JPS63140036A - Method for identifying overall heat absorptivity of continuous heating furnace - Google Patents

Method for identifying overall heat absorptivity of continuous heating furnace

Info

Publication number
JPS63140036A
JPS63140036A JP28738586A JP28738586A JPS63140036A JP S63140036 A JPS63140036 A JP S63140036A JP 28738586 A JP28738586 A JP 28738586A JP 28738586 A JP28738586 A JP 28738586A JP S63140036 A JPS63140036 A JP S63140036A
Authority
JP
Japan
Prior art keywords
furnace
temperature
heating furnace
heated
continuous heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28738586A
Other languages
Japanese (ja)
Inventor
Tadashi Kondo
正 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28738586A priority Critical patent/JPS63140036A/en
Publication of JPS63140036A publication Critical patent/JPS63140036A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Heat Treatment Processes (AREA)

Abstract

PURPOSE:To efficiently identify overall heat absorptivity and to improve working efficiency by measuring the surface temps. of ingots and furnace temps. in the respective zones of a heating furnace and providing means for computing the overall heat absorptivity from the measured values and the data stored in a memory. CONSTITUTION:Furnace temp. sensors 11 and radiation thermometers 12 for measuring the surface temps. of the ingots (materials to be heated) residing in the continuous heating furnace 10 are provided to the plural heating zones of said furnace. The data on the sizes, material quality, etc., of the ingots are inputted via an input device 13 to the memory 14 and the measured values of the sensors 11 are inputted to the memory 14. The in-furnace positions of the ingots residing in the furnace are computed by a position computer 15 and the temps. of the ingots are estimated by a temp. computer 17 from the data stored in the memory, the measured furnace temp. values and the computed temp. values of the ingots stored in the memory. The overall heat absorptivity of the continuous heating furnace is identified by an overall heat absorptivity computer 16 by using the computed material temps. and the measured surface temps. of the ingots. This method is applicable to each one of the materials to be heated.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、スラブあるいはビレット等の被加熱材料(以
下単にr鋼片」と呼ぶ)を加熱する連続鋼片加熱炉にお
いて、鋼片が加熱炉の中で加熱されて挿入口から抽出口
の方へ移動していくときに、加熱炉のたとえば余熱帯、
加熱帯、均熱帯などの各々の帯に設置された放射温度計
により測定される鋼片の表面温度から総括熱吸収率を演
算して同定することができる連続加熱炉の総括熱吸収率
同定装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is directed to a continuous billet heating furnace that heats a material to be heated such as a slab or billet (hereinafter simply referred to as "r billet"). , when the steel billet is heated in the heating furnace and moves from the insertion port to the extraction port,
An overall heat absorption rate identification device for continuous heating furnaces that can calculate and identify the overall heat absorption rate from the surface temperature of the steel billet measured by radiation thermometers installed in each zone such as the heating zone and soaking zone. Regarding.

(従来の技術) 余熱帯、加熱帯、均熱帯などの複数個の帯を有する連続
加熱炉では、各々の帯において、炉の構造、炉温の設定
値、燃料の燃焼効率、鋼片の在炉時間などがそれぞれ異
なるため、鋼片が各々の帯に在炉している期間中に鋼片
が昇熱される量が大きく異なる。
(Prior art) In a continuous heating furnace that has multiple zones such as a residual zone, a heating zone, and a soaking zone, each zone has different characteristics such as the furnace structure, furnace temperature setting, fuel combustion efficiency, and the presence of steel billets. Since the furnace time and other factors differ, the amount by which the steel billet is heated during the period when the billet is in the furnace in each zone differs greatly.

鋼片は、燃焼ガスから伝熱される輻射伝熱量qにより昇
熱される。
The steel slab is heated by the amount of radiant heat q transferred from the combustion gas.

輻射伝熱量qは、ステファンボルツマンの法則から (θ +273)  l    ・・・・・・(1)こ
こで、γはステファンボルツマン定数(Kcal/m3
hr’K)、 Φ。。は連続加熱炉の総括熱吸収率、 θ +273は炉温の絶対温度(χ)、θ +273は
鋼片表面の絶対温度(°K)と表わされる。
The amount of radiant heat transfer q is calculated from Stefan-Boltzmann's law (θ +273) l (1) where γ is the Stefan-Boltzmann constant (Kcal/m3
hr'K), Φ. . is the overall heat absorption rate of the continuous heating furnace, θ +273 is the absolute temperature of the furnace temperature (χ), and θ +273 is the absolute temperature of the surface of the steel piece (°K).

鋼片を抽出するときに、鋼片を抽出目標温度に焼き上げ
るためには、各々の帯でその帯に在炉している期間中に
適切な輻射伝熱ff1qにより鋼片を精度よく昇熱させ
る必要がある。
When extracting steel slabs, in order to bake the steel slabs to the extraction target temperature, the temperature of the steel slabs must be raised accurately in each zone by appropriate radiation heat transfer ff1q during the period in which the steel slabs are in the furnace. There is a need.

輻射伝熱量qは前記(1)式に示したように連続加熱炉
の総括熱吸収率Φ。。を含んでおり、この連続加熱炉の
総括熱吸収率Φ。。は燃焼ガスから鋼片表面へ伝熱する
熱量の割合を示す定数で、炉の寸法および構造などによ
り異なる。鋼片を抽出するときに鋼片を抽出目標温度に
精度よく焼き上げるには、必要とされる輻射伝熱ff1
Qから前記(1)式を用いて炉温θ を精度よく演算し
求めた炉温を用いて加熱炉を制御する必要がある。
The amount of radiation heat transfer q is the overall heat absorption rate Φ of the continuous heating furnace, as shown in equation (1) above. . This includes the overall heat absorption rate Φ of this continuous heating furnace. . is a constant that indicates the rate of heat transfer from combustion gas to the surface of the steel piece, and varies depending on the size and structure of the furnace. In order to accurately bake the steel billet to the extraction target temperature when extracting the steel billet, the required radiation heat transfer ff1
It is necessary to accurately calculate the furnace temperature θ from Q using equation (1) and control the heating furnace using the furnace temperature determined.

この場合、連続加熱炉の総括熱吸収率の。。の精度が不
十分であると精度のよい炉温θ を演算することかでき
ない。
In this case, the overall heat absorption rate of the continuous heating furnace. . If the accuracy of is insufficient, it is not possible to accurately calculate the furnace temperature θ.

従来は、一つの鋼片のサンプルを採り、熱電対を用いて
鋼片の表面温度および内部温度および表面付近の燃焼ガ
ス温度を精度よく測定して、測定した温度の履歴を基に
連続加熱炉の総括熱吸収率Φ。6を求め、実際の被加熱
鋼片にそのサンプルで導出した連続加熱炉の総括熱吸収
率Φ。。を適用していた。
Conventionally, a sample of a single steel billet was taken, and thermocouples were used to accurately measure the surface temperature, internal temperature, and combustion gas temperature near the surface of the billet, and the continuous heating furnace was based on the measured temperature history. The overall heat absorption rate Φ. 6 was calculated, and the overall heat absorption rate Φ of the continuous heating furnace was derived using that sample for the actual heated steel billet. . was applied.

第2図は、熱雷対を用いて鋼片温度を測定する従来手段
における温度測定個所を示した説明図で、図中のX印で
示した鋼片の表面および内部の数ケ所の地点に熱電対を
埋め込み、さらに表面付近に熱電対を設置して、その鋼
片が加熱炉に挿入されてから抽出されるまでの期間の温
度履歴を精密に、測定していた。
Figure 2 is an explanatory diagram showing the temperature measurement points in the conventional means of measuring the temperature of a steel billet using a thermal lightning pair. Thermocouples were embedded and further thermocouples were installed near the surface to precisely measure the temperature history of the steel piece from the time it was inserted into the heating furnace until it was extracted.

測定された温度履歴を用いて連続加熱炉の総括熱吸収率
Φ。。の値を求める一方法を以下に簡単に示す。
Overall heat absorption rate Φ of continuous heating furnace using measured temperature history. . One method for finding the value of is briefly shown below.

まず、連続加熱炉の総括熱吸収率ΦcGの値をいくつか
仮定して鋼片の表面および内部の温度を推定する。
First, the surface and internal temperatures of the steel billet are estimated by assuming several values of the overall heat absorption rate ΦcG of the continuous heating furnace.

これは周知の一次元熱伝導差分方程式から、っざの3つ
の部分に分ける。
This is divided into three parts based on the well-known one-dimensional heat conduction difference equation.

く鋼片つ内部での時点tから一定時間間隔Δを後の含熱
量〉く同じく鋼片の上表面での含熱量〉 (同じく鋼片の下表面での含熱量〉 (i −n)             ・・・・・・
・・・(4)ここで、H4は鋼片の上表面から1番目の
地点における含熱量(Kcal/kg) φ1は鋼片の上表面からi番目の地点における変換温度
、 K、は鋼片の熱伝導率(Kcal/ mhr’c)、ρ
は鋼片の密度(kg/m”)、 Δtは一定時間間隔(hr)、 ΔXは鋼片の厚み方向の分割圧#i (m)、である。
Heat content after a fixed time interval Δ from time t inside the piece of steel〉 Heat content on the upper surface of the piece of steel〉 (Heat content on the lower surface of the piece of steel〉 (i - n)・・・・・・
...(4) Here, H4 is the heat content at the first point from the top surface of the steel slab (Kcal/kg), φ1 is the conversion temperature at the i-th point from the top surface of the steel slab, K is the steel slab Thermal conductivity (Kcal/mhr'c), ρ
is the density of the steel slab (kg/m''), Δt is the fixed time interval (hr), and ΔX is the dividing pressure #i (m) in the thickness direction of the steel slab.

などを用いて、一定時間間隔(Δt)毎に含熱量を演算
して求まった含熱量を温度に変換することにより容易に
鋼片の温度を推定できる。
The temperature of the steel billet can be easily estimated by calculating the heat content at regular time intervals (Δt) and converting the obtained heat content into temperature.

求めた鋼片の温度推定値の履歴と前記熱伝導を用いて測
定した鋼片の温度測定値の履歴とがよく一致する連続加
熱炉の総括熱吸収率Φ。。の値を選択する。もしよく一
致する連続加熱炉の総括熱吸収率ΦCGの値が見つから
なければ、連続加熱炉の総括熱吸収率Φ。。の値を新し
い値に変更して再度鋼片の温度を推定する。このような
手続を繰り返すことにより連続加熱炉の総括熱吸収率Φ
。6の値を見つけ出している。
The overall heat absorption rate Φ of the continuous heating furnace in which the history of the estimated temperature value of the steel slab obtained and the history of the measured temperature value of the steel slab measured using the heat conduction described above are in good agreement. . Select a value. If a value of the overall heat absorption rate ΦCG of the continuous heating furnace that matches well cannot be found, the overall heat absorption rate Φ of the continuous heating furnace. . Change the value of to a new value and estimate the temperature of the billet again. By repeating these procedures, the overall heat absorption rate of the continuous heating furnace Φ
. We are finding the value of 6.

(発明が解決しようとする問題点) このような従来の連続加熱炉の総括熱吸収率ΦCG同定
方法においては、第2図に表わしたように熱伝導を鋼片
の表面および内部および表面付近の位置に正確に設置す
る必要があり熟練した技術が必要とされる。
(Problems to be Solved by the Invention) In the conventional continuous heating furnace overall heat absorption coefficient ΦCG identification method, heat conduction is measured on the surface, inside, and near the surface of the steel billet, as shown in Figure 2. It must be installed accurately in the position and requires skilled technique.

さらに、熱雷対を設置したサンプルの鋼片は圧延機によ
り圧延して製品にすることができないため、加熱炉を抽
出した時点で圧延ラインから取り除く必要がある。
Furthermore, since the sample steel billet with the thermal lightning pair installed cannot be rolled into a product by a rolling mill, it is necessary to remove it from the rolling line once the heating furnace is extracted.

しかも、このようにして求めた連続加熱炉の総括熱吸収
率Φ。0の値は誤差を伴うため、数本の鋼片に対して同
様な熱電対を配設したサンプルによる温度履歴測定を行
なう必要があり、熱雷対を設置するなどの温度測定作業
が困難である。
Moreover, the overall heat absorption rate Φ of the continuous heating furnace obtained in this way. Since a value of 0 is accompanied by an error, it is necessary to measure the temperature history using samples with similar thermocouples installed on several pieces of steel, making temperature measurement tasks such as installing thermocouples difficult. be.

ここにおいて本発明は、総括熱吸収率Φ。。を同定する
場合に、鋼片に熱電対を設置して鋼片の表面温度および
内部および表面付近の燃焼ガスイH度などの温度を測定
することなく、加熱炉が通常に操業しているときに、加
熱炉の各々の帯で放射温度計により測定される鋼片の表
面温度および加熱炉の各々の帯で炉温計により測定され
る炉温度を用いて、効率よく連続加熱炉の総括熱吸収率
Φ。。
Here, the present invention relates to the overall heat absorption rate Φ. . When the furnace is in normal operation, it is possible to identify the , by using the surface temperature of the steel billet measured by a radiation thermometer in each zone of the heating furnace and the furnace temperature measured by a furnace thermometer in each zone of the heating furnace, the total heat absorption of a continuous heating furnace can be efficiently calculated. Rate Φ. .

の値を同定する連続加熱炉の総括熱吸収率同定装置を提
供することを、その目的とする。
The purpose is to provide an overall heat absorption rate identification device for continuous heating furnaces that identifies the value of .

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、被加熱材料の加熱過程に対応して複数の帯を
有し、これらそれぞれの帯に炉温を測定する炉温センサ
ーと被加熱材料の表面温度を測定する放射温度計を備え
ている連続鋼片加熱炉において、 被加熱材料の寸法、材質等のデータを入力するデータ入
力器を持ち、 データ入力器によって入力されたデータと、被加熱材料
の温度演算値と、炉温センサーによって測定された炉温
測定値とをおのおの記憶保持するメモリーを設け、 加熱炉からの抽出信号により、加熱炉の中に在炉する被
加熱材料の炉内位置を演算する位置演算器をそなえ、 メモリーに記憶保持されている被加熱材料の寸法と材質
、および過去に炉温センサーにより測定されこのメモリ
ーに記憶保持されている炉温測定値、ならびに過去に演
算されこのメモリーに記憶保持されている被加熱材料の
温度演算値とから被加熱材料の温度を推定する温度演算
器を有し、温度演算器によって演算された被加熱材料の
材料温度と、放射温度計により測定された彼IJLI熱
材料の表面温度測定値とから連続加熱炉の総括熱吸収率
を演算する連続加熱炉の総括熱吸収率演算器を具備する 連続加熱炉の総括熱吸収率同定装置である。
(Means for Solving the Problems) The present invention has a plurality of zones corresponding to the heating process of the material to be heated, and each zone has a furnace temperature sensor for measuring the furnace temperature and a surface of the material to be heated. A continuous billet heating furnace equipped with a radiation thermometer to measure temperature has a data input device for inputting data such as the dimensions and material of the material to be heated, and the data entered by the data input device and the material to be heated are A memory is provided to store the temperature calculation value of the temperature and the furnace temperature measurement value measured by the furnace temperature sensor, and the position of the material to be heated in the heating furnace can be determined based on the extracted signal from the heating furnace. It is equipped with a position calculator that calculates the dimensions and material of the material to be heated stored in the memory, the furnace temperature measurements previously measured by the furnace temperature sensor and stored in this memory, and the past calculations. It has a temperature calculator that estimates the temperature of the heated material from the temperature calculation value of the heated material stored in this memory, and the material temperature of the heated material calculated by the temperature calculator and the radiation temperature. An overall heat absorption rate identification device for a continuous heating furnace, which is equipped with a continuous heating furnace overall heat absorption rate calculator that calculates the overall heat absorption rate of the continuous heating furnace from the surface temperature measurement value of the IJLI thermal material measured by the IJLI thermal material. It is.

(作 用) 本発明は、連続加熱炉での被加熱材が加熱されるそれぞ
れの帯において、ステファンボルツマンの法則および被
加熱材の一定時間間隔後の内部。
(Function) The present invention is based on Stefan Boltzmann's law and the interior of the heated material after a certain time interval in each zone in which the heated material is heated in a continuous heating furnace.

上表面、下表面の一次元熱伝導差分方程式を適用し、炉
温度ならびに被加熱材料放射温度の測定値から、前の温
度計測時推定した一定時間後の被加熱材料放射温度が、
その一定時間後の被加熱材料放射温度の測定値との差分
が許容誤差より大きい場合は、両者の差分を係数化して
推定したときの連続加熱炉の総括吸収率を修正して、実
際値に一致させる手段である。
Applying the one-dimensional heat conduction difference equation for the upper and lower surfaces, from the measured values of the furnace temperature and the radiant temperature of the heated material, the radiant temperature of the heated material after a certain period of time estimated at the previous temperature measurement is calculated as follows:
If the difference between the measured value of the radiation temperature of the material to be heated after a certain period of time is larger than the allowable error, the overall absorption rate of the continuous heating furnace estimated by converting the difference between the two into a coefficient is corrected, and the actual value is adjusted. It is a means of matching.

(実施例) 第1図は、本発明の一実施例における回路構成を表わす
ブロック図である。
(Embodiment) FIG. 1 is a block diagram showing a circuit configuration in an embodiment of the present invention.

この一実施例では、被加熱材料(たとえば鋼片)の加熱
過程に対応して、複数の帯を有し、これらそれぞれの帯
に炉温を測定する炉温センサー11と、帯に在炉する鋼
片の表面温度を測定する放射温度計12を備えている連
続加熱炉10において、鋼片についてのデータ(寸法、
材質等)を入力するデータ入力器13を持つ。
This embodiment has a plurality of zones corresponding to the heating process of the material to be heated (for example, a steel billet), and each zone has a furnace temperature sensor 11 for measuring the furnace temperature, and a furnace temperature sensor 11 for measuring the furnace temperature in each zone. In a continuous heating furnace 10 equipped with a radiation thermometer 12 that measures the surface temperature of a steel billet, data about the steel billet (dimensions,
It has a data input device 13 for inputting information such as material, etc.

また、このデータ入力器13を介して入力されたデータ
ならびに後記の鋼片温度演算器17によって演算した鋼
片温度ならびに炉温センサー11により測定した炉温測
定値を記憶保持しておくメモリー14を設ける。
In addition, a memory 14 is provided to store and hold the data inputted through the data input device 13, the billet temperature calculated by the billet temperature calculator 17 described later, and the furnace temperature measurement value measured by the furnace temperature sensor 11. establish.

このメモリー14に記憶保持された鋼片の寸法から加熱
炉の抽出により鋼片が抽出口方向へ移動するごとに鋼片
の炉内位置を演算して鋼片が次の放射温度計の測定位置
に到達したことを判定する被加熱材料(1片)の位置演
算手段15をそなえる。
From the dimensions of the steel billet stored in the memory 14, the position of the steel billet in the furnace is calculated every time the steel billet moves toward the extraction port due to extraction in the heating furnace, and the steel billet is placed at the next radiation thermometer measurement position. The heated material (one piece) position calculation means 15 is provided to determine that the heated material (one piece) has reached the position.

そして、メモリー14に記憶保持されている鋼片の寸法
と材質および炉温センサー11により測定されてメモリ
ー14に記憶保持されている炉温測定値および過去に演
算されメモリー14に記憶保持されている鋼片の温度推
定値とから放射温度計により鋼片の表面温度が測定され
た時刻の鋼片の温度を前記(1)〜(4)式により推定
する温度演算器17を設ける。
The dimensions and material of the steel slab stored in the memory 14, the furnace temperature measured by the furnace temperature sensor 11 and stored in the memory 14, and the values calculated in the past and stored in the memory 14. A temperature calculator 17 is provided which estimates the temperature of the steel piece at the time when the surface temperature of the steel piece is measured by the radiation thermometer from the estimated temperature value of the steel piece using equations (1) to (4).

さらに、温度演算器17によって推定された鋼片の表面
温度推定値と放射温度計12によって測定された鋼片の
表面温度測定値とを比較し、その差が許容誤差εより大
きい場合に両者の差分にある定数を乗じた数値により連
続加熱炉の総括吸収率Φ。0の値を修正して正しい連続
加熱炉の総括吸収率Φ。。の値を演算する連続加熱炉の
総括吸収率ΦcG演算器16を備えている。
Furthermore, the estimated value of the surface temperature of the steel piece estimated by the temperature calculator 17 and the measured value of the surface temperature of the steel piece measured by the radiation thermometer 12 are compared, and if the difference is larger than the tolerance ε, the value of the surface temperature of the steel piece is compared. The overall absorption rate Φ of the continuous heating furnace is determined by multiplying the difference by a certain constant. Correct the value of 0 to obtain the correct overall absorption rate Φ of the continuous heating furnace. . It is equipped with a continuous heating furnace overall absorption rate ΦcG calculator 16 that calculates the value of ΦcG.

つぎに本発明による連続加熱炉における総括熱吸収率の
同定の手順を述べる。
Next, the procedure for identifying the overall heat absorption rate in the continuous heating furnace according to the present invention will be described.

第3図は、加熱炉の第1帯に在炉する鋼片Sが挿入口の
方向から抽出口の方向へ移動して第(i+1)帯に到達
する状態を示す説明図である。
FIG. 3 is an explanatory diagram showing a state in which the steel billet S existing in the first zone of the heating furnace moves from the direction of the insertion port toward the extraction port and reaches the (i+1)th zone.

鋼片Sは時刻t。で第1帯に設置された放射温度計11
・Hlの真下に在炉しており、放射温度計12・Hlに
より鋼片Sの表面温度θ (1)がI        
     SO 測測定れる。
The steel piece S is at time t. Radiation thermometer 11 installed in the first zone at
・The furnace is located directly below Hl, and the surface temperature θ (1) of the steel slab S is measured by the radiation thermometer 12 ・Hl.
SO can be measured.

鋼片Sは加熱炉の抽出が起こるたびに抽出口の方へ移動
して、n回の移動後の時刻t に第(i+1)帯の放射
温度計H1+1の真下に到達し、放が測定される。第3
図中のG、とG、+1は、第1帯と第(i+1)帯に設
置されている炉温センサー11を表わし、G、とG11
1により鋼片Sが在炉している帯の炉温を測定できる。
Each time the heating furnace extracts, the steel slab S moves toward the extraction port, and at time t after n times of movement, it reaches the position directly below the radiation thermometer H1+1 in the (i+1)th zone, and the radiation is measured. Ru. Third
G, G, +1 in the figure represent the furnace temperature sensors 11 installed in the first zone and the (i+1)th zone, and G, G11
1, it is possible to measure the furnace temperature of the zone where the steel slab S is in the furnace.

第4図は、時刻t。から時刻tnの間に変化する鋼片S
の表面温度の温度変化図である。
FIG. 4 shows time t. The steel piece S that changes between and time tn
It is a temperature change diagram of the surface temperature of.

第4図において、Δt、(j−0〜n−1)は時刻t、
から時刻tj+1の間の時間間隔(抽出ピッチ)を示す
In FIG. 4, Δt, (j-0 to n-1) is time t,
to time tj+1 (extraction pitch).

時刻t。から時刻tnの期間の温度変化は、前記の(1
)〜(4)式により、炉温センサーG1とG111によ
り測定した炉温測定値を用いて適当な連続加熱炉の総括
吸収率Φ。。を仮定することにより推定することができ
る。
Time t. The temperature change during the period from time tn to time tn is given by the above (1
) to (4), the overall absorption rate Φ of an appropriate continuous heating furnace is determined using the furnace temperature measurement values measured by the furnace temperature sensors G1 and G111. . It can be estimated by assuming that

ここで、もし連続加熱炉の総括吸収率Φ。6の値を実際
の連続加熱炉の総括吸収率Φ。。の値よりも大きく仮定
して前述の(1)〜(4)式により鋼片Sの温度変化を
推定すると、鋼片Sの表面温度推定値は曲線A′のよう
に変化して、時刻t における鋼片Sの表面温度推定値
θ (t )′は第n (i+1)帯で測定した放射温度計β]定値八 へ (1)よりも大きくなる。
Here, if the overall absorption rate Φ of the continuous heating furnace. The value of 6 is the overall absorption rate Φ of the actual continuous heating furnace. . If the temperature change of the steel slab S is estimated using equations (1) to (4) described above, assuming that the temperature is larger than the value of The estimated surface temperature value θ (t )' of the steel piece S at is larger than the constant value 8 of the radiation thermometer β measured in the n (i+1)th zone (1).

n また、連続加熱炉の総括吸収率Φ。。の値を実際の値と
同じ値に仮定して前述の(1)〜(4)式により鋼片S
の温度変化を推定すると、鋼片Sの表面温度推定値は曲
線Aのように変化して、時刻t における鋼片Sの表面
温度推定値は第(i十しくなる。
n Also, the overall absorption rate Φ of the continuous heating furnace. . Assuming that the value of is the same as the actual value, the steel billet S
When estimating the temperature change, the estimated surface temperature of the steel slab S changes as shown by curve A, and the estimated surface temperature of the steel slab S at time t becomes (i-th).

さらに、連続加熱炉の総括吸収率Φ。。の値を実際の値
よりも小さく仮定して前述の(1)〜(4)式により鋼
片Sの温度変化を推定すると、鋼片Sの表面温度推定値
は曲線A′のように変化して、時刻t における鋼片S
の表面温度推定値このように、前述の(1)〜(4)式
を用いて演算した時刻t における表面温度の推定値を
比較することにより、鋼片Sの表面温度を推定する時に
用いた前述の(1)〜(4)式に含まれる連続加熱炉の
総括吸収率Φ。。の値が正確かどうかが判定できる。
Furthermore, the overall absorption rate Φ of the continuous heating furnace. . If we assume that the value of is smaller than the actual value and estimate the temperature change of the steel slab S using equations (1) to (4) above, the estimated surface temperature of the steel slab S will change as shown by curve A'. Then, the steel piece S at time t
By comparing the estimated surface temperature at time t calculated using equations (1) to (4) above, the estimated surface temperature of the steel slab S can be calculated using the estimated surface temperature of The overall absorption rate Φ of the continuous heating furnace included in the above equations (1) to (4). . It can be determined whether the value of is accurate.

もし、鋼片Sの表面温度推定値が曲線A′または曲線A
′のように変化して時刻t における鋼εよりも大きく
なった場合には、連続加熱炉の総括吸収率Φ。。の値を CA ΦCG’ −ΦCG  ”l  〔θ8(tn)−08
(tn)〕・・・・・・(5) ここで、Klは正の定数 により修正して、再度時刻10から時刻t。の鋼片Sの
表面温度の変化を推定する。
If the estimated surface temperature of the steel piece S is curve A' or curve A
', and becomes larger than the steel ε at time t, the overall absorption rate Φ of the continuous heating furnace. . The value of CA ΦCG' −ΦCG ”l [θ8(tn)−08
(tn)]...(5) Here, Kl is corrected by a positive constant and is changed again from time 10 to time t. Estimate the change in surface temperature of the steel piece S.

このように、連続加熱炉の総括吸収率Φ。6の値を(5
)式により修正して収束計算を行なうことにより正確な
ΦcGの値に近ずけることができる。
Thus, the overall absorption rate Φ of the continuous heating furnace. 6 value (5
) by performing a convergence calculation, it is possible to approach an accurate value of ΦcG.

そして、前述(1)〜(4)式により演算した表面温度
推定値θ (1)と、放射温度計によりMjn 誤差εよりも小さくなったときに、連続加熱炉の総括吸
収率Φ。6が同定できたと判断する。
Then, the overall absorption rate Φ of the continuous heating furnace is determined when the surface temperature estimate θ (1) calculated using the above-mentioned equations (1) to (4) and the radiation thermometer become smaller than the Mjn error ε. It is determined that 6 has been identified.

このようにして、正確な値の連続加熱炉の総括吸収率が
簡単に導出できる。
In this way, an accurate value of the overall absorption rate of the continuous heating furnace can be easily derived.

〔発明の効果〕〔Effect of the invention〕

かくして、本発明によれば、熱電対を用いて被加熱材料
(たとえば鋼片)の表面温度および内部温度および表面
付近の燃焼ガス温度等を測定する必要がなくなり、加熱
炉が通常に操業しているときに加熱炉の各々の帯で放射
温度計により測定された被加熱材の表面温度および加熱
炉の各々の帯での炉温センサーにより測定された炉温測
定値を用いて、効率よく連続加熱炉の総括吸収率Φ。。
Thus, according to the present invention, there is no need to use thermocouples to measure the surface temperature, internal temperature, combustion gas temperature near the surface, etc. of the material to be heated (for example, a steel piece), and the heating furnace can be operated normally. Using the surface temperature of the material to be heated measured by a radiation thermometer in each zone of the heating furnace and the furnace temperature measurement value measured by a furnace temperature sensor in each zone of the heating furnace, Overall absorption rate Φ of heating furnace. .

を同定することができ、作業の能率が著しく増進し、か
つ被加熱材一つ一つについて適用でき、品質が大きく向
上し、コストの低減が得られる。
can be identified, work efficiency is significantly improved, and it can be applied to each heated material, greatly improving quality and reducing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の回路構成を示すブロック図
、第2図は従来例の熱電対による温度測定個所の説明図
、第3図は被加熱材(鋼片)が加熱炉の中を移動する図
、第4図は被加熱材が加熱炉の中を移動する時の時間に
対する温度変化特性図である。 10・・・連続鋼片加熱炉、11・・・炉温センサー、
12・・・放射温度計、13・・・データ入力器、14
・・・メモリー、15・・・位置演算器、16・・・連
続加熱炉の総括吸収率Φ。6演算器、17・・・温度演
算器。 出願人代理人  佐  藤  −雄 第2図 鶴3図
Fig. 1 is a block diagram showing the circuit configuration of an embodiment of the present invention, Fig. 2 is an explanatory diagram of the temperature measurement point using a conventional thermocouple, and Fig. 3 shows that the material to be heated (steel billet) is in the heating furnace. FIG. 4 is a diagram showing temperature change characteristics with respect to time when the heated material moves inside the heating furnace. 10... Continuous billet heating furnace, 11... Furnace temperature sensor,
12... Radiation thermometer, 13... Data input device, 14
...Memory, 15...Position calculator, 16...Overall absorption rate Φ of continuous heating furnace. 6 computing unit, 17...temperature computing unit. Applicant's agent Mr. Sato - Figure 2 Crane Figure 3

Claims (1)

【特許請求の範囲】 1、被加熱材料の加熱過程の対応して複数の帯を有し、
これらそれぞれの帯に、炉温を測定する炉温センサーと
被加熱材料の表面温度を測定する放射温度計を備えてい
る連続加熱炉において、被加熱材料の寸法、材質等のデ
ータを入力するデータ入力器と、 データ入力器によって入力されたデータ、被加熱材料の
温度演算値、及び炉温センサーによって測定された炉温
測定値とをおのおの記憶保持するメモリーと、 加熱炉からの抽出信号により、加熱炉の中に在炉する被
加熱材料の炉内位置を演算する位置演算器と、 メモリーに記憶保持されている被加熱材料の寸法と材質
、および過去に炉温センサーにより測定されこのメモリ
ーに記憶保持されている炉温測定値、ならびに過去に演
算されこのメモリーに記憶保持されている被加熱材料の
温度演算値とから被加熱材料の温度を推定する温度演算
器と、 温度演算器によって演算された被加熱材料の材料温度と
、放射温度計により測定された被加熱材料の表面温度測
定値とから連続加熱炉の総括熱吸収率を演算する連続加
熱炉の総括吸収率演算器と、を具備することを特徴とす
る連続加熱炉の総括熱吸収率同定装置。
[Claims] 1. Having a plurality of bands corresponding to the heating process of the material to be heated,
Data for inputting data such as the dimensions and material of the material to be heated in a continuous heating furnace that is equipped with a furnace temperature sensor to measure the furnace temperature and a radiation thermometer to measure the surface temperature of the material to be heated in each of these zones. An input device, a memory that stores and stores the data input by the data input device, the temperature calculation value of the material to be heated, and the furnace temperature measurement value measured by the furnace temperature sensor, and a signal extracted from the heating furnace. A position calculator that calculates the position of the material to be heated in the heating furnace, the dimensions and material of the material to be heated that are stored in memory, and the information that has been measured by the furnace temperature sensor in the past and stored in this memory. A temperature calculator that estimates the temperature of the material to be heated from the stored furnace temperature measurement value and the temperature calculation value of the material to be heated that has been calculated in the past and is stored and stored in this memory; a continuous heating furnace overall absorption rate calculator that calculates the overall heat absorption rate of the continuous heating furnace from the material temperature of the heated material and the surface temperature measurement value of the heated material measured by a radiation thermometer; An overall heat absorption rate identification device for a continuous heating furnace, characterized by comprising:
JP28738586A 1986-12-02 1986-12-02 Method for identifying overall heat absorptivity of continuous heating furnace Pending JPS63140036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28738586A JPS63140036A (en) 1986-12-02 1986-12-02 Method for identifying overall heat absorptivity of continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28738586A JPS63140036A (en) 1986-12-02 1986-12-02 Method for identifying overall heat absorptivity of continuous heating furnace

Publications (1)

Publication Number Publication Date
JPS63140036A true JPS63140036A (en) 1988-06-11

Family

ID=17716664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28738586A Pending JPS63140036A (en) 1986-12-02 1986-12-02 Method for identifying overall heat absorptivity of continuous heating furnace

Country Status (1)

Country Link
JP (1) JPS63140036A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249917A (en) * 1996-03-15 1997-09-22 Chugai Ro Co Ltd Operation of pusher furnace for aluminum slab
JP2006104490A (en) * 2004-09-30 2006-04-20 Jfe Steel Kk Combustion control method of continuous heating furnace
CN103447314A (en) * 2012-05-28 2013-12-18 宝山钢铁股份有限公司 Rough rolling temperature-measuring feedback control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249917A (en) * 1996-03-15 1997-09-22 Chugai Ro Co Ltd Operation of pusher furnace for aluminum slab
JP3037131B2 (en) * 1996-03-15 2000-04-24 中外炉工業株式会社 Operating method of pusher furnace for aluminum slab
JP2006104490A (en) * 2004-09-30 2006-04-20 Jfe Steel Kk Combustion control method of continuous heating furnace
CN103447314A (en) * 2012-05-28 2013-12-18 宝山钢铁股份有限公司 Rough rolling temperature-measuring feedback control method

Similar Documents

Publication Publication Date Title
CN102773443B (en) Method for determining heat transfer coefficient of secondary cooling zones in steel continuous casting process
JP2007071686A (en) Method and device for estimating temperature of container wall or heat flux, computer program, computer-readable recording medium, and method of estimating container wall thickness
Usamentiaga et al. Temperature measurement using the wedge method: Comparison and application to emissivity estimation and compensation
JPS63140036A (en) Method for identifying overall heat absorptivity of continuous heating furnace
KR100698740B1 (en) Wall temperature prediction method
JP2786760B2 (en) Prediction method of rolling temperature of steel sheet in hot rolling
JP3537625B2 (en) Method and apparatus for measuring solidified shell thickness in continuous casting
JPS6411691B2 (en)
Wikström et al. Estimation of the transient surface temperature, heat flux and effective heat transfer coefficient of a slab in an industrial reheating furnace by using an inverse method
JPH0671315A (en) Method for estimating rolling temperature of steel sheet in hot rolling
JP6627609B2 (en) Cooling control method and cooling device
CN116817603B (en) High-temperature smelting furnace molten pool temperature monitoring and inverting method based on heat conduction inverse problem
KR100936357B1 (en) Decision method of the position and the quantity of the temperature sensor and of the heating zone in a reheating furnace
JPS59125203A (en) Method for controlling temperature of rough rolling steel sheet
KR101876268B1 (en) Calibration apparatus of steel plate
JPH0663849B2 (en) Measuring method of material temperature in continuous heating furnace
Harding Temperature and structural changes during hot rolling.
JP2738270B2 (en) Roll profile calculation device for rolling rolls
JPS6137328B2 (en)
JPS6146309A (en) Method for controlling crown of rolling roll
JPH10324926A (en) Method for predicting overall ratio of heat absorption in continuous heating furnace and method for predicting temperature of steel slab
JPH0899111A (en) Method for predicting rolling temperature of material to be rolled
KR940008056B1 (en) Measuring method of solidification layer
JP2004027314A (en) Method for presuming temperature of material to be heated
JPH03277722A (en) Method for controlling furnace temperature in heating furnace