するには、被測定物
の変形を測定し、ヤング率やポアソン比等の定数から被
測定物にかかる残留応力を算出したり、X線回折あるい
は電子線回折により被測定物の格子定数を測定し、標準
値からのずれを調べることにより残留応力を測定した
り、あるいはラマン分光法によるピーク位置のシフト量
から残留応力を見積もったりしていた。
Conventionally, the residual stress is measured by measuring the deformation of the measured object, calculating the residual stress applied to the measured object from constants such as Young's modulus and Poisson's ratio, or by X-ray diffraction or electron beam diffraction. The residual stress was measured by measuring the lattice constant of the object to be measured and checking the deviation from the standard value, or the residual stress was estimated from the shift amount of the peak position by Raman spectroscopy.

【0004】ラマン分光法を用いて被測定物の残留応力
を決定している例は、例えばSolidState Electronics v
ol 23(1980) 333に報告されている。
An example of determining the residual stress of an object to be measured using Raman spectroscopy is, for example, Solid State Electronics v
ol 23 (1980) 333.

【0005】ラマンシフト量から応力を求める方法を以
下に示す。
A method for obtaining the stress from the Raman shift amount will be described below.

【0006】いま、ある結晶に応力が加わった場合、あ
るモードの波数変化は、モードグリュナイゼン定数γを
用いて下記の数式(1)に示したように表わすことがで
きる。
Now, when a stress is applied to a certain crystal, the wave number change of a certain mode can be expressed as shown in the following mathematical expression (1) using the mode Grueneisen constant γ.

【0007】[0007]

【数1】 [Equation 1]

【0008】ここでωは格子振動数、∂V/Vは体積率
変化である。
Where ω is the lattice frequency and ∂V / V is the change in volume ratio.

【0009】格子振動数の変化率はモードグリュナイゼ
ンパラメータを用いて次式のように表わされる。
The rate of change of the lattice frequency is expressed by the following equation using the mode Grueneisen parameter.

【0010】[0010]

【数2】 [Equation 2]

【0011】ここでεは歪を表わす。Here, ε represents strain.

【0012】一方、応力δ0 は単純に次のように示され
る。
On the other hand, the stress δ 0 is simply expressed as follows.

【0013】δ0 =Eε…(3) ここでEは弾性定数である。Δ 0 = Eε (3) where E is an elastic constant.

【0014】数式(2)を数式(3)に代入すると、Substituting equation (2) into equation (3),

【0015】[0015]

【数4】 [Equation 4]

【0016】となり、この数式(4)から応力δ0 を求
めることができる。
Therefore, the stress δ 0 can be obtained from the equation (4).

【0017】[0017]

【発明が解決しようとする課題】しかしながら格子振動
数と応力との関係を示すモードグリュナイゼン定数γが
既知である物質は、Si、Ge、GaAs、GaSb、InAs、ZnSe、グラフ
ァイトのみであり、MnCr2O4、FeCr2O4、Ti2O3 などの酸化
物のモードグリュナイゼン定数については正確な値が不
明であり、弾性定数についても情報が少なく、従って上
記(4)式を利用して上記酸化物についての残留応力を
求めることはできなかった。さらに酸化皮膜は極めて薄
い数十nm程度の膜厚であることから、ヤング率やポア
ソン比を求めることも困難であり、従ってこれら定数を
使って算出することもできず、その残留応力の測定は困
難であるといった課題があった。
However, Si, Ge, GaAs, GaSb, InAs, ZnSe, and graphite are the only substances for which the mode-Gruneisen constant γ indicating the relationship between the lattice frequency and the stress is known. The exact value of the Mode-Gruneisen constant of oxides such as MnCr 2 O 4, FeCr 2 O 4 and Ti 2 O 3 is unknown, and there is little information on the elastic constants. Therefore, the above equation (4) is used. Then, the residual stress of the above oxide could not be obtained. Furthermore, since the oxide film has an extremely thin film thickness of about several tens of nm, it is difficult to obtain the Young's modulus and Poisson's ratio, and therefore it is impossible to calculate using these constants, and the residual stress cannot be measured. There was a problem that it was difficult.

【0018】本発明は上記した課題に鑑み発明されたも
のであって、被測定物の残留応力を測定する際、被測定
物の弾性定数やモードグリュナイゼン定数等の物理定数
が未知であり、しかも膜厚が20nm以下程度の極めて
薄い場合でも、容易に残留応力を測定することのできる
残留応力の測定方法とこの測定方法に使用する測定装置
とを提供することを目的としている。
The present invention has been made in view of the above problems, and when measuring the residual stress of an object to be measured, the physical constants such as the elastic constants of the object to be measured and the Mode-Gruneisen constant are unknown. Moreover, it is an object of the present invention to provide a residual stress measuring method capable of easily measuring the residual stress even when the film thickness is extremely thin such as about 20 nm or less, and a measuring device used for this measuring method.

【0019】[0019]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る残留応力の測定方法は、基板上に被測定
物を生成させ、該基板に応力を加えることにより加わる
前記被測定物への応力値と、結晶構造の格子振動による
ラマンシフト量の変化との関係から検量線を作成してお
き、この後、被測定物の前記格子振動によるラマンシフ
ト量の標準スペクトルとのシフト量変化を測定し、該測
定値と前記検量線とを比較することにより、前記被測定
物の残留応力を求めることを特徴とし、さらに本発明に
係る残留応力の測定装置は、レーザー発振器と、ラマン
分光光度計と、応力試験用試料台とを備え、さらに該ラ
マン分光光度計によって測定された格子振動によるラマ
ンシフト量から被測定物の残留応力を演算する演算手段
を備えていることを特徴としている。
In order to achieve the above-mentioned object, a method for measuring residual stress according to the present invention comprises: forming an object to be measured on a substrate, and applying the stress to the substrate to add the object to be measured. To the standard spectrum of the Raman shift amount due to the lattice vibration of the object to be measured, after which a calibration curve was created from the relationship between the stress value to the and the change in the Raman shift amount due to the lattice vibration of the crystal structure. The change is measured, the residual stress of the object to be measured is obtained by comparing the measured value with the calibration curve, and the residual stress measuring device according to the present invention further comprises a laser oscillator and a Raman. A spectrophotometer and a sample table for stress test are provided, and further a computing means for computing the residual stress of the object to be measured from the Raman shift amount due to lattice vibration measured by the Raman spectrophotometer. It is characterized.

【0020】[0020]

【作用】被測定物に応力Xが加わると、格子定数が変化
し、結合力が変化することから格子振動による振動数ω
0 は変化する。振動数ω0 の変化に伴うラマンシフト量
変化△ωと応力Xとの関係は次式で表わされる。
When the stress X is applied to the object to be measured, the lattice constant changes and the coupling force changes.
0 changes. The relationship between the change in Raman shift Δω with the change in frequency ω 0 and the stress X is expressed by the following equation.

【0021】△ω=−kX …(5) 従って△ωとXとの関係から検量線を作成し、kの値を
求めておくことにより、△ωを測定し(5)式を用いれ
ば応力値Xが求められる。
Δω = −kX (5) Therefore, by preparing a calibration curve from the relationship between Δω and X and obtaining the value of k, Δω is measured and the stress is calculated by using the equation (5). The value X is sought.

【0022】また、上記測定装置によれば、前記演算手
段によりラマンシフト量変化△ωと応力Xとの測定値か
ら容易に前記kの値が求められ、また、このkの値及び
△ωの測定値から応力Xが容易に演算される。
Further, according to the above measuring device, the value of k can be easily obtained from the measured values of the Raman shift amount change Δω and the stress X by the calculating means, and the value of k and Δω can be calculated. The stress X is easily calculated from the measured value.

【0023】[0023]

【実施例】以下、本発明に係る実施例を図面に基づいて
説明する。本実施例に係る残留応力測定装置は図1に示
したように、レーザー発振器10、レーザーラマン分光
光度計11、4点曲げ応力試験用試料台12を備え、こ
れらレーザーラマン分光光度計11及び応力試験用試料
台12は演算処理を行なう中央制御装置13に接続され
ている。レーザーラマン分光光度計11は分光器11a
とマルチチャンネル検出器11bとから構成されてお
り、応力試験用試料台12の下方には試料に応力を加え
る駆動機構14が配設されている。また、レーザー発振
器10と応力試験試料台12との間には集光ミラー15
が所定の位置に配設されている。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, the residual stress measuring device according to the present embodiment includes a laser oscillator 10, a laser Raman spectrophotometer 11, and a four-point bending stress test sample table 12, and the laser Raman spectrophotometer 11 and the stress are measured. The test sample table 12 is connected to a central controller 13 that performs arithmetic processing. The laser Raman spectrophotometer 11 is a spectroscope 11a.
And a multi-channel detector 11b, and a drive mechanism 14 for applying stress to the sample is arranged below the stress test sample table 12. A condenser mirror 15 is provided between the laser oscillator 10 and the stress test sample table 12.
Are arranged at predetermined positions.

【0024】上記した測定装置において、基板16上に
生成された試料17は基板16ごと応力試験用試料台1
2上に載置され、この応力試験用試料台12は駆動機構
14によって駆動されて基板16に応力をかける。駆動
装置14からは中央制御装置13に応力値が入力され
る。
In the above-described measuring apparatus, the sample 17 formed on the substrate 16 is a stress test sample table 1 together with the substrate 16.
The stress test sample table 12 is placed on the substrate 2 and is driven by a driving mechanism 14 to apply stress to the substrate 16. A stress value is input from the drive unit 14 to the central control unit 13.

【0025】試料17に応力をかけた状態でレーザー発
振器10から試料17に照射されたレーザー光は試料1
7の表面付近でラマン散乱を生じる。ラマン散乱によっ
て生じた散乱光20は集光ミラー15によって集めら
れ、分光器11aに入射して分光された後、ホトダイオ
ードを1000$2000 個程備えたマルチチャンネル検出器1
1bによって光が検出され、電気信号に変換されて中央
制御装置13に送信される。
The laser light applied to the sample 17 from the laser oscillator 10 in a state where the sample 17 is under stress is the sample 1
Raman scattering occurs near the surface of No. 7. The scattered light 20 generated by Raman scattering is collected by the condenser mirror 15, is incident on the spectroscope 11a and is dispersed, and then the multi-channel detector 1 having about 1000 $ 2000 photodiodes is provided.
Light is detected by 1b, converted into an electric signal, and transmitted to the central controller 13.

【0026】レーザーラマン分光光度計11から送られ
る格子振動数の変化に基づくラマンシフト量の変化量の
測定データと応力値のデータとに基づいて中央制御装置
13では演算処理が行なわれる。また中央制御装置13
は駆動機構14とレーザーラマン分光光度計11に測定
手順を指示する制御信号も送信している。
The central controller 13 performs arithmetic processing based on the measurement data of the amount of change in the Raman shift amount based on the change in the lattice frequency and the data of the stress value sent from the laser Raman spectrophotometer 11. In addition, the central controller 13
Also sends a control signal for instructing the measurement procedure to the drive mechanism 14 and the laser Raman spectrophotometer 11.

【0027】上記した残留応力測定装置を用いて、MnCr
2O4 薄膜の残留応力を測定した。MnCr2O4 の標準試料は
粉末であり、大きな単結晶はないため直接応力を加える
ことは不可能であり、弾性定数やグリュナイゼン定数は
求められていない。
Using the above residual stress measuring device, MnCr
The residual stress of the 2 O 4 thin film was measured. The standard sample of MnCr 2 O 4 is powder, and it is not possible to apply stress directly because there is no large single crystal, and elastic constant and Grueneisen constant have not been obtained.

【0028】試料17としてSUS 304L鋼上に高純度Ar(9
9.999%) ガス中で1000℃×2 min の熱処理を施すことに
より生成したMnCr2O4 薄膜(400 Å) を用い、試料17
に応力をかけながら応力変化に伴うラマンシフト量の変
化を測定した。
As sample 17, high purity Ar (9
9.999%) Using a MnCr 2 O 4 thin film (400 Å) produced by heat treatment at 1000 ℃ × 2 min in gas, sample 17
The change in the Raman shift amount due to the stress change was measured while stress was applied to.

【0029】横軸に応力値、縦軸にラマンシフト変化量
をプロットし、図4に示すような検量線を得た。該検量
線から応力Xとラマンシフト変化量△ωとの関係は一軸
応力の場合次式のように表わされる。 △ω=−0.24×10-9X …(6) MnCr2O4 の標準試料のラマンスペクトルは図2に示した
ように、679cm-1 位置にピークが認められた。
A stress value was plotted on the abscissa and a Raman shift change amount was plotted on the ordinate to obtain a calibration curve as shown in FIG. From the calibration curve, the relationship between the stress X and the Raman shift change amount Δω is expressed by the following equation in the case of uniaxial stress. Δω = −0.24 × 10 −9 X (6) In the Raman spectrum of the standard sample of MnCr 2 O 4 , as shown in FIG. 2, a peak was recognized at the 679 cm −1 position.

【0030】次にSUS 304L鋼上に生成されたMnCr2O4
膜のラマンスペクトルを測定したところ、上記ピークは
図3に示すように、690cm-1 の位置にシフトした。
Next, when the Raman spectrum of the MnCr 2 O 4 thin film formed on the SUS 304L steel was measured, the above-mentioned peak was shifted to the position of 690 cm -1 as shown in FIG.

【0031】本実施例においてラマンシフト変化量△ω
=11であり、試料17には二軸応力がかかっていると仮
定すれば、(6)式よりMnCr2O4 薄膜には2.3 ×1010(d
yne/cm2)の圧縮応力が残留応力としてかかっていること
になる。
In this embodiment, the Raman shift change amount Δω
= 11, and assuming that sample 17 is under biaxial stress, from formula (6), MnCr 2 O 4 thin film has a density of 2.3 × 10 10 (d
It means that the compressive stress of yne / cm 2 ) is applied as the residual stress.

【0032】上記したように、本実施例に係る装置及び
方法を用いれば弾性定数やモードグリュナイゼン定数が
未知であり、MnCr2O4 のように極めて薄い酸化皮膜の残
留応力も容易に素早く測定することができる。
As described above, using the apparatus and method according to the present embodiment, the elastic constant and the mode Grueneisen constant are unknown, and the residual stress of an extremely thin oxide film such as MnCr 2 O 4 can be easily and quickly obtained. Can be measured.

【0033】[0033]

【発明の効果】以上の説明により明らかなように、本発
明に係る残留応力の測定方法にあっては、基板上に被測
定物を生成させ、該基板に応力を加えることにより加わ
る前記被測定物への応力値と、結晶構造の格子振動によ
るラマンシフト量の変化との関係から検量線を作成して
おき、この後、被測定物の前記格子振動によるラマンシ
フト量の標準スペクトルとのシフト量変化を測定し、該
測定値と前記検量線とを比較することにより、前記被測
定物の残留応力を求める方法であるため、被測定物のヤ
ング率やポアソン比等の定数やグリュナイゼン定数が未
知の物質であって、しかも膜厚が20nm以下程度の極めて
薄い場合であっても容易に残留応力を測定することがで
きる。またレーザー光を用いることからレンズで収束さ
せて空間分解能1μmX での応力測定も可能であること
が推察される。
As is apparent from the above description, in the residual stress measuring method according to the present invention, an object to be measured is generated on a substrate and the stress is applied to the substrate to be measured. A calibration curve was created from the relationship between the stress value on the object and the change in the Raman shift amount due to the lattice vibration of the crystal structure, and after that, the shift from the standard spectrum of the Raman shift amount due to the lattice vibration of the DUT. By measuring the amount change, by comparing the measured value and the calibration curve, since it is a method of obtaining the residual stress of the measured object, constants such as Young's modulus and Poisson's ratio of the measured object and Grueneisen constant is The residual stress can be easily measured even if the substance is unknown and the film thickness is extremely thin, about 20 nm or less. Moreover, since laser light is used, it is presumed that it is possible to converge the stress with a lens and measure stress with a spatial resolution of 1 μmX.

【0034】また本発明に係る残留応力測定装置はレー
ザー発振器と、ラマン分光光度計と、応力試験用試料台
とを備え、さらに該ラマン分光光度計によって測定され
た格子振動によるラマンシフト量から被測定物の応力を
演算する演算手段を備えていることから、ラマンシフト
変化量と応力との測定と略同時的に残留応力を算出する
ことが可能であるため、迅速に被測定物の残留応力を測
定することができる。
Further, the residual stress measuring device according to the present invention comprises a laser oscillator, a Raman spectrophotometer, and a stress test sample stage, and the Raman shift amount due to the lattice vibration measured by the Raman spectrophotometer is used to measure the residual stress. Since the calculation means for calculating the stress of the measurement object is provided, it is possible to calculate the residual stress almost simultaneously with the measurement of the Raman shift change amount and the stress. Can be measured.

【0035】[0035]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る残留応力測定装置の実施例を示す
概略部分断面図である。
FIG. 1 is a schematic partial cross-sectional view showing an embodiment of a residual stress measuring device according to the present invention.

【図2】MnCr2O4 の標準試料のラマンスペクトルにおけ
るラマンシフト量と強度との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the Raman shift amount and the intensity in the Raman spectrum of a standard sample of MnCr 2 O 4 .

【図3】SUS 304L鋼上に生成されたMnCr2O4 薄膜のラマ
ンスペクトルにおけるラマンシフト量と強度との関係を
示す図である。
FIG. 3 is a diagram showing the relationship between the Raman shift amount and the intensity in the Raman spectrum of the MnCr 2 O 4 thin film formed on SUS 304L steel.

【図4】検量線を示す図である。FIG. 4 is a diagram showing a calibration curve.

【符号の説明】[Explanation of symbols]

10 レーザー発振器 11 レーザーラマン分光光度計 12 応力試験用試料台 13 中央演算装置(演算手段) 10 laser oscillator 11 laser Raman spectrophotometer 12 sample table for stress test 13 central processing unit (processing means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に被測定物を生成させ、該基板に
応力を加えることにより加わる前記被測定物への応力値
と、結晶構造の格子振動によるラマンシフト量の変化と
の関係から検量線を作成しておき、この後、被測定物の
前記格子振動によるラマンシフト量の標準スペクトルと
のシフト量変化を測定し、該測定値と前記検量線とを比
較することにより、前記被測定物の残留応力を求めるこ
とを特徴とする残留応力の測定方法。
1. A calibration is performed based on the relationship between a stress value applied to the object to be measured by generating an object to be measured on the substrate and applying a stress to the substrate, and a change in Raman shift amount due to lattice vibration of a crystal structure. A line is created in advance, and after that, the shift amount change of the Raman shift amount of the measured object due to the lattice vibration is measured, and the measured value is compared with the calibration curve to obtain the measured object. A method for measuring residual stress, which comprises determining the residual stress of an object.
【請求項2】 レーザー発振器と、ラマン分光光度計
と、応力試験用試料台とを備え、さらに該ラマン分光光
度計によって測定された格子振動によるラマンシフト量
から被測定物の残留応力を演算する演算手段を備えてい
ることを特徴とする残留応力の測定装置。
2. A laser oscillator, a Raman spectrophotometer, and a stress test sample stage are provided, and the residual stress of the object to be measured is calculated from the Raman shift amount due to lattice vibration measured by the Raman spectrophotometer. An apparatus for measuring residual stress, characterized in that it comprises a computing means.
JP107391A 1991-01-09 1991-01-09 Method for measuring residual stress, and measuring device used for this method Pending JPH0626945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP107391A JPH0626945A (en) 1991-01-09 1991-01-09 Method for measuring residual stress, and measuring device used for this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP107391A JPH0626945A (en) 1991-01-09 1991-01-09 Method for measuring residual stress, and measuring device used for this method

Publications (1)

Publication Number Publication Date
JPH0626945A true JPH0626945A (en) 1994-02-04

Family

ID=11491341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP107391A Pending JPH0626945A (en) 1991-01-09 1991-01-09 Method for measuring residual stress, and measuring device used for this method

Country Status (1)

Country Link
JP (1) JPH0626945A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149545A (en) * 1985-12-25 1987-07-03 Toyota Motor Corp Acceleration slip controller
WO2006029604A1 (en) * 2004-09-17 2006-03-23 Friedrich-Alexander- Universität Erlangen-Nürnberg Method for determining the crystal orientation of a crystallite of a multi-crystalline solid body and for measuring mechanical internal stresses in solid bodies by means of micro-raman-spectroscopy
JP2006084261A (en) * 2004-09-15 2006-03-30 Kyocera Corp Physical property value analysis method for polymeric material
JP2008116442A (en) * 2006-10-10 2008-05-22 Horiba Ltd Stress measurement method
JP2008116434A (en) * 2006-10-10 2008-05-22 Horiba Ltd Method for measuring stress component
JP2016063170A (en) * 2014-09-22 2016-04-25 株式会社東芝 Magnetic member, manufacturing method thereof, and inductor element
EP3150995A4 (en) * 2014-05-30 2018-01-24 Nippon Steel & Sumikin Materials Co., Ltd. Evaluation method for bulk silicon carbide single crystals and reference silicon carbide single crystal used in said method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149545A (en) * 1985-12-25 1987-07-03 Toyota Motor Corp Acceleration slip controller
JP2006084261A (en) * 2004-09-15 2006-03-30 Kyocera Corp Physical property value analysis method for polymeric material
WO2006029604A1 (en) * 2004-09-17 2006-03-23 Friedrich-Alexander- Universität Erlangen-Nürnberg Method for determining the crystal orientation of a crystallite of a multi-crystalline solid body and for measuring mechanical internal stresses in solid bodies by means of micro-raman-spectroscopy
JP2008116442A (en) * 2006-10-10 2008-05-22 Horiba Ltd Stress measurement method
JP2008116434A (en) * 2006-10-10 2008-05-22 Horiba Ltd Method for measuring stress component
EP3150995A4 (en) * 2014-05-30 2018-01-24 Nippon Steel & Sumikin Materials Co., Ltd. Evaluation method for bulk silicon carbide single crystals and reference silicon carbide single crystal used in said method
US10048142B2 (en) 2014-05-30 2018-08-14 Showa Denko K.K. Evaluation method for bulk silicon carbide single crystals and reference silicon carbide single crystal used in said method
JP2016063170A (en) * 2014-09-22 2016-04-25 株式会社東芝 Magnetic member, manufacturing method thereof, and inductor element

Similar Documents

Publication Publication Date Title
US5793042A (en) Infrared spectrophotometer accelerated corrosion-erosion analysis system
Kushibiki et al. Development of the line-focus-beam ultrasonic material characterization system
US4184768A (en) Self-calibrating photoacoustic apparatus for measuring light intensity and light absorption
Winkler et al. Mid-infrared interference coatings with excess optical loss below 10 ppm
WO2018201586A1 (en) Measurement device and method for in-situ time-resolved x-ray absorption spectrum
JP2005257475A (en) Measuring method, analysis method, measuring device, analysis device, ellipsometer, and computer program
JPH0626945A (en) Method for measuring residual stress, and measuring device used for this method
US7659979B2 (en) Optical inspection apparatus and method
Gallas et al. Calibration of the Raman effect in α–Al2O3 ceramic for residual stress measurements
JP2006513418A (en) Film thickness measuring apparatus and method using improved high-speed Fourier transform
EP0429081A2 (en) Silicon wafer temperature measurement by optical transmission monitoring
JP4146697B2 (en) Temperature measuring method and temperature measuring device
JP2544428B2 (en) Stress measuring method and stress measuring device
JP3608498B2 (en) Method and apparatus for measuring material constant of piezoelectric substrate
Lematre et al. Determination of elastic parameters in isotropic plates by using acoustic microscopy measurements and an optimization method
JP3293211B2 (en) Laminate film evaluation method, film evaluation apparatus and thin film manufacturing apparatus using the same
JP2000213999A (en) X-ray stress measuring method
JP3277669B2 (en) Semiconductor manufacturing equipment
Rydzak et al. Fourier transform infrared microspectroscopy method to determine stress in sapphire
JPH1010047A (en) Method of analyzing interface
JPH06331447A (en) Method and apparatus for evaluating precision of radiation thermometer
CN118129955A (en) Stress detection system and stress detection method based on modulatable weak value amplification technology
JP2848874B2 (en) Contact hole opening inspection method
JPH0894525A (en) Method and device for evaluating corrosion inhibiting effect of corrosion resistant film
CN115656647A (en) Calibration method and calibration device for electric field intensity and electric field direction based on light polarization