KR100698740B1 - Wall temperature prediction method - Google Patents

Wall temperature prediction method Download PDF

Info

Publication number
KR100698740B1
KR100698740B1 KR1020050129120A KR20050129120A KR100698740B1 KR 100698740 B1 KR100698740 B1 KR 100698740B1 KR 1020050129120 A KR1020050129120 A KR 1020050129120A KR 20050129120 A KR20050129120 A KR 20050129120A KR 100698740 B1 KR100698740 B1 KR 100698740B1
Authority
KR
South Korea
Prior art keywords
temperature
wall
wall temperature
furnace
predicting
Prior art date
Application number
KR1020050129120A
Other languages
Korean (ko)
Inventor
김기홍
김영일
강덕홍
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020050129120A priority Critical patent/KR100698740B1/en
Application granted granted Critical
Publication of KR100698740B1 publication Critical patent/KR100698740B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/40Arrangements of controlling or monitoring devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/02Observation or illuminating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/04Arrangements of indicators or alarms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0096Arrangements of controlling devices involving simulation means, e.g. of the treating or charging step

Abstract

A modeling method for more accurately predicting only temperature of a wall used in wall radiation that accounts for most of radiant energy under circumstances in which an atmospheric temperature or gas temperature model is constructed is provided. In a method for predicting the temperature of a wall within a reheating furnace, the temperature of the wall modeling method comprises predicting the temperature of the wall by applying the temperature of the wall prediction algorithm, dTW(t)/dt=aTW(t)+bTG(t-tau)+c, suggested using the gas temperature from coefficients a, b and c having constant values determined by an experiment, and a time delay constant tau determined by response time of the reheating furnace as values that are concerned in, the temperature of the wall TW(t), gas temperature TG(t), and capacity and flux of the reheating furnace to be predicted at an arbitrary time point(t).

Description

벽체온도 모델링 방법{Wall temperature prediction method }Wall temperature prediction method

도 1은 종래 열처리로에서 분위기 온도를 예측하는 방법을 보여주는 분위기 온도 추정(선형 근사) 개략도1 is a schematic diagram of atmospheric temperature estimation (linear approximation) showing a method of predicting an atmospheric temperature in a conventional heat treatment furnace.

도 2 는 본 발명에 의해 개선된 로내 분위기 온도 예측 프로파일을 예시한 그래프 2 is a graph illustrating the in-furnace atmosphere temperature prediction profile improved by the present invention.

도 3은 가열로에서 추론할 수 있는 가스온도(TG)/분위기온도(T)(점선으로 도시)와 벽체온도(TW)(실선으로 도시)의 시간에 따라 변화특성을 나타낸 그래프.Figure 3 is a graph showing the change characteristics over time of the gas temperature (T G ) / atmosphere temperature (T ) (shown in dashed lines) and wall temperature (T W ) (shown in solid lines) that can be deduced in the furnace.

본 발명은 가열로에서 전열를 지배하는 벽체 온도는 일반적으로 분위기온도 모델링 결과에서 얻어지는데 이러한 과정에서 벽체온도를 세밀하게 예측 할 수 있는 방법에 관한 것이다.The present invention relates to a method for predicting the wall temperature in the process in which the wall temperature governing the heat transfer in the furnace is generally obtained from the atmospheric temperature modeling results.

가열로의 슬라브 온도를 지배하는 열적 흐름은 복사 열전달과 대류 열전달이고, 이 중 가열로 조건이 고온조건(1000~1300℃)인 관계로 대부분 복사열전달에 의해서 슬라브의 승온이 이루어진다. 이러한 상활에서의 슬라브 온도 지배방정식은 에너지 보존 법칙에서 얻어지는 다음의 일반적인 편미분 방정식(3차원 직교좌표계 기준)으로 표현된다.The thermal flows governing the slab temperature of the furnace are radiative heat transfer and convective heat transfer. Among them, the slab temperature is raised by the radiant heat transfer, since the furnace conditions are high temperature (1000-1300 ° C). The slab temperature governing equations in this series are represented by the following general partial differential equations (three-dimensional rectangular coordinate system) obtained from the law of energy conservation.

Figure 112005075917491-pat00001
--------- 일반식(1)
Figure 112005075917491-pat00001
--------- Formula (1)

여기서, T: 온도, t:시간, Where T: temperature, t: time,

Figure 112005075917491-pat00002
:슬라브내부 위치, ρ : 밀도,
Figure 112005075917491-pat00002
Position inside the slab, ρ: density,

Cp :열용량, k : 열전도도이다.Cp: heat capacity, k: thermal conductivity.

이러한 슬라브로 외부에서 슬라브의 표면(경계면)을 통하여 열에너지가 들어가거나 빠져나가는 현상(수학적인 경계조건(Boundary Condition:BC))에 의해서 슬라브의 온도가 변화하게 되는 이때의 표면을 통한 열출입량을 수학적으로 표현하면 다음과 같다. The amount of heat entering and exiting through the surface at which the temperature of the slab changes due to the phenomenon of heat energy entering or exiting from the outside of the slab through the surface (boundary plane) of the slab (mathematical boundary condition (BC)) In mathematical terms:

Figure 112005075917491-pat00003
--------- 일반식(2)
Figure 112005075917491-pat00003
--------- Formula (2)

여기서, q :열밀도흐름(Heat flux), n :표면에서 슬라브 외부쪽으로의 수직인 방향(normal direction)을 의미한다. 일반식(2)는 수학적인 표현으로 실제로는 물리적인 전열지배 현상에 맞는 형식으로 표면하게되는데 우리의 경우에는 다음 처럼 표현된다고 본다.Here, q : heat flux, n : normal direction from the surface to the outside of the slab. Equation (2) is a mathematical expression that is actually surfaced in a form suitable for physical heat governing phenomenon. In our case, it is expressed as follows.

Figure 112005075917491-pat00006
--------- 일반식(3)
Figure 112005075917491-pat00006
--------- Formula (3)

여기서,

Figure 112007003793418-pat00007
: 분위기에서 슬라브로 전달되는 heat flux,
Figure 112007003793418-pat00037
: 흑체 복사(전열)량이고
Figure 112007003793418-pat00009
는 슬라브(slab)의 표면(surface)온도이고,
Figure 112007003793418-pat00038
는 분위기온도(슬라브를 둘러싼 공간의 온도)이다. 흑체 복사량으로 전열량을 결정하면 일반적인 물체가 흑체가 아니므로 실제 전달량보다 많은 에너지가 출입하므로 이를 실제와 유사한 량으로 보정하기위해서 비례값을 도입하는데 위의 경우에는
Figure 112007003793418-pat00011
으로 표현되고, 이를 총괄열흡수율이라 한다. here,
Figure 112007003793418-pat00007
: Heat flux transferred from the atmosphere to the slab,
Figure 112007003793418-pat00037
: Amount of black body radiation
Figure 112007003793418-pat00009
Is the surface temperature of the slab,
Figure 112007003793418-pat00038
Is the ambient temperature (the temperature of the space surrounding the slab). When the amount of heat is determined by the amount of black body radiation, since a general object is not a black body, more energy enters and exits than the actual amount of transfer. Therefore, a proportional value is introduced to correct it to a similar amount.
Figure 112007003793418-pat00011
This is referred to as the overall heat absorption rate.

실제 가열로 내부의 슬라브와 관련한 복사에서는 단순한 일반식(3)처럼 단순화한 식으로 표현되지 않는 다양한 복사 열전달 형식이 나타나는데 이들에는 각각In practice, the radiation associated with the slab inside the furnace reveals a variety of radiative heat transfer types that are not represented in a simplified manner as in the simple equation (3).

Figure 112005075917491-pat00012
Figure 112005075917491-pat00012

이고, 실제 적용에 있어서 이들을 각각 분리하여 표현하는 것이 어려운 경우(실제로 이들의 영향을 분리하여 고려하는 것이 쉽지않다.), 일반식(3)처럼 단순히 표현하게 되고, 이에 따라 사용할 온도도 벽체온도, 불꽃온도, 가스온도, 이웃 슬라브 온도가 아닌 다른 대표값(대표 온도)을 활용하여야하는데 일반적으로는 가스온도를 제외한 다른 온도를 측정할 방법이 없으므로 가스온도를 기준하여 다른 대상체들의 온도를 추정하는데 활용한다.
도 1은 일반적인 선형 근사방식에 의한 로내 분위기 온도 추정방법을 설명하기 위하여 제시한, 가열로의 열전대 설치 위치별 측정온도를 나타낸 그래프로서, 이러한 온도 추정방법은 1에 도시된 바와 같이 일반 가열로(300)의 각 대의 온도 조절을 위해서 설치되는 제어용 열전대(100)의 측정치를 이용하는 것이며, 아래의 수학식에 의해 임의의 위치점(x)에서의 온도를 추정하는 방법이다.

Figure 112007003793418-pat00039
If it is difficult to express them separately in actual application (actually, it is not easy to consider their effects separately), they are simply expressed as in the general formula (3), and thus the temperature to be used is also the wall temperature, Representative values (representative temperature) other than flame temperature, gas temperature and neighboring slab temperature should be used. Generally, there is no way to measure temperature except gas temperature, so it is used to estimate the temperature of other objects based on gas temperature. do.
1 is a graph showing a measurement temperature of each installation location of a thermocouple of a heating furnace, which is proposed to explain a method of estimating an atmosphere temperature in a furnace by a general linear approximation method. It is a method of estimating the temperature at the arbitrary position point (x) by the following formula by using the measured value of the control thermocouple 100 provided for each temperature control of 300.
Figure 112007003793418-pat00039

일반적으로 벽체온도를 구할 수 없는 경우가 대부분이므로

Figure 112005075917491-pat00013
라고 가정하여 경계면에서의 열유속을 계산하여 슬라브온도를 추론하는 방식을 택한다.In general, the wall temperature cannot be obtained.
Figure 112005075917491-pat00013
We assume that the slab temperature is inferred by calculating the heat flux at the interface.

그러나 이러한 온도 근사방법에서는 각 온도(

Figure 112005075917491-pat00014
)들 간의 동적인 특성들(dynamic properties)이 무시되어 있다. 즉, 시간적인 측면에서 보면 유량이 변동하면 제일먼저 변화하는 것은 가스온도(
Figure 112005075917491-pat00015
)이고 분위기온도(
Figure 112005075917491-pat00016
)는 가스온도와 운전조건들(
Figure 112005075917491-pat00017
:연료유량,공기유량,노내 압력)을 근거로 함수 근사된 것으로 얻어지고, 가스온도의 변화에 의해서 벽체온도(
Figure 112005075917491-pat00018
)가 최종적으로 변화를 보일 것이다.However, in this temperature approximation method, each temperature (
Figure 112005075917491-pat00014
The dynamic properties between the elements are ignored. In other words, when the flow rate changes, the first thing that changes is the gas temperature (
Figure 112005075917491-pat00015
) And ambient temperature (
Figure 112005075917491-pat00016
) Is the gas temperature and operating conditions (
Figure 112005075917491-pat00017
: It is obtained by approximating a function based on fuel flow rate, air flow rate, and furnace pressure.
Figure 112005075917491-pat00018
) Will finally change.

가열로의 경우 그 조업 운전 조건의 어려움으로 인해서 대상체인 슬라브의 내부온도를 측정하는 것은 거의 불가능하여 내부온도를 수학적인 모델링 기법으로 추론하는 방식을 바탕으로 조업이 이루어지고 있다.In the case of the furnace, due to the difficulty of operating conditions, it is almost impossible to measure the internal temperature of the slab as an object, and the operation is performed based on the method of inferring the internal temperature by mathematical modeling technique.

상기와 같은 추론 방식을 채택하는데 이용되는 수학적인 모델링 기법의 정확성이 낮다는 문제점이 있다.There is a problem that the accuracy of the mathematical modeling technique used to adopt the above inference method is low.

따라서 본 발명은, 이상에서 설명한 문제점을 해결하기 위하여 안출된 것으로서, 분위기온도 혹은 가스온도 모델이 구축된 상황 하에서 복사에너지 중 대부분을 차지하는 벽체 복사에 이용되는 벽체 온도(

Figure 112005075917491-pat00019
)만을 더욱 정밀하게 예측하기 위한 모델링 기법을 제공하는데 목적이 있다.Accordingly, the present invention has been made in order to solve the above-described problems, and the wall temperature used for wall radiation, which occupies most of the radiant energy under the condition in which the atmosphere temperature or gas temperature model is constructed,
Figure 112005075917491-pat00019
) Aims to provide a modeling technique to predict more precisely.

상기한 기술적 과제를 이루기 위한 본 발명은 가열로 내부의 벽체온도를 예측하는 방법에 있어서, 가스온도(TG)를 이용하여 제시되는 벽체온도 예측 알고리즘,

Figure 112007003793418-pat00040

을 적용하는 것을 특징으로 한다. The present invention for achieving the above technical problem is a method of predicting the wall temperature inside the heating furnace, the wall temperature prediction algorithm proposed using the gas temperature (T G ),
Figure 112007003793418-pat00040

It is characterized by applying.

또한, 분위기온(T)를 이용하여 제시되는 벽체온도 예측 알고리즘,

Figure 112007003793418-pat00041

을 적용하는 것을 특징으로 한다.
이하, 첨부도면을 참조하여 본 발명의 열처리로에서의 벽체온도 예측방법을 더욱 상세히 설명한다. In addition, the wall temperature prediction algorithm presented using the ambient temperature (T ),
Figure 112007003793418-pat00041

It is characterized by applying.
Hereinafter, with reference to the accompanying drawings will be described in more detail the wall temperature prediction method in the heat treatment furnace of the present invention.

도 2는 본 발명에 의해 개선된 로내 분위기 온도 예측 프로파일을 예시한 그래프로서, 특이점(700: 피크값(peak value)이나 변곡점이 생기는 지점)에서의 온도(Tp)를 추정하는 특이점 온도 추정법에 의해 개선된 예측 노온 프로파일(600)을 도시하고 있다.
상기 도 2를 참고로 하면, 특이점 온도 추정법은,

Figure 112007003793418-pat00045
로 나타낼 수 있으며,
예를 들어, 단순 다변수 선형 근사방식에 의하면,
Figure 112007003793418-pat00046

로 나타내어진다. 여기서 α는 고정 계수이며, Tc,z는 대상 z번째 영역(zone)의 열전대 측정장치이고, Fc,z는 대상 z번째 영역(zone)의 연료유량이고, Ac,z는 대상 z번째 영역(zone)의 공기유량이다.
한편, 임의의 위치(x)에서의 분위기 온도예측은 선형근사방식 및 스플라인(spline) 방식에 의해 아래의 수식과 같이 나타낸다.
선형근사방식에 의하면,
Figure 112007003793418-pat00047

로 나타내어지고,
스플라인(spline) 방식에 의하면,
Figure 112007003793418-pat00048

로 나타내어진다.
도 3은 가열로에서 추론할 수 있는 가스온도(TG)/분위기온도(T)와 벽체온도(TW)의 시간에 따라 변화특성을 나타낸 그래프로서, 가스온도(TG)와 벽체온도(TW)의 시간에 따른 변화를 시계열 그래프를 도시하고 있다. 도면에서처럼 항상 벽체온도(TW)의 변화가 가스온도(TG)의 변화를 시간차에 따라 변화한다는 것을 알 수 있다. 이러한 동적인 현상을 다루기 위해서 아래의 수학식 1, 2와 같은 상미분 방정식을 각각 세울 수 있다. 즉, 임의의 시점(t)에서 예측하고자 하는 벽체온도가 TW(t), 로내의 열전대에서 측정되는 가스온도가 TG(t), 상기 가스온도TG(t)로부터 예측되는 로내 분위기 온도가 T(t), 가열로의 응답 특성에 따른 지연시간(τ)이 반영된 가스온도가 TG(t-τ) 및 그 가스온도 TG(t-τ)로부터 예측되는 로내 분위기 온도가 T(t-τ)라고 가정하는 경우, 아래의 각 수학식1,2으로 제시되는 벽체온도 예측 알고리즘을 형성 할 수 있으며, 이 각각의 상미분 방정식을 해석하므로 해서 가스온도 또는 로내 분위기 온도로부터 올바른 벽체온도를 추정할 수 있게 된다.
Figure 112007003793418-pat00042

Figure 112007003793418-pat00043

단, 상기 제시된 수학식1,2의 알고리즘에서, TW(t)는 임의의 시점(t)에서 예측하고자 하는 벽체온도, TG(t)는 가스온도, T(t)는 분위기 온도이고, 계수 a,b,c 및 α,β,δ는 가열로의 용량, 유량 등에 관여하는 값들로서 실험에 의해 결정되는 상수값이고, τ는 가열로의 응답특성에 의해 결정되는 시간지연(time delay)상수이다. FIG. 2 is a graph illustrating an in-furnace atmosphere temperature prediction profile improved by the present invention, by a singular point temperature estimation method for estimating a temperature Tp at a singular point 700 (a point at which a peak value or inflection point occurs). The improved prediction norm profile 600 is shown.
2, the singular point temperature estimation method,
Figure 112007003793418-pat00045
Can be represented by
For example, according to a simple multivariate linear approximation,
Figure 112007003793418-pat00046

It is represented by Where α is a fixed coefficient, T c, z is a thermocouple measuring device in the z-th zone, F c, z is the fuel flow rate in the z-zone, and A c, z is the z-th target The air flow rate in the zone.
On the other hand, the ambient temperature prediction at an arbitrary position (x) is expressed by the following equation by the linear approximation method and the spline method.
According to the linear approximation,
Figure 112007003793418-pat00047

Represented by
According to the spline method,
Figure 112007003793418-pat00048

It is represented by
3 is a graph showing the change characteristics according to the time of gas temperature (T G ) / atmosphere temperature (T ) and wall temperature (T W ) which can be inferred from the heating furnace, and gas temperature (T G ) and wall temperature. A time series graph of the change over time of (T W ) is shown. As shown in the figure, it can be seen that the change in the wall temperature T W always changes with the time difference in the gas temperature T G. In order to deal with these dynamic phenomena, ordinary differential equations such as Equations 1 and 2 can be established. In other words, the wall temperature to be predicted at an arbitrary time t is T W (t), the gas temperature measured at the thermocouple in the furnace is T G (t), and the furnace atmosphere temperature is estimated from the gas temperature T G (t). Is T (t), and the gas temperature reflecting the delay time (τ) according to the response characteristics of the furnace is T G (t-τ) and the atmosphere temperature in the furnace is estimated from T G (t-τ). If we assume (t-τ), we can form the wall temperature prediction algorithm represented by the following equations (1, 2), and by interpreting each of the ordinary differential equations, It is possible to estimate the wall temperature.
Figure 112007003793418-pat00042

Figure 112007003793418-pat00043

However, in the algorithm of Equations 1 and 2, T W (t) is the wall temperature to be predicted at any time t, T G (t) is the gas temperature, and T (t) is the ambient temperature. , Coefficients a, b, c and α, β, δ are constants determined by experiments as values related to the capacity, flow rate, etc. of the furnace, and τ is a time delay determined by the response characteristics of the furnace. Is a constant.

이상 도면과 명세서에서 최적 실시예들이 개시되었다. 여기서 사용된 특정한 용어는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것이 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 명세서에 기재된 문언적 의미에 국한되지 않고 본 발명의 기술적 사상에 의해 정해져야 할 것이다.The best embodiments have been disclosed in the drawings and specification above. The specific terminology used herein is for the purpose of describing the present invention only and is not intended to be limiting of meaning or the scope of the invention as set forth in the claims. Therefore, those skilled in the art will understand that various modifications and equivalent other embodiments are possible from this. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the present invention without being limited to the literary meaning described in the specification.

이상에서 설명한 바와 같이, 본 발명을 통하여 가열로에서 복사전열량을 지배하는 벽체 복사량을 계산하는데 필요한 벽체온도를 실 가열로에서 일어나는 현상에 더욱 가깝게 예측 가능하여 결과적으로 슬라브온도 예측 정도가 향상되고, 이에 기반하여 다양한 조업 최적화(슬라브 온도의 예측이 정확해야 여러 가지 가상의 운전조건 조합에 따라 슬라브의 추출온도 및 균열도 예측이 가능하여 조업 타당성 파악이 가능하고, 이들 조합 중 최적의 운전조건을 찾을 수 있음.) 및 생산성 향상을 위한 활동(생산성을 늘리기 위한 운전 조건 도출도 슬라브 온도예측이 정확해야 진행할 수 있음)을 가능케 하는 효과가 있다.As described above, through the present invention, it is possible to predict the wall temperature necessary for calculating the wall radiation amount that governs the radiant heat amount in the furnace more closely to the phenomenon occurring in the real furnace, and consequently, the degree of slab temperature prediction is improved. Based on this, various operation optimizations (Slave temperature prediction must be accurate so that extraction temperature and crack of slab can be predicted according to various virtual operating condition combinations. ) And activities to improve productivity (derivation of operating conditions to increase productivity can also proceed with accurate slab temperature prediction).

Claims (3)

가열로 내부의 벽체온도를 예측하는 방법에 있어서,In the method of predicting the wall temperature inside the furnace, 임의의 시점(t)에서 예측하고자 하는 벽체온도 TW(t), 가스온도 TG(t), 및 가열로의 용량, 유량 등에 관여하는 값들로서 실험에 의해 결정되는 상수값을 갖는 계수 a,b,c, 가열로의 응답특성에 의해 결정되는 시간지연(time delay)상수 τ로부터,Coefficients a having constant values determined by experiments as values related to wall temperature T W (t), gas temperature T G (t), gas furnace capacity, flow rate, etc. to be predicted at an arbitrary time point t, b, c, from the time delay constant τ determined by the response characteristic of the heating furnace, 상기 가스온도를 이용하여 제시되는 벽체온도 예측 알고리즘Wall temperature prediction algorithm presented using the gas temperature
Figure 112007003793418-pat00023
Figure 112007003793418-pat00023
을 적용하여 벽체온도를 예측하는 것을 특징으로 하는 벽체온도 모델링 방법.Wall temperature modeling method characterized in that for predicting the wall temperature by applying a.
가열로 내부의 벽체온도를 예측하는 방법에 있어서,In the method of predicting the wall temperature inside the furnace, 임의의 시점(t)에서 예측하고자 하는 벽체온도 TW(t), 열전대에서 측정되는 가스온도에 의해 예측되는 분위기 온도 T(t), 및 가열로의 용량, 유량 등에 관여하는 값들로서 실험에 의해 결정되는 상수값을 갖는 계수 α,β,δ, 가열로의 응답특성에 의해 결정되는 시간지연(time delay)상수 τ로부터,The values related to the wall temperature T W (t) to be predicted at an arbitrary time point t, the ambient temperature T (t) predicted by the gas temperature measured at the thermocouple, and the capacity and flow rate of the heating furnace are included in the experiment. From the coefficients α, β, δ having a constant value determined by time, and the time delay constant τ determined by the response characteristics of the heating furnace, 상기 가스온도로부터 예측되는 로내 분위기온도를 이용하여 제시되는 벽체온도 예측 알고리즘Wall temperature prediction algorithm using the furnace atmosphere temperature predicted from the gas temperature
Figure 112007003793418-pat00044
Figure 112007003793418-pat00044
을 적용하여 벽체온도를 예측하는 것을 특징으로 하는 벽체온도 모델링 방법.Wall temperature modeling method characterized in that for predicting the wall temperature by applying a.
삭제delete
KR1020050129120A 2005-12-23 2005-12-23 Wall temperature prediction method KR100698740B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050129120A KR100698740B1 (en) 2005-12-23 2005-12-23 Wall temperature prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050129120A KR100698740B1 (en) 2005-12-23 2005-12-23 Wall temperature prediction method

Publications (1)

Publication Number Publication Date
KR100698740B1 true KR100698740B1 (en) 2007-03-23

Family

ID=41564182

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050129120A KR100698740B1 (en) 2005-12-23 2005-12-23 Wall temperature prediction method

Country Status (1)

Country Link
KR (1) KR100698740B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371704B1 (en) * 2012-12-18 2014-03-13 재단법인 포항산업과학연구원 Optimal furnace temperature setting apparatus and optimal furnace temperature setting method
KR101876268B1 (en) * 2016-12-21 2018-07-10 재단법인 포항산업과학연구원 Calibration apparatus of steel plate
CN109190800A (en) * 2018-08-08 2019-01-11 上海海洋大学 A kind of sea surface temperature prediction technique based on spark frame
CN112381210A (en) * 2020-11-15 2021-02-19 西安热工研究院有限公司 Coal-fired unit water-cooling wall temperature prediction neural network model

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264153A (en) * 1993-03-09 1994-09-20 Sumitomo Metal Ind Ltd Method for predicting slab temperature in continuous type heating furnace
JPH10324926A (en) 1997-05-26 1998-12-08 Nkk Corp Method for predicting overall ratio of heat absorption in continuous heating furnace and method for predicting temperature of steel slab
JP2003028579A (en) 2001-07-17 2003-01-29 Tokyo Gas Co Ltd Method and program predicting hourly variation in furnace temperature distribution and recording medium recording program
US20040173142A1 (en) 2003-03-06 2004-09-09 Willis Peter M. Analytical furnace with predictive temperature control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264153A (en) * 1993-03-09 1994-09-20 Sumitomo Metal Ind Ltd Method for predicting slab temperature in continuous type heating furnace
JPH10324926A (en) 1997-05-26 1998-12-08 Nkk Corp Method for predicting overall ratio of heat absorption in continuous heating furnace and method for predicting temperature of steel slab
JP2003028579A (en) 2001-07-17 2003-01-29 Tokyo Gas Co Ltd Method and program predicting hourly variation in furnace temperature distribution and recording medium recording program
US20040173142A1 (en) 2003-03-06 2004-09-09 Willis Peter M. Analytical furnace with predictive temperature control

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371704B1 (en) * 2012-12-18 2014-03-13 재단법인 포항산업과학연구원 Optimal furnace temperature setting apparatus and optimal furnace temperature setting method
KR101876268B1 (en) * 2016-12-21 2018-07-10 재단법인 포항산업과학연구원 Calibration apparatus of steel plate
CN109190800A (en) * 2018-08-08 2019-01-11 上海海洋大学 A kind of sea surface temperature prediction technique based on spark frame
CN109190800B (en) * 2018-08-08 2021-12-10 上海海洋大学 Sea surface temperature prediction method based on spark frame
CN112381210A (en) * 2020-11-15 2021-02-19 西安热工研究院有限公司 Coal-fired unit water-cooling wall temperature prediction neural network model
CN112381210B (en) * 2020-11-15 2023-04-07 西安热工研究院有限公司 Coal-fired unit water-cooling wall temperature prediction neural network model

Similar Documents

Publication Publication Date Title
Kayansayan et al. Impingement cooling of a semi-cylindrical concave channel by confined slot-air-jet
KR100698740B1 (en) Wall temperature prediction method
Hadała et al. Energy losses from the furnace chamber walls during heating and heat treatment of heavy forgings
CN102521439B (en) Method for calculating quenching medium heat exchange coefficient by combining finite element method with inverse heat conduction method
Strommer et al. Nonlinear observer for temperatures and emissivities in a strip annealing furnace
Pilkington et al. Prediction of natural convection heat transfer in gas turbines
Lee et al. Optimum residence time for steel productivity and energy saving in a hot rolled reheating furnace
Jang et al. Prediction of furnace heat transfer and its influence on the steel slab heating and skid mark formation in a reheating furnace
Duda et al. Identification of overheating of an industrial fluidized catalytic cracking regenerator
KR100689153B1 (en) Method for estimating temperature of slab in heating furnace
KR100706528B1 (en) Method for predicting atmosphere temperature in heat treatment chamber
Yi et al. Influence analysis of the furnace wall emissivity on heating process
Wikström et al. Estimation of the transient surface temperature, heat flux and effective heat transfer coefficient of a slab in an industrial reheating furnace by using an inverse method
Cho et al. On the measurement and analysis of data from transient heat transfer experiments
Hadała et al. Analysis of the slab temperature, thermal stresses and fractures computed with the implementation of local and average boundary conditions in the secondary cooling zones
Venturino et al. Coupled fluid flow and heat transfer analysis of steel reheat furnaces
KR100936357B1 (en) Decision method of the position and the quantity of the temperature sensor and of the heating zone in a reheating furnace
Zabolotskii Modeling of cooling of a steel-teeming ladle
JP2004027314A (en) Method for presuming temperature of material to be heated
JPS6140053B2 (en)
Gołdasz et al. Heat flux identification at the charge surface during heating in chamber furnace
Ameel et al. Determining heat losses in a reheat furnace: a case study
Kolenko et al. An analysis of a heat transfer model for situations involving gas and surface radiative heat transfer
Gołdasz et al. Identification of the heat transfer coefficient at the charge surface heated on the chamber furnace
JPH10324919A (en) Method for designing heating furnace

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130311

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140317

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee