CN102521439B - Calculation method of heat transfer coefficient of quenching medium combined with finite element method and inverse heat transfer method - Google Patents
Calculation method of heat transfer coefficient of quenching medium combined with finite element method and inverse heat transfer method Download PDFInfo
- Publication number
- CN102521439B CN102521439B CN201110395888.XA CN201110395888A CN102521439B CN 102521439 B CN102521439 B CN 102521439B CN 201110395888 A CN201110395888 A CN 201110395888A CN 102521439 B CN102521439 B CN 102521439B
- Authority
- CN
- China
- Prior art keywords
- partiald
- probe body
- coefficient
- dimensional model
- heat transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 85
- 238000010791 quenching Methods 0.000 title claims abstract description 71
- 230000000171 quenching effect Effects 0.000 title claims abstract description 59
- 238000012546 transfer Methods 0.000 title claims description 78
- 238000004364 calculation method Methods 0.000 title description 9
- 239000000523 sample Substances 0.000 claims abstract description 94
- 238000001816 cooling Methods 0.000 claims abstract description 44
- 230000035945 sensitivity Effects 0.000 claims description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000006104 solid solution Substances 0.000 claims description 6
- 238000009826 distribution Methods 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 6
- 229910018487 Ni—Cr Inorganic materials 0.000 claims 3
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 claims 3
- 229910052742 iron Inorganic materials 0.000 claims 3
- 238000009413 insulation Methods 0.000 claims 2
- 239000010721 machine oil Substances 0.000 claims 2
- 238000012360 testing method Methods 0.000 abstract description 2
- 238000002474 experimental method Methods 0.000 abstract 1
- 230000004907 flux Effects 0.000 description 27
- 238000010586 diagram Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000009529 body temperature measurement Methods 0.000 description 3
- BIJOYKCOMBZXAE-UHFFFAOYSA-N chromium iron nickel Chemical compound [Cr].[Fe].[Ni] BIJOYKCOMBZXAE-UHFFFAOYSA-N 0.000 description 3
- 238000004134 energy conservation Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000010705 motor oil Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000036314 physical performance Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种计算淬火介质换热系数的方法,属于金属热加工工艺参数设计领域。The invention relates to a method for calculating the heat transfer coefficient of a quenching medium, which belongs to the field of technical parameter design of metal thermal processing.
背景技术 Background technique
淬火处理在实际生产中是零件的一种非常重要的热处理方式,以获得需要的力学性能,而淬火介质无疑是最重要的影响因素,淬火介质的本质作用的体现是在其与金属表面之间的换热系数的大小。寻求精确的方法获取换热系数的大小具有重要的工程实际意义。目前,研究该问题的主要方法是反传热计算法,这种方法是一种理论的数学离散的计算方法,具有一定的不可避免的误差,导致无法精确控制工业零件的淬火冷却速度,冷却速度难以测量。Quenching treatment is a very important heat treatment method for parts in actual production to obtain the required mechanical properties, and the quenching medium is undoubtedly the most important influencing factor. The essential role of the quenching medium is reflected between it and the metal surface. The size of the heat transfer coefficient. Seeking an accurate method to obtain the size of the heat transfer coefficient has important engineering practical significance. At present, the main method to study this problem is the inverse heat transfer calculation method. This method is a theoretical mathematical discrete calculation method with certain inevitable errors, which makes it impossible to accurately control the quenching cooling rate of industrial parts. Difficult to measure.
发明内容 Contents of the invention
本发明的目的是为了解决通过反传热计算法获取换热系数的方法具有误差,导致无法精确控制工业零件的淬火冷却速度,冷却速度难以测量的问题,进而提供一种结合有限元法和反传热法计算淬火介质换热系数的方法。The purpose of the present invention is to solve the problem that the method of obtaining the heat transfer coefficient through the inverse heat transfer calculation method has errors, which leads to the inability to accurately control the quenching cooling rate of industrial parts, and the problem that the cooling rate is difficult to measure, and then provides a combination of finite element method and inverse The method of calculating the heat transfer coefficient of the quenching medium by the heat transfer method.
本发明是通过下述方案予以实现的:结合有限元法和反传热法计算淬火介质换热系数的方法,所述计算淬火介质换热系数的方法的具体过程为:The present invention is achieved through the following scheme: combining the finite element method and the reverse heat transfer method to calculate the heat transfer coefficient of the quenching medium, the specific process of the method for calculating the heat transfer coefficient of the quenching medium is as follows:
步骤一、将内部插有热电偶的探头本体在加热炉中加热到860℃保温均匀后,以不超过2s的转移时间迅速淬入淬火介质中,淬火介质温度设定为Tw,采用电脑系统记录由热电偶测得的探头本体内部特征点B3的温度,并绘制冷却曲线,即得到此温度下该淬火介质的冷却曲线;
步骤二、基于ABAQUS有限元平台,采用有限元的方法建立探头本体的有限元对称模型,输入探头本体材料的物理性能参数和力学性能参数,设定初始温度850℃,设定淬火介质温度Tw,选取换热系数极大值,选取一维模型的表面特征点A1和内部特征点B1,选取三维模型的表面特征点A2和内部特征点B2,一维模型的表面特征点A1与三维模型的表面特征点A2为同一位置点,一维模型内部特征点B1、三维模型内部特征点B2和探头本体内部特征点B3为同一点,然后分别采用一维模型和三维模型进行模拟计算并进行比较,探头本体在一维模型条件下表面特征点A1和三维模型条件下表面特征点A2的冷却曲线重合,探头本体在一维模型条件内部特征点B1和三维模型条件内部特征点B2的冷却曲线重合,验证换热问题符合的一维性质;
步骤三、根据能量守恒定律和傅里叶定律,建立圆柱坐标系下的一维导热微分方程,给出方程的初始条件和边界条件,并且定义与温度具有相同形式的敏感系数方程,给出敏感系数方程的初始条件和边界条件,利用反传热法求解探头本体表面的热流密度值;
圆柱坐标系下的一维导热微分方程为:The one-dimensional heat conduction differential equation in the cylindrical coordinate system is:
式中ρ为密度;c为比热容;T为探头本体表面温度;t为时间;λ为热传导系数;r为探头本体的半径;In the formula, ρ is the density; c is the specific heat capacity; T is the surface temperature of the probe body; t is the time; λ is the thermal conductivity; r is the radius of the probe body;
初始条件为:The initial conditions are:
T(r,tM-1)=TM-1(r) (2)T(r, t M-1 ) = T M-1 (r) (2)
式中tM-1为M-1时刻;TM-1(r)为tM-1时刻的温度分布;In the formula, t M-1 is the time of M-1; T M-1 (r) is the temperature distribution at the time of t M-1 ;
边界条件为:The boundary conditions are:
式中R为探头本体的实际半径值;式中tM为M时刻;热流密度qM为常数;q(t)为t时刻的热流密度值;In the formula, R is the actual radius value of the probe body; in the formula, t M is the time M; the heat flux q M is a constant; q(t) is the heat flux value at the time t;
定义敏感系数为探头本体内部点温度测量误差的敏感程度,是温度关于热流密度的一级微商;The sensitivity coefficient is defined as the sensitivity of the temperature measurement error of the internal point of the probe body, which is the first-order derivative of the temperature with respect to the heat flux;
敏感系数表达式为:The expression of the sensitivity coefficient is:
式中XM为敏感系数;Where X M is the sensitivity coefficient;
初始条件为:The initial conditions are:
XM(r,tM-1)=0 (6)X M (r, t M-1 ) = 0 (6)
式中XM为敏感系数;Where X M is the sensitivity coefficient;
边界条件为:The boundary conditions are:
敏感系数对热流密度值进行修正,利用反传热法求解M时刻的热流密度值,反复计算得整个淬火过程的热流密度值q;The sensitivity coefficient corrects the heat flux value, uses the inverse heat transfer method to solve the heat flux value at M time, and repeatedly calculates the heat flux value q of the entire quenching process;
步骤四、根据牛顿换热定律来计算金属与介质表面的换热系数,即得到了介质的换热系数;牛顿换热定律表达式为:
q=h(T-Tw) (9)q=h(TT w ) (9)
式中q为热流密度值,h为换热系数,(T-Tw)为探头表面温度与设定介质温度的差值;In the formula, q is the heat flux value, h is the heat transfer coefficient, (TT w ) is the difference between the probe surface temperature and the set medium temperature;
本技术方案中将步骤一中热电偶测得的探头本体内部特征点B3的温度,并绘制的冷却曲线与步骤二中探头本体在三维模型条件内部特征点B2的冷却曲线进行对比,两者吻合,验证了换热系数求解的精确性。In this technical solution, the temperature of the internal characteristic point B3 of the probe body measured by the thermocouple in
本发明的有益效果:本发明提出了结合有限元法和反传热法计算淬火介质换热系数的方法,基于成熟的ABAQUS有限元软件,保证了计算结果的可信度和准确性,在此基础上结合传统的反传热法以更准确和更可靠的方法去求解淬火介质的换热系数。该方法的提出,精确的控制了工业零件的淬火冷却速度,避免冷却速度难于测量的问题,并将该方法进行推广,通过测试不同介质的冷却曲线求得其与金属表面的换热系数,然后设计淬火介质,使零件在工业中获得满意的力学性能,适应各种环境下,服役的性能需求。Beneficial effects of the present invention: the present invention proposes the method combining finite element method and inverse heat transfer method to calculate the heat transfer coefficient of quenching medium, based on the mature ABAQUS finite element software, to ensure the credibility and accuracy of the calculation results, here Based on the traditional inverse heat transfer method, a more accurate and reliable method is used to solve the heat transfer coefficient of the quenching medium. The proposal of this method accurately controls the quenching cooling rate of industrial parts, avoids the problem that the cooling rate is difficult to measure, and promotes this method, and obtains the heat transfer coefficient between it and the metal surface by testing the cooling curves of different media, and then Design the quenching medium to make the parts obtain satisfactory mechanical properties in the industry, and adapt to the performance requirements of service in various environments.
附图说明 Description of drawings
图1是探头本体的结构示意图;Fig. 1 is the structure diagram of probe body;
图2是淬火介质为水时探头本体内部特征点B3的冷却曲线(图中3表示介质温度为25℃时探头本体内部特征点B3的冷却曲线,4表示介质温度为45℃时探头本体内部特征点B3的冷却曲线,5表示介质温度为60℃时探头本体内部特征点B3的冷却曲线,6表示介质温度为80℃时探头本体内部特征点B3的冷却曲线);Figure 2 is the cooling curve of the internal feature point B3 of the probe body when the quenching medium is water (3 in the figure indicates the cooling curve of the internal feature point B3 of the probe body when the medium temperature is 25 °C, and 4 indicates the internal characteristics of the probe body when the medium temperature is 45 °C The cooling curve of point B3, 5 indicates the cooling curve of the characteristic point B3 inside the probe body when the medium temperature is 60 °C, and 6 indicates the cooling curve of the characteristic point B3 inside the probe body when the medium temperature is 80 °C);
图3是基于ABAQUS有限元平台建立的探头本体的三维模型;Figure 3 is the three-dimensional model of the probe body established based on the ABAQUS finite element platform;
图4是基于ABAQUS有限元平台建立的探头本体的一维模型;Figure 4 is a one-dimensional model of the probe body established based on the ABAQUS finite element platform;
图5是探头本体在一维模型条件下表面特征点A1和三维模型条件下表面特征点A2的冷却曲线对比图;Fig. 5 is a comparison diagram of the cooling curves of the surface feature point A1 of the probe body under the condition of the one-dimensional model and the surface feature point A2 of the three-dimensional model;
图6是探头本体在一维模型条件内部特征点B1和三维模型条件内部特征点B2的冷却曲线对比图;Fig. 6 is a comparison diagram of the cooling curves of the probe body at the internal feature point B1 of the one-dimensional model condition and the internal feature point B2 of the three-dimensional model condition;
图7是热电偶测得的探头本体内部特征点B3的冷却曲线与探头本体在三维模型条件内部特征点B2的冷却曲线对比图。Fig. 7 is a comparison diagram of the cooling curve of the internal characteristic point B3 of the probe body measured by the thermocouple and the cooling curve of the internal characteristic point B2 of the probe body under the three-dimensional model condition.
具体实施方式 Detailed ways
具体实施方式一:结合图1至图7说明本实施方式,本实施方式的结合有限元法和反传热法计算淬火介质换热系数的方法,所述计算淬火介质换热系数的方法的具体过程为:Specific embodiment 1: This embodiment is described in conjunction with Fig. 1 to Fig. 7, the method of calculating the heat transfer coefficient of quenching medium in this embodiment by combining the finite element method and the reverse heat transfer method, the specific method of calculating the heat transfer coefficient of quenching medium The process is:
步骤一、将内部插有热电偶2的探头本体1在加热炉中加热到860℃保温均匀后,以不超过2s的转移时间迅速淬入淬火介质中,淬火介质温度设定为Tw,采用电脑系统记录由热电偶2测得的探头本体1内部特征点B3的温度,并绘制冷却曲线,即得到此温度下该淬火介质的冷却曲线;
步骤二、基于ABAQUS有限元平台,采用有限元的方法建立探头本体1的有限元对称模型,输入探头本体1材料的物理性能参数和力学性能参数,设定初始温度850℃,设定淬火介质温度Tw,选取换热系数极大值,选取一维模型的表面特征点A1和内部特征点B1,选取三维模型的表面特征点A2和内部特征点B2,一维模型的表面特征点A1与三维模型的表面特征点A2为同一位置点,一维模型内部特征点B1、三维模型内部特征点B2和探头本体1内部特征点B3为同一点,然后分别采用一维模型和三维模型进行模拟计算并进行比较,探头本体1在一维模型条件下表面特征点A1和三维模型条件下表面特征点A2的冷却曲线重合,探头本体1在一维模型条件内部特征点B1和三维模型条件内部特征点B2的冷却曲线重合,验证换热问题符合的一维性质;
步骤三、根据能量守恒定律和傅里叶定律,建立圆柱坐标系下的一维导热微分方程,给出方程的初始条件和边界条件,并且定义与温度具有相同形式的敏感系数方程,给出敏感系数方程的初始条件和边界条件,利用反传热法求解探头本体1表面的热流密度值;
圆柱坐标系下的一维导热微分方程为:The one-dimensional heat conduction differential equation in the cylindrical coordinate system is:
式中ρ为密度;c为比热容;T为探头本体表面温度;t为时间;λ为热传导系数;r为探头本体1的半径;In the formula, ρ is the density; c is the specific heat capacity; T is the surface temperature of the probe body; t is the time; λ is the thermal conductivity; r is the radius of the
初始条件为:The initial conditions are:
T(r,tM-1)=TM-1(r) (2)T(r, t M-1 ) = T M-1 (r) (2)
式中tM-1为M-1时刻;TM-1(r)为tM-1时刻的温度分布;In the formula, t M-1 is the time of M-1; T M-1 (r) is the temperature distribution at the time of t M-1 ;
边界条件为:The boundary conditions are:
式中R为探头本体1的实际半径值;式中tM为M时刻;热流密度qM为常数;q(t)为t时刻的热流密度值;In the formula, R is the actual radius value of the
定义敏感系数为探头本体1内部点温度测量误差的敏感程度,是温度关于热流密度的一级微商;The sensitivity coefficient is defined as the sensitivity of the temperature measurement error at the internal point of the
敏感系数表达式为:The expression of the sensitivity coefficient is:
式中XM为敏感系数;Where X M is the sensitivity coefficient;
初始条件为:The initial conditions are:
XM(r,tM-1)=0 (6)X M (r, t M-1 ) = 0 (6)
式中XM为敏感系数;Where X M is the sensitivity coefficient;
边界条件为:The boundary conditions are:
敏感系数对热流密度值进行修正,利用反传热法求解M时刻的热流密度值,反复计算得整个淬火过程的热流密度值q;The sensitivity coefficient corrects the heat flux value, uses the inverse heat transfer method to solve the heat flux value at time M, and repeatedly calculates the heat flux value q of the entire quenching process;
步骤四、根据牛顿换热定律来计算金属与介质表面的换热系数,即得到了介质的换热系数;牛顿换热定律表达式为:
q=h(T-Tw) (9)q=h(TT w ) (9)
式中q为热流密度值,h为换热系数,(T-Tw)为探头表面温度与设定介质温度的差值;In the formula, q is the heat flux value, h is the heat transfer coefficient, (TT w ) is the difference between the probe surface temperature and the set medium temperature;
本实施方式中将步骤一中热电偶2测得的探头本体1内部特征点B3的温度,并绘制的冷却曲线与步骤二中探头本体1在三维模型条件内部特征点B2的冷却曲线进行对比,两者吻合,验证了换热系数求解的精确性。In this embodiment, the temperature of the internal feature point B3 of the
具体实施方式二:本实施方式的步骤一中的淬火介质为水、20号机油或UCON-A(水溶性聚合物)淬火剂。Embodiment 2: The quenching medium in the
具体实施方式三:本实施方式的步骤一中的淬火介质为水时,淬火介质温度设定为25℃、45℃、60℃或80℃。根据淬火介质物性及实际中的使用温度确定淬火介质的温度,冷却曲线参见图2。Embodiment 3: When the quenching medium in
具体实施方式四:本实施方式的步骤一中的淬火介质为20号机油时,淬火介质温度设定为25℃、45℃或60℃。根据淬火介质物性及实际中的使用温度确定淬火介质的温度。Embodiment 4: When the quenching medium in
具体实施方式五:本实施方式的步骤一中的淬火介质为UCON-A(水溶性聚合物)淬火剂时,淬火介质温度设定为25℃、45℃或60℃。根据淬火介质物性及实际中的使用温度确定淬火介质的温度。Embodiment 5: When the quenching medium in
具体实施方式六:本实施方式的步骤一中的探头本体1的线性尺寸为Φ12.5×60mm,探头本体1的材料为镍铬铁基固溶强化合金,热电偶2的直径为1.5mm。Embodiment 6: The linear dimension of the
具体实施方式七:本实施方式的结合有限元法和反传热法计算淬火介质换热系数的方法,所述计算淬火介质换热系数的方法的具体过程为:Embodiment 7: The method for calculating the heat transfer coefficient of the quenching medium in combination with the finite element method and the reverse heat transfer method of this embodiment, the specific process of the method for calculating the heat transfer coefficient of the quenching medium is as follows:
步骤一、将内部插有热电偶2的探头本体1在加热炉中加热到860℃保温均匀后,以不超过2s的转移时间迅速淬入淬火介质中,淬火介质温度设定为Tw,采用电脑系统记录由热电偶2测得的探头本体1内部特征点B3的温度,并绘制冷却曲线,即得到此温度下该淬火介质的冷却曲线;
探头本体1的线性尺寸为Φ12.5×60mm,探头本体1的材料为镍铬铁基固溶强化合金(Incone1600),热电偶2的直径为1.5mm,淬火介质为水,淬火介质温度Tw设定为25℃;冷却曲线参见图2;The linear dimension of the
步骤二、基于ABAQUS有限元平台,采用有限元的方法建立探头本体1的有限元对称模型,输入探头本体1镍铬铁基固溶强化合金材料的物理性能参数和力学性能参数,设定初始温度850℃,设定淬火介质水的温度Tw为25℃,选取换热系数极大值22000W(m2×K),选取一维模型的表面特征点A1和内部特征点B1,选取三维模型的表面特征点A2和内部特征点B2,一维模型的表面特征点A1与三维模型的表面特征点A2为同一位置点,一维模型内部特征点B1、三维模型内部特征点B2和探头本体1内部特征点B3为同一点,然后分别采用一维模型和三维模型进行模拟计算并进行比较,探头本体1在一维模型条件下表面特征点A1和三维模型条件下表面特征点A2的冷却曲线重合,探头本体1在一维模型条件内部特征点B1和三维模型条件内部特征点B2的冷却曲线重合,验证换热问题符合的一维性质;参见图3至图6;
步骤三、根据能量守恒定律和傅里叶定律,建立圆柱坐标系下的一维导热微分方程,给出方程的初始条件和边界条件,并且定义与温度具有相同形式的敏感系数方程,给出敏感系数方程的初始条件和边界条件,利用反传热法求解探头本体1表面的热流密度值;
圆柱坐标系下的一维导热微分方程为:The one-dimensional heat conduction differential equation in the cylindrical coordinate system is:
式中ρ为密度;c为比热容;T为探头本体表面温度;t为时间;λ为热传导系数;r为探头本体1的半径;In the formula, ρ is the density; c is the specific heat capacity; T is the surface temperature of the probe body; t is the time; λ is the thermal conductivity; r is the radius of the
初始条件为:The initial conditions are:
T(r,tM-1)=TM-1(r) (2)T(r, t M-1 ) = T M-1 (r) (2)
式中tM-1为M-1时刻;TM-1(r)为tM-1时刻的温度分布;In the formula, t M-1 is the time of M-1; T M-1 (r) is the temperature distribution at the time of t M-1 ;
边界条件为:The boundary conditions are:
式中R为探头本体1的实际半径值;式中tM为M时刻;热流密度qM为常数;q(t)为t时刻的热流密度值;In the formula, R is the actual radius value of the
定义敏感系数为探头本体1内部点温度测量误差的敏感程度,是温度关于热流密度的一级微商;The sensitivity coefficient is defined as the sensitivity of the temperature measurement error at the internal point of the
敏感系数表达式为:The expression of the sensitivity coefficient is:
式中XM为敏感系数;Where X M is the sensitivity coefficient;
初始条件为:The initial conditions are:
XM(r,tM-1)=0 (6)X M (r, t M-1 ) = 0 (6)
式中XM为敏感系数;Where X M is the sensitivity coefficient;
边界条件为:The boundary conditions are:
敏感系数对热流密度值进行修正,利用反传热法求解M时刻的热流密度值,反复计算得整个淬火过程的热流密度值q;敏感系数与温度具有相同形式的微分方程,可采用有限差分进行求解热流密度值q;The sensitivity coefficient corrects the heat flux value, uses the inverse heat transfer method to solve the heat flux value at time M, and repeatedly calculates the heat flux value q of the entire quenching process; the sensitivity coefficient and temperature have the same form of differential equation, which can be determined by finite difference Solve for the heat flux value q;
计算起初,假定热流密度值为零,通过敏感系数对热流密度值进行修正,使得修正值足够小;At the beginning of the calculation, it is assumed that the heat flux value is zero, and the heat flux value is corrected by the sensitivity coefficient to make the correction value small enough;
步骤四、根据牛顿换热定律来计算金属与介质表面的换热系数,即得到了介质的换热系数;牛顿换热定律表达式为:
q=h(T-Tw) (9)q=h(TT w ) (9)
式中q为热流密度值,h为换热系数,(T-Tw)为探头表面温度与设定介质温度的差值;In the formula, q is the heat flux value, h is the heat transfer coefficient, (TT w ) is the difference between the probe surface temperature and the set medium temperature;
本实施方式中将步骤一中热电偶2测得的探头本体1内部特征点B3的温度,并绘制的冷却曲线与步骤二中探头本体1在三维模型条件内部特征点B2的冷却曲线进行对比,两者吻合,验证了换热系数求解的精确性。In this embodiment, the temperature of the internal feature point B3 of the
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110395888.XA CN102521439B (en) | 2011-12-02 | 2011-12-02 | Calculation method of heat transfer coefficient of quenching medium combined with finite element method and inverse heat transfer method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110395888.XA CN102521439B (en) | 2011-12-02 | 2011-12-02 | Calculation method of heat transfer coefficient of quenching medium combined with finite element method and inverse heat transfer method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102521439A CN102521439A (en) | 2012-06-27 |
CN102521439B true CN102521439B (en) | 2014-02-12 |
Family
ID=46292352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110395888.XA Expired - Fee Related CN102521439B (en) | 2011-12-02 | 2011-12-02 | Calculation method of heat transfer coefficient of quenching medium combined with finite element method and inverse heat transfer method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102521439B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105631064B (en) * | 2014-10-31 | 2019-01-29 | 北京临近空间飞行器系统工程研究所 | A kind of efficient parallel calculation method of the inner cavity vacuum radiation emulation of chimb circle |
CN105046030B (en) * | 2015-09-09 | 2018-01-26 | 哈尔滨工业大学 | Method for obtaining heat exchange coefficient of aluminum alloy component in quenching process under three-dimensional heat transfer condition based on finite element method |
CN106841281A (en) * | 2016-12-13 | 2017-06-13 | 西北工业大学 | A kind of measuring method of the aluminum alloy surface coefficient of heat transfer |
CN107256339B (en) * | 2017-06-09 | 2020-01-03 | 中南大学 | Moxibustion heat source intensity optimal estimation method based on heat transfer model |
CN108226219B (en) * | 2017-12-13 | 2020-03-27 | 衢州学院 | A method for detecting the uniformity of heat generation of thin film resistors |
CN108535313B (en) * | 2018-02-11 | 2021-01-29 | 中国矿业大学 | Method for measuring interface thermal resistance between two solids by hot wire method |
CN108562329A (en) * | 2018-03-29 | 2018-09-21 | 大唐环境产业集团股份有限公司 | A kind of coal store all-around protection system |
CN116562184B (en) * | 2023-04-18 | 2024-02-13 | 中南大学 | Rapid prediction calculation method for mold temperature field in autoclave molding process |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101887472A (en) * | 2009-05-12 | 2010-11-17 | 通用汽车环球科技运作公司 | The method of unrelieved stress and distortion in the prediction quenching aluminium casting |
CN102399950A (en) * | 2011-11-30 | 2012-04-04 | 东北大学 | Method for controlling medium plate quenching technology |
-
2011
- 2011-12-02 CN CN201110395888.XA patent/CN102521439B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101887472A (en) * | 2009-05-12 | 2010-11-17 | 通用汽车环球科技运作公司 | The method of unrelieved stress and distortion in the prediction quenching aluminium casting |
CN102399950A (en) * | 2011-11-30 | 2012-04-04 | 东北大学 | Method for controlling medium plate quenching technology |
Also Published As
Publication number | Publication date |
---|---|
CN102521439A (en) | 2012-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102521439B (en) | Calculation method of heat transfer coefficient of quenching medium combined with finite element method and inverse heat transfer method | |
Lu et al. | Inverse estimation of the inner wall temperature fluctuations in a pipe elbow | |
CN103033277B (en) | Device and method for evaluating relation of interface temperature and interface heat exchange coefficient | |
CN113609739B (en) | Construction method of material heat treatment process and microstructure and performance relation database | |
CN103778294B (en) | A kind of numerical value general solution method of lines of thermal conduction source strength identification indirect problem | |
CN101319256A (en) | Intelligent Monitoring Method of Blast Furnace Stave | |
Li et al. | Research on the effect of boundary pressure on the boundary heat transfer coefficients between hot stamping die and boron steel | |
CN102564644A (en) | Temperature online measuring method for plate blank in production process of heating furnace | |
CN105046030B (en) | Method for obtaining heat exchange coefficient of aluminum alloy component in quenching process under three-dimensional heat transfer condition based on finite element method | |
CN108008022A (en) | A kind of ultrasonic propagation velocity measuring method varied with temperature | |
CN106124078A (en) | A kind of method using double-thermocouple to measure strong transient fluid temperature | |
Li et al. | Identification methods on blank-die interfacial heat transfer coefficient in press hardening | |
CN109885885B (en) | A Nozzle Stem Wall Temperature Prediction Method Based on Gas-Solid-Liquid Three-Phase Coupling Heat Transfer | |
CN106226351B (en) | A Calculation Method for Thermal Conductivity of Thin-walled Circular Tube Material | |
CN105550463B (en) | The prediction technique of steel plate electromagnetic induction heating process temperature field | |
CN103413059A (en) | Solid section temperature change measurement system | |
CN105463142B (en) | A kind of method that molten iron temperature measures in blast furnace crucibe | |
CN116306144A (en) | A thermal-fluid-solid coupling simulation modeling and experimental method for the quenching process of 1045 steel | |
CN103995017B (en) | A kind of experimental technique measuring cyclical heat transmission coefficient | |
CN103175865A (en) | A test device for effective thermal conductivity of hard carbon felt | |
CN109506806B (en) | Method for simultaneously measuring internal temperature and thickness of high-temperature structure under transient condition | |
CN209589899U (en) | A Measuring Device for Pipe Surface Heat Transfer Coefficient | |
JP6620610B2 (en) | Method for estimating surface heat flux of heat-treated members | |
CN110889209A (en) | Lubricating oil heating simulation method | |
Kotrbacek et al. | Study of heat transfer distribution during plate heat treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140212 |
|
CF01 | Termination of patent right due to non-payment of annual fee |