JP6620610B2 - Method for estimating surface heat flux of heat-treated members - Google Patents
Method for estimating surface heat flux of heat-treated members Download PDFInfo
- Publication number
- JP6620610B2 JP6620610B2 JP2016046592A JP2016046592A JP6620610B2 JP 6620610 B2 JP6620610 B2 JP 6620610B2 JP 2016046592 A JP2016046592 A JP 2016046592A JP 2016046592 A JP2016046592 A JP 2016046592A JP 6620610 B2 JP6620610 B2 JP 6620610B2
- Authority
- JP
- Japan
- Prior art keywords
- heat flux
- heat
- calculation
- temperature
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Description
本発明は、鋼材等の熱処理部材の冷却や加熱等の熱処理時における熱処理部材の表面熱流束の推定方法に関するものである。 The present invention relates to a method for estimating the surface heat flux of a heat treatment member during heat treatment such as cooling or heating of a heat treatment member such as steel.
鉄鋼製造プロセスにおいて、例えば高温鋼材の冷却を行う冷却設備の改善を目的としたスプレー増設や、冷却ムラの低減を目的としたスプレーの変更、新しい冷却設備の検討等のために、冷却能力を測定し、生産性向上や歩留り向上を図ることは重要である。 In the steel manufacturing process, measure the cooling capacity, for example, to add a spray to improve cooling equipment that cools high-temperature steel, to change sprays to reduce cooling unevenness, and to examine new cooling equipment. It is important to improve productivity and yield.
冷却能力を知るためには、通常、実験が行われる。実験では、高温鋼材に冷却水を噴射して、そのときの鋼材の温度変化を記録し、それを用いて冷却能力の算出を行う。ここで、「冷却能力」とは、被冷却部材の表面から取り除かれる熱量を意味する「表面熱流束」と、そのときの「表面温度」との関係である。(以下、「表面熱流束」を単に「熱流束」と記載することがある。) In order to know the cooling capacity, an experiment is usually performed. In the experiment, cooling water is injected into the high-temperature steel material, the temperature change of the steel material at that time is recorded, and the cooling capacity is calculated using that. Here, the “cooling capacity” is a relationship between the “surface heat flux” meaning the amount of heat removed from the surface of the member to be cooled and the “surface temperature” at that time. (Hereinafter, “surface heat flux” may be simply referred to as “heat flux”.)
ところが、水冷されている被冷却部材の表面熱流束や表面温度を直接計測する方法は、現状では存在しない。そのため、実験においては、まず冷却されている高温鋼材の内部や、冷却されている面の反対側の面の温度変化を計測し、次に、その温度変化を再現できるような表面熱流束と表面温度との関係を逆算、もしくは試行錯誤により算出して推定している。 However, there is currently no method for directly measuring the surface heat flux or the surface temperature of a member to be cooled that is water-cooled. Therefore, in the experiment, first, the temperature change of the inside of the high-temperature steel material being cooled or the surface opposite to the surface being cooled is measured, and then the surface heat flux and surface that can reproduce the temperature change. The relationship with temperature is estimated by calculating backwards or trial and error.
しかしながら、この逆算を行うには、従来、多大な計算時間を必要とする。そのため、実験を行ってもその結果を冷却工程の改良に素早く活かすことができない。また、冷却能力の詳細な分布を得るために測定点を多数とったとしても、そのデータ処理を行うことができないため、詳細な冷却能力分布を知ることが困難であるという問題がある。そこで、この逆算を高速に行える方法が望まれている。 However, in order to perform this back calculation, a large amount of calculation time is conventionally required. Therefore, even if an experiment is performed, the result cannot be quickly utilized for improving the cooling process. Further, even if a large number of measurement points are taken in order to obtain a detailed distribution of the cooling capacity, the data processing cannot be performed, so that it is difficult to know the detailed cooling capacity distribution. Therefore, a method capable of performing this reverse calculation at high speed is desired.
例えば非特許文献1には、被冷却物の表面温度や熱流束を求めるために、実験結果に一致するように熱流束を変化させる収束計算(繰り返し計算)を行うことが記載されている。そして、収束計算を行うためには、熱流束をどのように変化させれば計算が収束する方向に向かうかを判断する必要があり、その方向を決める手段として、測定点における温度の表面熱流束依存性(∂T/∂q)を用いることが開示されている。
For example, Non-Patent
また、非特許文献1に記載されたような表面熱流束の算出を行う過程においては被冷却物内部の温度分布を用いる必要があるが、特許文献1には、その温度分布を、非定常の数値解析により得られた結果を用いることが開示されている。
In addition, in the process of calculating the surface heat flux as described in Non-Patent
また、特許文献2には、多項式の解を求める収束計算(繰り返し計算)にセカント法を用いる例が示され、任意の物理現象を表現するモデル式を級数展開近似(多項式近似)し、その式をニュートン法やセカント法等を用いて解くことで、計算時間が短縮されることが開示されている。
しかしながら、上記特許文献1に記載された解析方法は、計算負荷が大きく、迅速な計算を行って素早く工程の改良に活かすことはできない。また、特許文献2に記載されたセカント法は、一般的な多項式の解き方を示すものであり、これを用いて熱流束の計算を行う方法は存在していない。
However, the analysis method described in
本発明は、このような観点に鑑みてなされたものであり、熱処理部材の温度の実測値を用いて、計算負荷を軽減し精度良く熱流束を求める方法を提供することを目的とする。 This invention is made | formed in view of such a viewpoint, and it aims at providing the method of calculating | requiring a heat flux accurately, reducing calculation load using the measured value of the temperature of a heat processing member.
上記問題を解決するため、本発明は、熱処理部材の熱処理時の温度履歴を実測する工程と、任意の異なる2種類の熱流束を与えて、前記熱処理部材について熱伝導解析を行い、温度履歴の数値解析値をそれぞれ算出する工程と、温度履歴の実測値と前記数値解析値との差の奇数乗を目標関数とし、前記目標関数の収束計算を求解法により行う工程と、を有し、前記目標関数が収束したときの熱流束の値を、前記実測値が測定されたときの表面熱流束とすることを特徴とする、熱処理部材の表面熱流束の推定方法を提供する。 In order to solve the above problem, the present invention provides a step of actually measuring a temperature history during heat treatment of a heat treatment member and two different types of heat fluxes to perform heat conduction analysis on the heat treatment member, A step of calculating each numerical analysis value, and an odd power of the difference between the actual measurement value of the temperature history and the numerical analysis value as a target function, and performing a convergence calculation of the target function by a solution method, Provided is a method for estimating the surface heat flux of a heat treatment member, wherein the value of the heat flux when the objective function converges is the surface heat flux when the measured value is measured.
前記求解法は、セカント法または二分法でもよい。また、前記目標関数を、前記実測値と前記数値解析値との差としてもよい。 The solution solving method may be a secant method or a bisection method. The target function may be a difference between the actual measurement value and the numerical analysis value.
前記熱処理部材は鋼材であり、前記熱処理は鉄鋼製造プロセスにおける冷却であってもよい。 The heat treatment member may be a steel material, and the heat treatment may be cooling in a steel manufacturing process.
本発明によれば、計算負荷を軽減し精度良く熱流束を求めることができる。 According to the present invention, it is possible to reduce the calculation load and accurately obtain the heat flux.
以下、本発明の実施の形態を、図を参照して説明する。なお、本明細書の以下の記載において、「表面熱流束」を単に「熱流束」と記載する。また、本実施形態では、熱処理部材を鋼材とし、鋼材製造における冷却時の鋼材の熱流束を推定する方法について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description of the present specification, “surface heat flux” is simply referred to as “heat flux”. Further, in the present embodiment, a method for estimating the heat flux of the steel material during cooling in the steel material manufacture using the heat treatment member as a steel material will be described.
先ず、鋼材冷却時の熱流束を推測する場合の従来の計算方法について、図2のフローチャートを参照して説明する。 First, a conventional calculation method for estimating a heat flux during cooling of a steel material will be described with reference to a flowchart of FIG.
(工程B1)
鋼材の冷却実験を行い、鋼材の温度履歴を測定する。
(Process B1)
A steel cooling experiment is conducted to measure the temperature history of the steel.
(工程B2)
適当な熱流束を与え、数ステップだけ熱伝導解析を行う。この熱伝導解析は、熱流束と温度との関係を探るために予備的に行うものであり、熱流束の値を変更して複数のパターンについて行う。そして、この熱伝導解析で得られた結果から、与えた熱流束に対する鋼材の温度変化の関係を、式(1)により求める。
T:熱伝導解析における温度の数値解析値
q:表面熱流束
(Process B2)
Appropriate heat flux is given and heat conduction analysis is performed for several steps. This heat conduction analysis is preliminarily performed in order to investigate the relationship between the heat flux and the temperature, and is performed for a plurality of patterns by changing the value of the heat flux. And from the result obtained by this heat conduction analysis, the relationship of the temperature change of the steel material with respect to the provided heat flux is calculated | required by Formula (1).
T: Numerical analysis value of temperature in heat conduction analysis q: Surface heat flux
(工程B3)
さらに適当な熱流束を与え、数ステップだけ熱伝導解析を行う。
(Process B3)
Furthermore, an appropriate heat flux is given, and heat conduction analysis is performed for several steps.
(工程B4)
工程B1の実験により得られた鋼材の温度の実測値と、工程B3の熱伝導解析により得られた鋼材の温度の数値解析値とを比較し、その差を算出する。さらに、式(1)で得られた、熱流束に対する鋼材の温度変化の関係を用いて、実測値と数値解析値との差を低減させられるように、与える熱流束を式(2)により修正する。
Y:実験により得られた温度の実測値
T:熱伝導解析における温度の数値解析値
q:表面熱流束
r:熱伝導解析を行うステップ数(数値計算の時間ステップ)
(Process B4)
The measured value of the temperature of the steel material obtained by the experiment in the step B1 is compared with the numerical analysis value of the temperature of the steel material obtained by the heat conduction analysis in the step B3, and the difference is calculated. Furthermore, using the relationship between the temperature change of the steel material with respect to the heat flux obtained by Equation (1), the applied heat flux is corrected by Equation (2) so that the difference between the measured value and the numerical analysis value can be reduced. To do.
Y: Actual measurement value of temperature obtained by experiment T: Numerical analysis value of temperature in heat conduction analysis q: Surface heat flux r: Number of steps for performing heat conduction analysis (time step of numerical calculation)
(工程B5)
工程B4での修正量Δqが、予め設定した基準に対して十分に小さければ、収束したと判断して工程B6に進み、大きければ工程B3に戻る。
(Process B5)
If the correction amount Δq in the process B4 is sufficiently small with respect to a preset reference, it is determined that the process has converged and the process proceeds to the process B6, and if large, the process returns to the process B3.
(工程B6)
工程B4での修正量Δqが予め設定した基準に対して十分に小さくなったときに与えた熱流束が、実験時の当該瞬間の熱流束を再現していると見なす。必要時間の計算が行われていないときは工程B3に戻り、続けて次の時間の熱流束を求める。必要時間の計算が行われたら終了する。
(Process B6)
It is considered that the heat flux given when the correction amount Δq in step B4 is sufficiently small with respect to a preset reference reproduces the instantaneous heat flux at the time of the experiment. When the required time is not calculated, the process returns to step B3, and the heat flux for the next time is obtained. When the required time has been calculated, the process ends.
以上のような従来の方法では、収束計算は、式(3)に示す目標関数Fを最小にする温度Tを与えられるような熱流束qを、繰り返し計算により算出する。
この繰り返し計算のイメージを図3に示す。図3に示すように、目標であるFの最小値に向かって、座標(q(1),F(1))から座標(q(2),F(2))、次に座標(q(3),F(3))・・・と、計算を繰り返し、目標関数Fを最小にするまで、すなわち閾値δよりも小さくなる(F<δ)まで繰り返し計算を行う。この閾値δは、Fが収束したと見なす任意の値であり、予め設定しておく。ただし、目標関数Fの最小値は不明であり、収束条件として設定した閾値δよりも小さい値が存在するかどうかも不明である。 An image of this repeated calculation is shown in FIG. As shown in FIG. 3, from the coordinate (q (1), F (1)) to the coordinate (q (2), F (2)) and then the coordinate (q ( 3), F (3))... And the calculation is repeated until the target function F is minimized, that is, until it becomes smaller than the threshold δ (F <δ). This threshold δ is an arbitrary value that F is considered to have converged, and is set in advance. However, the minimum value of the target function F is unknown, and it is also unknown whether there is a value smaller than the threshold value δ set as the convergence condition.
次に、鋼材冷却時の熱流束を推測する場合の本発明の実施形態にかかる計算方法について、図1のフローチャートを参照して説明する。 Next, a calculation method according to the embodiment of the present invention in the case of estimating the heat flux at the time of cooling the steel material will be described with reference to the flowchart of FIG.
(工程A1)
鋼材の冷却実験を行い、鋼材の温度履歴を測定する。
(Process A1)
A steel cooling experiment is conducted to measure the temperature history of the steel.
(工程A2)
適当な熱流束を与えて、数ステップ(数値計算の時間ステップ)だけ熱伝導解析を行う。この解析を、熱流束の値を異なる2種類(q(1)、q(2))設定して2回行う。そして、この2回の解析結果について、実験により得られた鋼材の温度の実測値と、熱伝導解析により得られた鋼材の温度の数値解析値とを比較し、これらの温度差Sを式(4)により算出する。
Y:実験により得られた温度の実測値
T:熱伝導解析における温度の数値解析値
r:熱伝導解析を行うステップ数(数値計算の時間ステップ)
(Process A2)
Appropriate heat flux is given, and heat conduction analysis is performed for several steps (time step of numerical calculation). This analysis is performed twice with two different heat flux values (q (1) and q (2)) set. And about these two analysis results, the measured value of the temperature of the steel material obtained by the experiment and the numerical analysis value of the temperature of the steel material obtained by the heat conduction analysis are compared, and the temperature difference S is expressed by the formula ( 4).
Y: Actual measurement value of temperature obtained by experiment T: Numerical analysis value of temperature in heat conduction analysis r: Number of steps for conducting heat conduction analysis (time step of numerical calculation)
(工程A3)
工程A2で求めた結果を用いて、実測値と数値解析値との温度差がゼロとなる熱流束q(3)を、セカント法により線形補間して算出する。
(Process A3)
Using the result obtained in step A2, the heat flux q (3) at which the temperature difference between the actual measurement value and the numerical analysis value becomes zero is calculated by linear interpolation using the secant method.
(工程A4)
工程A3で求めた熱流束q(3)を用いて、温度差S(3)を計算する。
(Process A4)
The temperature difference S (3) is calculated using the heat flux q (3) obtained in step A3.
(工程A5)
工程A4で求めた温度差S(3)が、予め設定した基準に対して十分小さければ工程A6に進む。温度差が予め設定した基準よりも大きければ、ここまでの工程で求めた3組のデータのうち、実測値と数値解析値との温度差がゼロに近い2組をピックアップして(工程A7)、工程A3に戻る。
(Process A5)
If the temperature difference S (3) obtained in step A4 is sufficiently small with respect to a preset reference, the process proceeds to step A6. If the temperature difference is larger than a preset standard, two sets of data obtained in the process so far are picked up two sets in which the temperature difference between the measured value and the numerical analysis value is close to zero (step A7). Return to step A3.
(工程A6)
工程A4で求めた、実測値と数値解析値との温度差が十分小さいときに与えた熱流束が、実験時の当該瞬間の熱流束を再現していると見なす。そして、必要時間の計算が行われていないときは工程A2に戻り、続けて次の時間の熱流束を求める。必要時間の計算が行われたら終了する。
(Process A6)
It is considered that the heat flux given when the temperature difference between the actual measurement value and the numerical analysis value obtained in step A4 is sufficiently small reproduces the instantaneous heat flux at the time of the experiment. And when calculation of required time is not performed, it returns to process A2 and calculates | requires the heat flux of the next time continuously. When the required time is calculated, the process ends.
本発明においては、逆算は、式(5)に示す目標関数SをゼロにするTを与えられるような熱流束qを、繰り返し計算により算出することに相当する。
つまり、本発明においては、数値解析値として与えた熱流束を適用して計算される鋼材の温度履歴と、実測により得られた鋼材の温度履歴とを比較し、その差が小さくなるように熱流束を決定する。 That is, in the present invention, the temperature history of the steel material calculated by applying the heat flux given as the numerical analysis value is compared with the temperature history of the steel material obtained by actual measurement, and the heat flow is reduced so that the difference is reduced. Determine the bunch.
本実施形態の繰り返し計算のイメージを、図4に示す。例えば、強い冷却が行われたことを想定して大きな熱流束q(1)を推定値として与え、その熱流束から鋼材の温度履歴を計算し、次に弱い冷却が行われたことを想定して小さな熱流束q(2)を推定値として与え、その熱流束から鋼材の温度履歴を計算する。実測により得られた鋼材の温度履歴は、これらの計算値の中間になると考えられる。したがって、その差をなくすように内挿補間することで、実測により得られた鋼材の温度履歴により近い熱流束を算出できると考えられる。もしくは、実測による温度履歴が推定値の中間にならない場合にも、その差を0に近づけるように外挿補間することで、同様に、実測値を基にして正しい熱流束を次の推定値として得ることができる。本実施形態では、図4に示すように、座標(q(1),S(1))と座標(q(2),S(2))から線形補間を用いることで、目標であるS=0を満たす熱流束q(3)を一気に求めることが可能である。なお、より正確には、予め設定した、Sが収束したと見なす値δに対して、|S|<δを満たす熱流束qを求めることとなる。 An image of the iterative calculation of this embodiment is shown in FIG. For example, assuming that strong cooling was performed, a large heat flux q (1) was given as an estimated value, the temperature history of the steel material was calculated from the heat flux, and then it was assumed that weak cooling was performed. The small heat flux q (2) is given as an estimated value, and the temperature history of the steel material is calculated from the heat flux. The temperature history of the steel material obtained by actual measurement is considered to be intermediate between these calculated values. Therefore, it is considered that the heat flux closer to the temperature history of the steel material obtained by actual measurement can be calculated by interpolating so as to eliminate the difference. Alternatively, even when the temperature history measured is not in the middle of the estimated value, by performing extrapolation so that the difference approaches 0, the correct heat flux is similarly set as the next estimated value based on the actually measured value. Obtainable. In this embodiment, as shown in FIG. 4, by using linear interpolation from coordinates (q (1), S (1)) and coordinates (q (2), S (2)), the target S = It is possible to obtain the heat flux q (3) satisfying 0 at once. More precisely, a heat flux q satisfying | S | <δ is obtained with respect to a preset value δ that S is considered to have converged.
なお、本実施形態で用いた繰り返し計算手法は、セカント法として一般に知られるものである。本実施形態では、収束の目標関数Sを、実測値Yと数値解析値Tとの温度差とすることで、収束計算にセカント法を適用した。このように、セカント法を、表面熱流束を逆算により求める問題に適用することで、従来と同等の逆算を、計算負荷を低減することにより大幅に計算時間を短縮して行うことができる。 Note that the iterative calculation method used in this embodiment is generally known as a secant method. In the present embodiment, the secant method is applied to the convergence calculation by setting the target function S for convergence as a temperature difference between the actual measurement value Y and the numerical analysis value T. In this way, by applying the secant method to the problem of obtaining the surface heat flux by back calculation, it is possible to perform back calculation equivalent to the conventional one by greatly reducing the calculation time by reducing the calculation load.
また、上記式(5)では、目標関数Sを、実測値と数値解析値との温度差の1乗としたが、1乗以外の奇数乗でもよく、例えば3乗や5乗にすることで、温度差が大きいときには目標関数Sがより0から遠ざかるようになり、目標関数Sに対する温度差の重みづけが可能となる。 In the above formula (5), the target function S is set to the first power of the temperature difference between the actual measurement value and the numerical analysis value. However, the target function S may be an odd power other than the first power. When the temperature difference is large, the target function S is further away from 0, and the temperature difference with respect to the target function S can be weighted.
なお、上記実施形態では、繰り返し計算手法としてセカント法についてのみ説明したが、繰り返し計算手法としては、二分法も知られている。図5は、異なる繰り返し計算手法の実施形態として二分法を用いた場合の計算のイメージを示す。 In the above embodiment, only the secant method has been described as the iterative calculation method. However, a dichotomy method is also known as the iterative calculation method. FIG. 5 shows an image of calculation when the bisection method is used as an embodiment of a different iterative calculation method.
先ず、S<0となるような熱流束qと、S>0となるような熱流束qを、実際に熱伝導解析を行って適宜求める。このときのqとSを、それぞれ(q(1),S(1))、(q(2),S(2))とする。 First, a heat flux q that satisfies S <0 and a heat flux q that satisfies S> 0 are appropriately determined by actually conducting a heat conduction analysis. Let q and S at this time be (q (1), S (1)), (q (2), S (2)), respectively.
次に、q(3)=(q(1)+q(2))/2となるときのS(3)を求める。さらに、S(3)>0の場合には、q(4)=(q(1)+q(3))/2としてS(4)を求め、図5に示すようにS(3)<0の場合には、q(4)=(q(2)+q(3))/2としてS(4)を求める。これを繰り返すことで、S=0(より正確には|S|<δ)を満たすqを見つける。 Next, S (3) when q (3) = (q (1) + q (2)) / 2 is obtained. Further, when S (3)> 0, S (4) is obtained as q (4) = (q (1) + q (3)) / 2, and S (3) <0 as shown in FIG. In this case, S (4) is obtained as q (4) = (q (2) + q (3)) / 2. By repeating this, q satisfying S = 0 (more accurately, | S | <δ) is found.
以上のように、本発明は、計算システムに対して、実験による実測値のインプット情報と、アウトプット情報としての数値解析値のみから、セカント法または二分法等の求解法を用いて繰り返し計算を行うことにより、少ない繰り返し計算回数で熱流束の逆算が可能となり、計算負荷を軽減しつつ、既存の手法と同等の精度で、熱流束の高速な推定計算を行うことができる。 As described above, the present invention makes it possible to repeatedly calculate a calculation system using only a solution method such as a secant method or a bisection method from only input information of experimentally measured values and numerical analysis values as output information. By doing so, the heat flux can be calculated backward with a small number of iterations, and the heat flux can be estimated at high speed with the same accuracy as existing methods while reducing the calculation load.
実験時の温度測定は、熱電対やサーモグラフィー等、任意の温度検出手段により行えばよい。また、上記実施形態は、鋼板の冷却を対象として説明したが、鋼材の表面熱流束を求めるという点では加熱も同様であり、加熱による熱流束を求めるためにも使用できる。さらに、加熱と冷却を繰り返す場合も同様に実施可能である。 The temperature measurement during the experiment may be performed by any temperature detection means such as a thermocouple or thermography. Moreover, although the said embodiment demonstrated the cooling of a steel plate as object, heating is the same also in the point of calculating | requiring the surface heat flux of steel materials, and it can be used also for calculating | requiring the heat flux by heating. Furthermore, it can be similarly performed when heating and cooling are repeated.
以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.
本発明の効果を検証するため、以下の数値解析を行った。 In order to verify the effect of the present invention, the following numerical analysis was performed.
先ず、図6(a)に示すような厚さ28mmの高温鋼材1の冷却を想定し、初期温度850℃の鋼板の表面に、熱伝達係数5000W/(m2・K)を与え、鋼板の冷却過程を数値解析により求めた。鋼材1の裏面は断熱状態とする。なお、この数値解析は、市販の計算ソフトなど、任意の手段で実施することができる。
First, assuming the cooling of the high-
鋼材1の温度変化は、表面から1.5mmの位置を測温点2として記録した。解析結果としての温度の経時変化を図6(b)に、表面熱流束の経時変化を図6(c)に示す。図6(b)の温度変化が、上記式(2)および式(4)におけるYに相当する。
The temperature change of the
そして、図6(b)の温度変化を実現できるような熱流束の逆算を、上述の本発明の実施形態にかかる計算方法(本発明例)および従来の計算方法(従来例)によって行った。図7(a)は本発明例による計算結果であり、図7(b)は従来例による計算結果である。本発明例により得られた結果は、図6(c)に示す実際の熱流束に十分近く、従来例と同等の精度であることが示された。また、この計算に要した時間は、従来例を100とすると、本発明例は25であり、大幅な時間短縮を図ることができた。 And the back calculation of the heat flux which can implement | achieve the temperature change of FIG.6 (b) was performed by the calculation method (invention example) concerning the above-mentioned embodiment of this invention, and the conventional calculation method (conventional example). FIG. 7A shows the calculation result according to the example of the present invention, and FIG. 7B shows the calculation result according to the conventional example. The result obtained by the example of the present invention was sufficiently close to the actual heat flux shown in FIG. 6C, and it was shown that the accuracy was equal to that of the conventional example. The time required for this calculation is 25 in the example of the present invention, assuming that the conventional example is 100, and the time can be greatly reduced.
上記実施例1の温度変化は数値解析値であるが、実際の測定値では、測定誤差等のノイズが生じる。そのため、通常、実測値はノイズフィルタを通してから解析が行われる。そこで、実施例1の温度変化に±2℃の範囲のランダムノイズを加え、さらにこれに対して前後1秒で移動平均した温度変化を与えて、実施例1と同様に、本発明例および従来例によって表面熱流束の逆算を行った。図8(a)は本発明例による計算結果であり、図8(b)は従来例による計算結果である。この場合も、実施例1と同様、本発明例により、図6(c)に示す実際の熱流束に十分近く、従来例と同等の精度の結果が得られることが示された。また、この計算に要した時間は、実施例1の従来例を100とすると、本実施例の従来例は800、本発明例は実施例1と同じ25であり、極めて短い時間で計算することができた。 Although the temperature change in Example 1 is a numerical analysis value, noise such as a measurement error occurs in the actual measurement value. For this reason, the actual measurement value is usually analyzed after passing through a noise filter. Therefore, by adding random noise in the range of ± 2 ° C. to the temperature change of Example 1, and further giving a temperature change obtained by moving average in 1 second before and after this, the example of the present invention and the conventional example are the same as Example 1. The surface heat flux was calculated back by way of example. FIG. 8A shows the calculation result according to the example of the present invention, and FIG. 8B shows the calculation result according to the conventional example. Also in this case, as in Example 1, it was shown that the example of the present invention is sufficiently close to the actual heat flux shown in FIG. The time required for this calculation is 100 for the conventional example of the first embodiment. The conventional example of the present embodiment is 800, and the present invention example is 25, which is the same as the first embodiment. I was able to.
本発明は、鉄鋼製造プロセスにおける連続鋳造機の二次冷却、熱延や厚板などの加速冷却設備、各種鋼材の熱処理設備等における被測定物の熱流束の推定に適用でき、被測定物の生産性向上、歩留り向上に関する改善検討や、新規設備の設計手法の開発に役立てることができる。 The present invention can be applied to estimation of the heat flux of an object to be measured in secondary cooling of a continuous casting machine in an iron and steel manufacturing process, accelerated cooling equipment such as hot rolling and thick plates, heat treatment equipment for various steel materials, etc. It can be used for improvement studies on productivity improvement and yield improvement, and development of design methods for new equipment.
1 鋼材
2 測温点
1
Claims (4)
任意の異なる2種類の熱流束を与えて、前記熱処理部材について熱伝導解析を行い、温度履歴の数値解析値をそれぞれ算出する工程と、
温度履歴の実測値と前記数値解析値との差の奇数乗を目標関数とし、前記目標関数の収束計算を求解法により行う工程と、を有し、
前記目標関数が収束したときの熱流束の値を、前記実測値が測定されたときの表面熱流束とすることを特徴とする、熱処理部材の表面熱流束の推定方法。 Measuring the temperature history during heat treatment of the heat treatment member;
Two different heat fluxes are given, a heat conduction analysis is performed on the heat treatment member, and a numerical analysis value of the temperature history is calculated,
A target function is an odd power of the difference between the measured value of the temperature history and the numerical analysis value, and a convergence calculation of the target function is performed by a solution method.
A method of estimating a surface heat flux of a heat treatment member, wherein a value of a heat flux when the target function converges is a surface heat flux when the measured value is measured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016046592A JP6620610B2 (en) | 2016-03-10 | 2016-03-10 | Method for estimating surface heat flux of heat-treated members |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016046592A JP6620610B2 (en) | 2016-03-10 | 2016-03-10 | Method for estimating surface heat flux of heat-treated members |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017161382A JP2017161382A (en) | 2017-09-14 |
JP6620610B2 true JP6620610B2 (en) | 2019-12-18 |
Family
ID=59856717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016046592A Active JP6620610B2 (en) | 2016-03-10 | 2016-03-10 | Method for estimating surface heat flux of heat-treated members |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6620610B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111504503A (en) * | 2020-04-28 | 2020-08-07 | 广东电网有限责任公司 | Cooling control system of power transformer |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07191965A (en) * | 1993-12-27 | 1995-07-28 | Mitsubishi Electric Corp | Method and device for designing and estimating the objective system |
JP3769164B2 (en) * | 2000-02-28 | 2006-04-19 | 新日本製鐵株式会社 | Blast furnace bottom condition estimation and prediction method |
JP4299554B2 (en) * | 2003-02-21 | 2009-07-22 | 新日本製鐵株式会社 | Inverse problem analysis method, apparatus, computer program, and computer-readable storage medium |
JP4695376B2 (en) * | 2003-10-10 | 2011-06-08 | 新日本製鐵株式会社 | Heating or cooling characteristic evaluation method and apparatus, reaction vessel operation management method and apparatus, computer program, and computer-readable recording medium |
-
2016
- 2016-03-10 JP JP2016046592A patent/JP6620610B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017161382A (en) | 2017-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | Evaluation of heat transfer coefficient during heat treatment by inverse analysis | |
Najafi et al. | A filter based solution for inverse heat conduction problems in multi-layer mediums | |
Deng et al. | FEM prediction of welding residual stresses in a SUS304 girth-welded pipe with emphasis on stress distribution near weld start/end location | |
JP4658818B2 (en) | Temperature estimation method and apparatus | |
Chen et al. | Inverse problem of estimating the heat flux at the roller/workpiece interface during a rolling process | |
Lee et al. | Inverse heat transfer analysis of a functionally graded fin to estimate time-dependent base heat flux and temperature distributions | |
CN105586476B (en) | High-strength steel quenching technical optimization method based on numerical simulation technology | |
Yang et al. | Estimation of heat flux and temperature distributions in a composite strip and homogeneous foundation | |
Mohammadiun et al. | Estimation of the time-dependent heat flux using the temperature distribution at a point by conjugate gradient method | |
CN105046030B (en) | The preparation method of the aluminium alloy element quenching process coefficient of heat transfer under the conditions of Three-dimensional Heat-transfer based on FInite Element | |
Su | Geometry estimation of the furnace inner wall by an inverse approach | |
Parikh et al. | A comprehensive experimental and numerical estimation of thermal contact conductance | |
Lee et al. | Estimation of temperature distributions and thermal stresses in a functionally graded hollow cylinder simultaneously subjected to inner-and-outer boundary heat fluxes | |
Chen et al. | Investigation of heat transfer coefficient in two‐dimensional transient inverse heat conduction problems using the hybrid inverse scheme | |
Weisz-Patrault et al. | Evaluation of temperature field and heat flux by inverse analysis during steel strip rolling | |
Wang et al. | Inverse evaluation of equivalent contact heat transfer coefficient in hot stamping of boron steel | |
Wan et al. | Application of unscented Rauch-Tung-Striebel smoother to nonlinear inverse heat conduction problems | |
JP6620610B2 (en) | Method for estimating surface heat flux of heat-treated members | |
Yang et al. | Estimation of thermal contact resistance and temperature distributions in the pad/disc tribosystem | |
Zhang et al. | Contact heat transfer analysis between mechanical surfaces based on reverse engineering and FEM | |
Miao et al. | Inverse estimation of transient heat flux to slab surface | |
JP2017125754A (en) | Heat conductivity calculation method for treatment object, and heat treatment method for treatment object using the same | |
Nowak et al. | Application of Bezier surfaces to the 3-D inverse geometry problem in continuous casting | |
JP2010008312A (en) | Method and device for evaluating thermal conductivity | |
JP2008151739A (en) | Temperature estimation method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181105 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20190605 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190906 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191023 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191105 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6620610 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |