JP2017125754A - Heat conductivity calculation method for treatment object, and heat treatment method for treatment object using the same - Google Patents

Heat conductivity calculation method for treatment object, and heat treatment method for treatment object using the same Download PDF

Info

Publication number
JP2017125754A
JP2017125754A JP2016004794A JP2016004794A JP2017125754A JP 2017125754 A JP2017125754 A JP 2017125754A JP 2016004794 A JP2016004794 A JP 2016004794A JP 2016004794 A JP2016004794 A JP 2016004794A JP 2017125754 A JP2017125754 A JP 2017125754A
Authority
JP
Japan
Prior art keywords
heat transfer
temperature
fluid
test piece
cooling curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016004794A
Other languages
Japanese (ja)
Inventor
克実 市谷
Katsumi Ichitani
克実 市谷
東英 巨
Haruhide Kyo
東英 巨
英夫 金森
Hideo Kanamori
英夫 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Chikoji Gakuen Educational Foundation
Original Assignee
Idemitsu Kosan Co Ltd
Chikoji Gakuen Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Chikoji Gakuen Educational Foundation filed Critical Idemitsu Kosan Co Ltd
Priority to JP2016004794A priority Critical patent/JP2017125754A/en
Publication of JP2017125754A publication Critical patent/JP2017125754A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat conductivity calculation method for a treatment object capable of taking heat conductivity in multiple locations into account in order to highly accurately compute a calculated value of a distortion value of heat treatment simulation.SOLUTION: A heat conductivity calculation method for a treatment object implements: a step S1 for measuring a first cooling curve that gives a temporal change of an interface temperature between a first surface and a fluid and a second cooling curve that gives a temporal change of an interface temperature between a second surface and the fluid, regarding the first surface and the second surface of a test piece formed from a tabular body modelling the treatment object; a step S2 for setting a heat conduction equation based on the measured first cooling curve and second cooling curve and identifying heat conductivity of an interface with the fluid on the first surface and heat conductivity of an interface with the fluid on the second surface; a step S3 for estimating temperature distribution within the test piece based on the identified heat conductivity; and a step S6 for finally identifying the heat conductivity when a difference between the estimated temperature distribution and a measurement is settled within a predetermined range.SELECTED DRAWING: Figure 11

Description

本発明は、処理対象の熱伝達率算出方法、及びこれを用いた処理対象の熱処理方法に関する。   The present invention relates to a heat transfer coefficient calculation method for a processing target and a heat processing method for the processing target using the same.

従来、熱処理シミュレーションの普及に伴い、鋼の焼入れ時の硬さや、焼入れ歪み等をCAEコンピュータシミュレーションで計算できるようになってきている。シミュレーションには、金属材料の機械的特性や、冶金学的な相変化、冷却剤の熱伝達率などの様々な物性データが必要となる。このうち、金属材料の物性に関しては、各種の検討で物性が取得され、データベース化されている。   Conventionally, with the widespread use of heat treatment simulations, it has become possible to calculate the hardness at the time of quenching of steel, quenching distortion, and the like by CAE computer simulation. The simulation requires various physical property data such as mechanical properties of metal materials, metallurgical phase change, and heat transfer coefficient of the coolant. Among these, with respect to the physical properties of metal materials, the physical properties have been acquired through various studies and compiled into a database.

一方、冷却剤の熱伝達率に関しては、例えば、JIS K2242の熱処理油冷却試験により測定された冷却曲線から熱伝達率を算出する方法が知られている(例えば、特許文献1、特許文献2)。
熱処理シミュレーションを活用することにより、鋼の焼入れ時の硬さに関しては、シミュレーションの計算値と、実測値とが略一致することが確認された。
そして、所定の熱処理油を用いて熱処理対象を熱処理するに際し、予め、冷却剤による熱処理対象の冷却曲線を測定し、冷却曲線に基づいて冷却剤の熱伝達率を同定し、同定された熱伝達率に基づいて、冷却剤の温度制御等を行いながら、熱処理対象の冷却を行うことにより、所望の硬さを有する熱処理対象を得られる、という効果が得られる。
On the other hand, with respect to the heat transfer coefficient of the coolant, for example, a method of calculating the heat transfer coefficient from a cooling curve measured by a heat treatment oil cooling test of JIS K2242 is known (for example, Patent Document 1 and Patent Document 2). .
By utilizing the heat treatment simulation, it was confirmed that the calculated value of the simulation and the actually measured value substantially coincided with each other regarding the hardness at the time of quenching the steel.
Then, when heat-treating the heat treatment object using a predetermined heat treatment oil, the cooling curve of the heat treatment object by the coolant is measured in advance, the heat transfer coefficient of the coolant is identified based on the cooling curve, and the identified heat transfer The effect of obtaining a heat treatment target having a desired hardness can be obtained by cooling the heat treatment target while controlling the temperature of the coolant based on the rate.

特開平07−146264号公報Japanese Patent Application Laid-Open No. 07-146264 特開2006−266751号公報JP 2006-266751 A

前記特許文献1及び前記特許文献2に記載の技術では、熱処理対象全体が同一の熱伝達率であるとみなして計算し、求められた熱伝達率に基づいて、熱処理対象の冷却条件等を決定していた。
この場合、硬さに関しては、計算値と実測値が一致するようになったが、焼入れ歪みに関しては、計算値と実測値があまり一致しないという課題がある。
In the techniques described in Patent Document 1 and Patent Document 2, the heat treatment object is considered to have the same heat transfer coefficient, and the cooling condition for the heat treatment object is determined based on the obtained heat transfer coefficient. Was.
In this case, with respect to hardness, the calculated value and the actually measured value coincide with each other, but with respect to the quenching distortion, there is a problem that the calculated value and the actually measured value do not coincide with each other.

本発明の目的は、熱処理シミュレーションの歪み値の計算値と、実測値の一致させることのできる処理対象の熱伝達率算出方法、及びこれを用いた処理対象の熱処理方法を提供することにある。   An object of the present invention is to provide a heat transfer coefficient calculation method for a treatment target that can match a calculated value of a distortion value of a heat treatment simulation with an actual measurement value, and a heat treatment method for a treatment target using the method.

本発明に係る処理対象の熱処理方法は、処理対象を、流体によって冷却する処理対象の熱伝達率算出方法であって、以下の工程からなることを特徴とする処理対象の熱伝達率算出方法。
第1工程:前記処理対象を模した板状体からなる試験片の第1表面、及び第2表面のそれぞれについて、前記第1表面及び前記流体間の界面温度の時間変化を与える第1冷却曲線と、前記第2表面及び前記流体間の界面温度の時間変化を与える第2冷却曲線とを測定する。
第2工程:測定された第1冷却曲線及び第2冷却曲線に基づいて、下記式(1)で表される熱伝導方程式を設定し、下記式(2)、式(3)で表される境界条件と、式(4)で表される初期条件とに基づいて、前記第1表面における前記流体との界面の熱伝達率hと、前記第2表面における前記流体との界面の熱伝達率hとを同定する。
第3工程:同定された熱伝達率h及び熱伝達率hに基づいて、前記試験片内部の温度分布を推定する。
第4工程:推定された温度分布に基づいて、熱伝達率h、hの修正を行い、第1工程からを繰り返し、前記推定された温度分布と測定値との差が所定の範囲以内となったら熱伝達率h、hの最終的な同定を行う。
A heat treatment method for a processing target according to the present invention is a heat transfer coefficient calculation method for a processing target in which the processing target is cooled by a fluid, and includes the following steps.
1st process: The 1st cooling curve which gives the time change of the interface temperature between the 1st surface and the fluid about each of the 1st surface of the test piece which consists of a plate-like object which imitates the treating object, and the 2nd surface And a second cooling curve that gives a temporal change in the interface temperature between the second surface and the fluid.
Second step: Based on the measured first cooling curve and second cooling curve, a heat conduction equation represented by the following equation (1) is set, and is represented by the following equations (2) and (3). Based on the boundary condition and the initial condition expressed by Equation (4), the heat transfer coefficient h 1 at the interface with the fluid on the first surface and the heat transfer at the interface with the fluid on the second surface. The rate h 2 is identified.
Third step: A temperature distribution inside the test piece is estimated based on the identified heat transfer coefficient h 1 and heat transfer coefficient h 2 .
Fourth step: The heat transfer coefficients h 1 and h 2 are corrected based on the estimated temperature distribution, and the steps from the first step are repeated, and the difference between the estimated temperature distribution and the measured value is within a predetermined range. Then, the final identification of the heat transfer coefficients h 1 and h 2 is performed.

Figure 2017125754
x:第1表面から第2表面に至る厚み方向位置(m,0≦x≦板状体の厚さL)
t:時間(s)
T(x,t):任意の時間における任意の厚み方向位置の温度(K)
α:熱拡散率(m/s)
Figure 2017125754
x: Position in the thickness direction from the first surface to the second surface (m, 0 ≦ x ≦ thickness L of the plate-like body)
t: Time (s)
T (x, t): Temperature (K) at an arbitrary position in the thickness direction at an arbitrary time
α: Thermal diffusivity (m 2 / s)

Figure 2017125754
:第1表面の熱伝導率(W/(m・K))
Figure 2017125754
k 1 : thermal conductivity of first surface (W / (m · K))

Figure 2017125754
:第2表面の熱伝導率(W/(m・K))
Figure 2017125754
k 2 : thermal conductivity of the second surface (W / (m · K))

[数4]
T=F(x)(t=0,0≦x≦L)・・・(4)
T:初期における試験片の厚さ方向の温度分布(K)
[Equation 4]
T = F (x) (t = 0, 0 ≦ x ≦ L) (4)
T: Initial temperature distribution in the thickness direction of the specimen (K)

この発明によれば、熱処理シミュレーションの歪み値の計算値と、実測値の一致させることのできる処理対象の熱伝達率算出方法を実現できる。   According to the present invention, it is possible to realize a heat transfer coefficient calculation method for a processing target that can match a calculated value of a distortion value of a heat treatment simulation with an actually measured value.

本発明の処理対象の熱処理方法は、前記の処理対象の熱伝達率算出方法を用いて熱伝達率の同定を行った後、処理対象の姿勢を変更して、再度前記の処理対象の熱伝達率算出方法を用いて温度分布を推定し、処理対象の温度分布が大きくなったら、処理対象の姿勢を逆向きに変更し、処理対象の温度分布が小さくなったら、処理対象の姿勢を同方向にさらに変更する。   In the heat treatment method of the present invention, the heat transfer coefficient is identified using the heat transfer coefficient calculation method of the process object, and then the posture of the process object is changed and the heat transfer of the process object is performed again. Estimate the temperature distribution using the rate calculation method.If the temperature distribution of the processing target increases, change the orientation of the processing target in the reverse direction.If the temperature distribution of the processing target decreases, change the orientation of the processing target in the same direction. Further changes to

本発明では、
前記第1表面の冷却曲線及び前記第2表面の冷却曲線を測定する工程では、
前記試験片には、前記試験片の外周端面の厚さ方向中央から、前記第1表面の中央に貫通する第1孔と、前記試験片の外周端面の厚さ方向中央から、前記第2表面の中央に貫通する第2孔が形成され、
前記第1孔及び前記第2孔のそれぞれに熱電対の挿入することにより、前記第1表面及び前記流体間の界面温度、前記第2表面及び前記流体間の界面温度を測定するのが好ましい。
In the present invention,
In the step of measuring the cooling curve of the first surface and the cooling curve of the second surface,
The test piece includes a first hole penetrating from the center in the thickness direction of the outer peripheral end surface of the test piece to the center of the first surface, and the second surface from the center in the thickness direction of the outer peripheral end surface of the test piece. A second hole penetrating in the center of the
It is preferable to measure the interface temperature between the first surface and the fluid and the interface temperature between the second surface and the fluid by inserting a thermocouple into each of the first hole and the second hole.

この発明によれば、流体と処理対象の界面に極めて近い位置で温度測定を行うことができるため、高精度な測定を行うことができる。   According to the present invention, temperature measurement can be performed at a position very close to the interface between the fluid and the object to be processed, so that highly accurate measurement can be performed.

本発明の実施形態に係る金属の表面温度測定装置の構造を表す模式図。The schematic diagram showing the structure of the metal surface temperature measuring apparatus which concerns on embodiment of this invention. 前記実施形態における被測定体の構造を表す側面図。The side view showing the structure of the to-be-measured body in the said embodiment. 前記実施形態における試験片の構造を表す側面図及び平面図。The side view and top view showing the structure of the test piece in the said embodiment. 前記実施形態における熱伝達率の同定を説明するための模式図。The schematic diagram for demonstrating identification of the heat transfer rate in the said embodiment. 前記実施形態における熱伝達率の同定を説明するためのグラフ。The graph for demonstrating identification of the heat transfer rate in the said embodiment. 前記実施形態における熱伝達率の同定を説明するためのグラフ。The graph for demonstrating identification of the heat transfer rate in the said embodiment. 前記実施形態における試験片の冷却曲線を表すグラフ。The graph showing the cooling curve of the test piece in the said embodiment. 前記実施形態における温度と熱伝達率の関係を表すグラフ。The graph showing the relationship between the temperature and heat transfer coefficient in the embodiment. 前記実施形態における試験片の時間毎の温度分布を表すグラフ。The graph showing the temperature distribution for every time of the test piece in the said embodiment. 前記実施形態における試験片の姿勢・位置変更を表す模式図。The schematic diagram showing the attitude | position and position change of the test piece in the said embodiment. 前記実施形態における作用を説明するためのフローチャート。The flowchart for demonstrating the effect | action in the said embodiment.

以下、本発明の実施の一形態について説明する。
[1]表面温度測定装置の構成
図1には、本発明の実施形態に係る金属の表面温度測定装置が示されている。表面温度測定装置は、加熱器としての加熱用電気炉1と、処理対象の冷却容器2と、被測定体3と、温度計4及び記録計4Aを備えている。
加熱用電気炉1は、被測定体3を所定温度(約800℃)まで加熱するためのものであり、強い磁場または交番磁場を炉内に形成しない無誘電式のものなどを用いる。冷却容器2は、検査対象となる冷却剤、例えば潤滑油を入れる容器であり、被測定体3の下方に配置されている。温度計4は、熱電対の部分を有しており、その測定部は被測定体3の内部に組み込まれており、被測定体表面の温度を測定する。記録計4Aは、温度計4が測定した温度を記録する。
Hereinafter, an embodiment of the present invention will be described.
[1] Configuration of Surface Temperature Measuring Device FIG. 1 shows a metal surface temperature measuring device according to an embodiment of the present invention. The surface temperature measuring device includes a heating electric furnace 1 as a heater, a cooling container 2 to be processed, a measurement object 3, a thermometer 4 and a recorder 4A.
The heating electric furnace 1 is for heating the object to be measured 3 to a predetermined temperature (about 800 ° C.), and a non-dielectric type which does not form a strong magnetic field or an alternating magnetic field in the furnace is used. The cooling container 2 is a container for storing a coolant to be inspected, for example, lubricating oil, and is disposed below the measurement object 3. The thermometer 4 has a thermocouple portion, and the measurement unit is incorporated in the measured object 3 to measure the temperature of the measured object surface. The recorder 4A records the temperature measured by the thermometer 4.

図2には、被測定体3の側面図が示されている。被測定体3は、移動手段3A(図1)により上下動可能な支持体5と、この支持体5に回動可能に支持された試験片6とを備える。なお、以下の説明では、試験片6の表面6Cを本発明の第1表面、裏面6Dを本発明の第2表面として説明する。
試験片6は、図3に示されるように、金属製の円板状体から構成され、外周端面となる円周側面には、孔6A、6Bが形成されており、熱電対7が挿入されている。
この試験片6は、直径35mm、厚さ10mmのSUS303から構成されている。
孔6Aは、円周側面略中央から一方の試験片6の表面6Cまで貫通し、孔6Bは、円周側面略中央から他方の裏面6Dまで貫通している。この孔6A、6Bの表面近傍には、熱電対7の温度検出子となる熱電対を最表面に配置し、表面6C及び裏面6Dと冷却流体の界面に極めて近い部分の温度の測定が可能となっている。
FIG. 2 shows a side view of the measured object 3. The measured object 3 includes a support 5 that can be moved up and down by a moving means 3A (FIG. 1), and a test piece 6 that is rotatably supported by the support 5. In the following description, the surface 6C of the test piece 6 will be described as the first surface of the present invention, and the back surface 6D will be described as the second surface of the present invention.
As shown in FIG. 3, the test piece 6 is made of a metal disk-like body. Holes 6 </ b> A and 6 </ b> B are formed on the circumferential side surface serving as the outer peripheral end surface, and the thermocouple 7 is inserted. ing.
The test piece 6 is made of SUS303 having a diameter of 35 mm and a thickness of 10 mm.
The hole 6A penetrates from approximately the center of the circumferential side surface to the surface 6C of one test piece 6, and the hole 6B penetrates from the approximately center of the circumferential side surface to the other back surface 6D. Near the surface of the holes 6A and 6B, a thermocouple serving as a temperature detector of the thermocouple 7 is arranged on the outermost surface, and it is possible to measure the temperature of the portion very close to the interface between the front surface 6C and the rear surface 6D and the cooling fluid. It has become.

[2]熱伝達率h,hの同定
前述した式(1)〜式(4)の導入と、熱伝達率h,hの同定は、以下のようにして得られる。
今、図4に示されるように、試験片6の表面6C及び裏面6Dから熱伝達率h1,h2で、温度T=0の冷媒で冷却される厚さLの無限平板の熱伝導式は、下記式(5)で表される。
[2] Identification of heat transfer coefficients h 1 and h 2 The introduction of the above-described equations (1) to (4) and the identification of the heat transfer factors h 1 and h 2 are obtained as follows.
Now, as shown in FIG. 4, the heat conduction equation of an infinite flat plate of thickness L that is cooled by the refrigerant with the temperature T = 0 from the front surface 6C and the rear surface 6D of the test piece 6 with the heat transfer coefficients h1 and h2 is It is represented by the following formula (5).

Figure 2017125754
0≦x≦L,t>0
Figure 2017125754
0 ≦ x ≦ L, t> 0

境界条件は、下記式(6)、式(7)で表される。   The boundary condition is expressed by the following formulas (6) and (7).

Figure 2017125754
x=0,t>0
Figure 2017125754
x=L,t>0
Figure 2017125754
x = 0, t> 0
Figure 2017125754
x = L, t> 0

初期条件は、下記式(8)で表現することができる。   The initial condition can be expressed by the following formula (8).

Figure 2017125754
t=0,0≦x≦L
Figure 2017125754
t = 0, 0 ≦ x ≦ L

これを解くために、厚さ方向の任意の場所xと時間tの関数である温度Tを、下記式(9)のように変数分離する。   In order to solve this, the temperature T, which is a function of an arbitrary location x in the thickness direction and time t, is variable-separated as in the following equation (9).

Figure 2017125754
Figure 2017125754

このように変数分離すると、三角関数の直交関係を利用し、固有値問題を解くと、下記式(10)に示される解が導かれる。   When the variables are separated in this way, the eigenvalue problem is solved by using the orthogonal relationship of trigonometric functions, and the solution shown in the following equation (10) is derived.

Figure 2017125754
Figure 2017125754

ここで、N(β)は、下記式(11)である。 Here, N (β m ) is the following formula (11).

Figure 2017125754
Figure 2017125754

Tはt→0のとき、初期温度F(x)となるから、以下の式(12)が導かれる。   Since T is the initial temperature F (x) when t → 0, the following equation (12) is derived.

Figure 2017125754
0<x<L
Figure 2017125754
0 <x <L

固有関数としては、以下の式(13)のようになる。   As an eigenfunction, the following equation (13) is obtained.

Figure 2017125754
Figure 2017125754

よって、熱伝達率を表す固有値は、以下の式(14)のようになる。   Therefore, the eigenvalue representing the heat transfer coefficient is represented by the following formula (14).

Figure 2017125754
Figure 2017125754

ノルムは、以下の式(15)のようになる。   The norm is represented by the following equation (15).

Figure 2017125754
Figure 2017125754

ここで、
α:熱拡散率(Thermal Diffusivity,m/s)
k:熱伝導度(Heat Conductivity,W/m・K)
c:比熱(Specific Heat,J/kg・K)
ρ:密度(Density,kg/m
h:熱伝達率(Heat Transfer Coefficients,W/m・K)
とすると、H=h/k,H=h/k(m−1)となる。
here,
α: Thermal Diffusivity (m 2 / s)
k: Thermal conductivity (W / m · K)
c: Specific heat (Specific Heat, J / kg · K)
ρ: Density (Density, kg / m 3 )
h: Heat transfer coefficient (W / m 2 · K)
Then, H 1 = h 1 / k 1 and H 2 = h 2 / k 2 (m −1 ).

熱伝達率h,hの同定は、次の手順により求められる。
まず、経過時間tにおける試験片6の表面6Cの温度の測定値をTm1(i)、裏面6Dの温度をTm2(i)とすると、経過時間t+Δtにおける測定値は、
m1(i+1),ΔT=Tm1(i+1)−Tm1(i)
m2(i+1),ΔT=Tm2(i+1)−Tm2(i)
となる。
熱伝達率h,hの予想値は、図5に示される微小時間Δtに対する試験片6の表面6C及び裏面6Dの温度変化率(冷却速度)ΔT/Δt,ΔT/Δtを同定プロセスの初期値の目安に用いた。
The identification of the heat transfer coefficients h 1 and h 2 is obtained by the following procedure.
First, when the measured value of the temperature of the front surface 6C of the test piece 6 at the elapsed time t is T m1 (i) and the temperature of the back surface 6D is T m2 (i), the measured value at the elapsed time t + Δt is
T m1 (i + 1), ΔT 1 = T m1 (i + 1) −T m1 (i)
T m2 (i + 1), ΔT 2 = T m2 (i + 1) −T m2 (i)
It becomes.
The predicted values of the heat transfer rates h 1 and h 2 identify the temperature change rates (cooling rates) ΔT 1 / Δt and ΔT 2 / Δt of the front surface 6C and the back surface 6D of the test piece 6 with respect to the minute time Δt shown in FIG. Used as a guide for the initial value of the process.

前述した式(14)は、固有値βとH,Hの関係を示している。仮にH=H=100とした場合、式(14)の関係を図に表すと、図6のようになる。
≠Hの場合、固有値βについては、m=60まで式(13)を計算した。
ΔT/ΔT∝H/Hを目安の値として用いて、まず、H,Hを暫定的に求め、次に温度測定結果に対して、温度計算値との差を0.02℃以下となるように、両面の暫定H,Hをそれぞれ修正し、最終のH,Hの同定を行う。
用いた冷却曲線を図7、同定した各温度における熱伝達率を図8、試験片6の時間毎の温度分布を図9に示す。
The above-described equation (14) indicates the relationship between the eigenvalue β m and H 1 and H 2 . Assuming that H 1 = H 2 = 100, the relationship of equation (14) is shown in FIG.
When H 1 ≠ H 2 , for the eigenvalue β m , Equation (13) was calculated until m = 60.
Using ΔT 1 / ΔT 2 ∝H 1 / H 2 as a guide value, first, H 1 and H 2 are provisionally obtained, and then the difference between the temperature measurement result and the temperature calculation value is set to 0. The provisional H 1 and H 2 on both sides are corrected so as to be 02 ° C. or lower, and the final H 1 and H 2 are identified.
FIG. 7 shows the cooling curve used, FIG. 8 shows the heat transfer coefficient at each identified temperature, and FIG. 9 shows the temperature distribution of the test piece 6 over time.

具体的な熱伝達率の算出は、3つのサブルーチンによって行われ、以下のように行う。
[2-1]固有値算出のサブルーチン
固有値βは、板厚L、温度依存α、熱伝導率kを設定し、下記式(16)の関係から算出する。
The specific heat transfer coefficient is calculated by three subroutines as follows.
[2-1] Eigenvalue Calculation Subroutine The eigenvalue β m is calculated from the relationship of the following formula (16) by setting the plate thickness L, the temperature dependence α, and the thermal conductivity k.

Figure 2017125754
Figure 2017125754

具体的には、左辺を大きい値から減少させ、右辺に一致するβ を複数個、例えば、60個見出す。
このとき最初に用いるH,Hは、図5に示すような値を代入する。
その後、後述する温度比較サブルーチンによって測定値に一致するH,Hを求めていく。
まず、式(16)の左辺の値の大きい方からある値の間隔で減少させていき、一致する点を通り越して、式(16)の右辺の値が負になった場合、値の間隔を1/10にして増加させ、これがまた通り越したら、値の間隔をまた1/10にして減少させ、これを繰り返して交点を求める。
Specifically, the left side is decreased from a large value, and a plurality of, for example, 60 β m * s matching the right side are found.
At this time, H 1 and H 2 used first are substituted with values as shown in FIG.
Thereafter, H 1 and H 2 that match the measured values are obtained by a temperature comparison subroutine described later.
First, when the value on the left side of the equation (16) is decreased at a certain value interval and the value on the right side of the equation (16) becomes negative after passing through the matching point, the value interval is changed. If it passes by 1/10 and passes again, the value interval is again reduced by 1/10 and this is repeated to find the intersection.

次に、求めた60個の固有値β(m=1〜60)を用いて、下記式(17)に基づいて、T(x,t)の算出を行う。m→∞は、60個見出したβ を使って60回の総和を計算する。 Next, T * (x * , t) is calculated based on the following formula (17) using the obtained 60 eigenvalues β m (m = 1 to 60). For m → ∞, 60 sums are calculated using 60 found β m * .

Figure 2017125754
Figure 2017125754

[2-2]計算値と測定値の温度比較サブルーチン
算出された温度のうち、表面温度計算値を表面温度測定値と比較し、測定値に合致するまでH,Hを変更し、変更したH,Hに合致する60個のβ を求め、再び式(17)でT(x,t)を算出し、その温度を測定値と比較する、という手順を繰り返す。
なお、固有関数には、式(18)を用いる。

Figure 2017125754
[2-2] Temperature comparison subroutine between calculated value and measured value Of the calculated temperatures, the surface temperature calculated value is compared with the surface temperature measured value, and H 1 and H 2 are changed until they match the measured value. 60 β m * s that match H 1 and H 2 are calculated, T * (x * , t) is calculated again by Equation (17), and the temperature is compared with the measured value.
As the eigenfunction, equation (18) is used.
Figure 2017125754

なお、式(17)中のF(x)dxは、初期温度分布を用いて計算し、積分は台形数値積分を行う。 Note that F (x * ) dx * in the equation (17) is calculated using the initial temperature distribution, and the integral is a trapezoidal numerical integration.

[2-3]冷却曲線の読込のサブルーチン
まず、初期条件を設定するとともに、冷却曲線からデータを読み込む温度間隔を設定する。このときの初期温度から温度間隔を減じた時の温度を冷却曲線から読み取る。同時にそのときの時間を読み取り、その時間間隔を算出する。
初回は、板厚方向の各点の温度、すなわち冷却開始温度を初期条件に設定する。
次に、冷却曲線から読み取ったデータを、述する固有値算出のサブルーチン、計算値と測定値の比較のサブルーチンに入力する。
[2-3] Subroutine for reading the cooling curve First, initial conditions are set, and a temperature interval for reading data from the cooling curve is set. The temperature when the temperature interval is subtracted from the initial temperature at this time is read from the cooling curve. At the same time, the time is read and the time interval is calculated.
For the first time, the temperature at each point in the plate thickness direction, that is, the cooling start temperature is set as an initial condition.
Next, the data read from the cooling curve is input to the eigenvalue calculation subroutine and the calculation value / measurement value comparison subroutine described below.

固有値算出のサブルーチンで同定された熱伝達率結果、表面6Cの初期温度、裏面の初期温度、Δt後の表面6Cの温度、裏面6Dの温度を記録する。
このとき、式(10)では、板厚方向の温度分布が計算される。
計算された板厚方向の各点の温度分布を記録する。
各点の温度分布を次回の初期条件に設定する。
温度間隔の温度データを上述と同様に冷却曲線から読み取り、固有値計算のサブルーチン、計算値及び測定値の比較サブルーチンにデータを入力し、同定された熱伝達率及び低下した温度を記録する。ここで、板厚方向の各点の温度を次々回の初期条件に設定する。
The heat transfer coefficient result identified by the eigenvalue calculation subroutine, the initial temperature of the front surface 6C, the initial temperature of the back surface, the temperature of the front surface 6C after Δt, and the temperature of the back surface 6D are recorded.
At this time, in Equation (10), the temperature distribution in the plate thickness direction is calculated.
Record the calculated temperature distribution at each point in the thickness direction.
The temperature distribution at each point is set as the next initial condition.
The temperature data of the temperature interval is read from the cooling curve in the same manner as described above, and the data is input to the subroutine for calculating the eigen value, the subroutine for comparing the calculated value and the measured value, and the identified heat transfer coefficient and the decreased temperature are recorded. Here, the temperature at each point in the plate thickness direction is set as an initial condition one after another.

表面6C及び裏面6Dの熱伝達率h,hを同定するにあたっては、ある熱伝達率h,hとその級数解λnとからなる組(h,λn),(h,λn)を多数用意し、これらの熱伝達率h,hに対応する級数解λnを順次固有関数に代入して温度測定値に近い温度計算値を与える組(h,λn),(h,λn)を数組選定し、これらの組(h,λn),(h,λn)と温度計算値との関係から帰納法により回帰式を求め、この回帰式より温度測定値を与える熱伝達率h,hとその級数解λxnとを求め、この組を固有関数に代入し、その代入によって算出される温度計算値が温度測定値に一致するように、熱伝達率h,hを修正して同定する。
求めた、2面の熱伝達率h,hを用いて、市販の熱処理シミュレーションソフトを活用すれば、冷却ムラが生じた場合の熱処理歪を精度よく計算することができる。
市販の熱処理シミュレーションソフトとしては、Deform-HT((株)ヤマナカゴーキン)、COSMAP(有限会社アイデアマップ)、DANTE(Dante Solutions,Incorporated (USA))等が上げられる。
In identifying the heat transfer coefficients h 1 and h 2 of the front surface 6C and the back surface 6D, a set (h 1 , λn), (h 2 , λn) composed of a certain heat transfer coefficient h 1 , h 2 and its series solution λn. ) And a series (h 1 , λn), (h) in which series solutions λn corresponding to these heat transfer coefficients h 1 and h 2 are sequentially substituted into eigenfunctions to give a temperature calculation value close to the temperature measurement value. 2 , λn) are selected, and a regression equation is obtained from the relationship between these pairs (h 1 , λn), (h 2 , λn) and the calculated temperature, and a temperature measurement value is obtained from this regression equation. The heat transfer coefficients h 1 and h 2 to be given and the series solution λxn are obtained, and this set is substituted into the eigenfunction, and the heat transfer coefficient h is calculated so that the temperature calculation value calculated by the substitution matches the temperature measurement value. 1, to identify and correct the h 2.
By using commercially available heat treatment simulation software using the obtained heat transfer coefficients h 1 and h 2 of the two surfaces, it is possible to accurately calculate the heat treatment strain when cooling unevenness occurs.
Examples of commercially available heat treatment simulation software include Deform-HT (Yamanaka Gokin Co., Ltd.), COSMAP (idea map of limited company), DANTE (Dante Solutions, Incorporated (USA)) and the like.

[3]処理対象の姿勢制御及び作用
以上のようにして求められた試験片6の内部の温度分布を、図10に示されるように、種々の姿勢について行い、その姿勢毎の温度分布を把握する。
実際の処理対象の冷却時には、処理対象をまず一定の姿勢で冷却しながら、その際の処理対象の内部の温度分布を推定し、内部の温度分布の差が所定の閾値を超えたら、これを解消する方向に姿勢を変更する。
[3] Posture control and action of processing object The temperature distribution inside the test piece 6 obtained as described above is performed for various postures as shown in FIG. 10, and the temperature distribution for each posture is grasped. To do.
During actual cooling of the processing target, the processing target is first cooled in a certain posture, and the internal temperature distribution of the processing target at that time is estimated, and if the difference in internal temperature distribution exceeds a predetermined threshold, this is Change the posture in the direction to cancel.

具体的には、図11に示されるフローチャートに基づいて行う。
まず、試験片6を所定の姿勢で冷却容器2中に投入し、試験片6の表面6C及び裏面6Dの表面温度を測定し、表面6Cの第1冷却曲線及び裏面6Dの第2冷却曲線を測定する(工程S1:第1工程)。
次に、第1冷却曲線及び第2冷却曲線に基づいて表面6C及び裏面6Dの熱伝達率h,hの同定を行う(工程S2:第2工程)。
同定された熱伝達率h,hに基づいて、試験片6の内部の温度分布を推定する(工程S3:第3工程)。
Specifically, this is performed based on the flowchart shown in FIG.
First, the test piece 6 is put into the cooling container 2 in a predetermined posture, the surface temperatures of the front surface 6C and the back surface 6D of the test piece 6 are measured, and the first cooling curve of the front surface 6C and the second cooling curve of the back surface 6D are obtained. Measure (step S1: first step).
Next, the heat transfer coefficients h 1 and h 2 of the front surface 6C and the back surface 6D are identified based on the first cooling curve and the second cooling curve (step S2: second step).
Based on the identified heat transfer coefficients h 1 and h 2 , the temperature distribution inside the test piece 6 is estimated (step S3: third step).

推定された温度分布の計算値と測定値との差が所定の範囲以下となっているか否かを判定する(工程S4:第4工程)。
所定の範囲以下となっていない場合は、熱伝達率h,hを修正して(工程S5:第4工程)、工程S1から工程S3を繰り返す。
所定の範囲以下となったら、熱伝達率h,hの最終的な同定を行う(工程S6)。
熱伝達率h,hの最終的な同定が終了したら、試験片6の姿勢を変更して、工程S1から工程S3を繰り返すが、姿勢変更前後における温度分布が小さくなったかを判定し(工程S7)、小さくなった場合は、同方向への姿勢の変更を行い(工程S8)、大きくなった場合は、逆方向への姿勢の変更を行い(工程S9)、工程S1から工程S4を繰り返す。
It is determined whether or not the difference between the calculated value of the estimated temperature distribution and the measured value is equal to or less than a predetermined range (step S4: fourth step).
If it is not below the predetermined range, the heat transfer coefficients h 1 and h 2 are corrected (step S5: fourth step), and steps S1 to S3 are repeated.
When the temperature falls below the predetermined range, the heat transfer coefficients h 1 and h 2 are finally identified (step S6).
When the final identification of the heat transfer coefficients h 1 and h 2 is completed, the posture of the test piece 6 is changed, and the steps S1 to S3 are repeated, but it is determined whether the temperature distribution before and after the posture change is reduced ( Step S7) When the position becomes smaller, the posture is changed in the same direction (Step S8). When the position becomes larger, the posture is changed in the opposite direction (Step S9), and Steps S1 to S4 are performed. repeat.

[4]実施形態の効果
以上のような本実施形態によれば、以下のような効果がある。
試験片6の表面6C及び裏面6Dの異なる熱伝導率を用いて、試験片6の内部の温度分布を推定し、冷却流体内における姿勢・位置を変更しているので、冷却によって処理対象に歪み等が生じることを少なくすることができる。
また、試験片6に、表面6Cに至る孔6Aと、裏面6Dに至る孔6Bが形成されていることにより、試験片6と流体の界面に極めて近い位置で、熱電対7による温度測定を行うことができるため、高精度な測定を行うことができる。
[4] Effects of the Embodiment According to the present embodiment as described above, the following effects are obtained.
The temperature distribution inside the test piece 6 is estimated by using different thermal conductivities of the front surface 6C and the back surface 6D of the test piece 6, and the posture and position in the cooling fluid are changed. Etc. can be reduced.
Further, the hole 6A reaching the front surface 6C and the hole 6B reaching the back surface 6D are formed in the test piece 6, so that the temperature is measured by the thermocouple 7 at a position very close to the interface between the test piece 6 and the fluid. Therefore, highly accurate measurement can be performed.

[5]実施形態の変形
本発明は、前述した実施形態に限定されるものではなく、以下に示すような変形をも含むものである。
前述した実施形態では、円板状の試験片6を使用していたが、本発明はこれに限られず、角板状の試験片を用いてもよく、板状の試験片であれば形状は限定されない。
その他、本発明の目的を達成できる範囲で他の構造等を採用してもよい。
[5] Modifications of Embodiments The present invention is not limited to the above-described embodiments, and includes the following modifications.
In the above-described embodiment, the disk-shaped test piece 6 is used. However, the present invention is not limited to this, and a square plate-shaped test piece may be used. It is not limited.
In addition, other structures and the like may be adopted as long as the object of the present invention can be achieved.

1…加熱用電気炉、2…冷却容器、3…被測定体、4…温度計、4A…記録計、5…支持体、6…試験片、6A…孔、6B…孔、6C…表面、6D…裏面、7…熱電対、S1…工程、S2…工程、S3…工程、S4…工程、S5…工程、S6…工程、S7…工程、S8…工程、S9…工程   DESCRIPTION OF SYMBOLS 1 ... Electric furnace for heating, 2 ... Cooling container, 3 ... Object to be measured, 4 ... Thermometer, 4A ... Recording meter, 5 ... Support body, 6 ... Test piece, 6A ... Hole, 6B ... Hole, 6C ... Surface, 6D ... back surface, 7 ... thermocouple, S1 ... step, S2 ... step, S3 ... step, S4 ... step, S5 ... step, S6 ... step, S7 ... step, S8 ... step, S9 ... step

Claims (3)

処理対象を、流体によって冷却する処理対象の熱伝達率算出方法であって、以下の工程からなることを特徴とする処理対象の熱伝達率算出方法。
第1工程:前記処理対象を模した板状体からなる試験片の第1表面、及び第2表面のそれぞれについて、前記第1表面及び前記流体間の界面温度の時間変化を与える第1冷却曲線と、前記第2表面及び前記流体間の界面温度の時間変化を与える第2冷却曲線とを測定する。
第2工程:測定された第1冷却曲線及び第2冷却曲線に基づいて、下記式(1)で表される熱伝導方程式を設定し、下記式(2)、式(3)で表される境界条件と、式(4)で表される初期条件とに基づいて、前記第1表面における前記流体との界面の熱伝達率hと、前記第2表面における前記流体との界面の熱伝達率hとを同定する。
第3工程:同定された熱伝達率h及び熱伝達率hに基づいて、前記試験片内部の温度分布を推定する。
第4工程:推定された温度分布に基づいて、熱伝達率h、hの修正を行い、第1工程からを繰り返し、前記推定された温度分布と測定値との差が所定の範囲以内となったら熱伝達率h、hの最終的な同定を行う。
Figure 2017125754


x:第1表面から第2表面に至る厚み方向位置(m,0≦x≦板状体の厚さL)
t:時間(s)
T(x,t):任意の時間における任意の厚み方向位置の温度(K)
α:熱拡散率(m/s)
Figure 2017125754


:第1表面の熱伝導率(W/(m・K))
Figure 2017125754


:第2表面の熱伝導率(W/(m・K))
[数4]
T=F(x)(t=0,0≦x≦L) ・・・(4)
T:初期における試験片の厚さ方向の温度分布(K)
A method for calculating a heat transfer coefficient of a processing target, wherein the processing target is cooled by a fluid, and includes the following steps.
1st process: The 1st cooling curve which gives the time change of the interface temperature between the 1st surface and the fluid about each of the 1st surface of the test piece which consists of a plate-like object which imitates the treating object, and the 2nd surface And a second cooling curve that gives a temporal change in the interface temperature between the second surface and the fluid.
Second step: Based on the measured first cooling curve and second cooling curve, a heat conduction equation represented by the following equation (1) is set, and is represented by the following equations (2) and (3). Based on the boundary condition and the initial condition expressed by Equation (4), the heat transfer coefficient h 1 at the interface with the fluid on the first surface and the heat transfer at the interface with the fluid on the second surface. The rate h 2 is identified.
Third step: A temperature distribution inside the test piece is estimated based on the identified heat transfer coefficient h 1 and heat transfer coefficient h 2 .
Fourth step: The heat transfer coefficients h 1 and h 2 are corrected based on the estimated temperature distribution, and the steps from the first step are repeated, and the difference between the estimated temperature distribution and the measured value is within a predetermined range. Then, the final identification of the heat transfer coefficients h 1 and h 2 is performed.
Figure 2017125754


x: Position in the thickness direction from the first surface to the second surface (m, 0 ≦ x ≦ thickness L of the plate-like body)
t: Time (s)
T (x, t): Temperature (K) at an arbitrary position in the thickness direction at an arbitrary time
α: Thermal diffusivity (m 2 / s)
Figure 2017125754


k 1 : thermal conductivity of first surface (W / (m · K))
Figure 2017125754


k 2 : thermal conductivity of the second surface (W / (m · K))
[Equation 4]
T = F (x) (t = 0, 0 ≦ x ≦ L) (4)
T: Initial temperature distribution in the thickness direction of the specimen (K)
請求項1に記載の処理対象の熱伝達率算出方法を用いて熱伝達率の同定を行った後、前記処理対象の姿勢を変更して、再度請求項1に記載の処理対象の熱伝達率算出方法を用いて前記温度分布を推定し、前記処理対象の温度分布が大きくなったら、前記処理対象の姿勢を逆向きに変更し、前記処理対象の温度分布が小さくなったら、前記処理対象の姿勢を同方向にさらに変更することを特徴とする処理対象の熱処理方法。   The heat transfer coefficient of the processing target according to claim 1 is changed again after the heat transfer coefficient is identified using the heat transfer coefficient calculation method of the processing target according to claim 1 and then the posture of the processing target is changed. The temperature distribution is estimated using a calculation method, and when the temperature distribution of the processing target becomes large, the posture of the processing target is changed in the reverse direction, and when the temperature distribution of the processing target becomes small, the processing target A heat treatment method of a processing object, wherein the posture is further changed in the same direction. 請求項2に記載の処理対象の熱処理方法において、
前記第1表面の冷却曲線及び前記第2表面の冷却曲線を測定する工程では、
前記試験片には、前記試験片の外周端面の厚さ方向中央から、前記第1表面の中央に貫通する第1孔と、前記試験片の外周端面の厚さ方向中央から、前記第2表面の中央に貫通する第2孔が形成され、
前記第1孔及び前記第2孔のそれぞれに熱電対の挿入することにより、前記第1表面及び前記流体間の界面温度、前記第2表面及び前記流体間の界面温度を測定することを特徴とする処理対象の熱処理方法。
In the heat processing method of the process target of Claim 2,
In the step of measuring the cooling curve of the first surface and the cooling curve of the second surface,
The test piece includes a first hole penetrating from the center in the thickness direction of the outer peripheral end surface of the test piece to the center of the first surface, and the second surface from the center in the thickness direction of the outer peripheral end surface of the test piece. A second hole penetrating in the center of the
The interface temperature between the first surface and the fluid and the interface temperature between the second surface and the fluid are measured by inserting a thermocouple into each of the first hole and the second hole. Heat treatment method to be treated.
JP2016004794A 2016-01-13 2016-01-13 Heat conductivity calculation method for treatment object, and heat treatment method for treatment object using the same Pending JP2017125754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016004794A JP2017125754A (en) 2016-01-13 2016-01-13 Heat conductivity calculation method for treatment object, and heat treatment method for treatment object using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016004794A JP2017125754A (en) 2016-01-13 2016-01-13 Heat conductivity calculation method for treatment object, and heat treatment method for treatment object using the same

Publications (1)

Publication Number Publication Date
JP2017125754A true JP2017125754A (en) 2017-07-20

Family

ID=59363947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016004794A Pending JP2017125754A (en) 2016-01-13 2016-01-13 Heat conductivity calculation method for treatment object, and heat treatment method for treatment object using the same

Country Status (1)

Country Link
JP (1) JP2017125754A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333215A (en) * 2017-11-15 2018-07-27 北京空天技术研究所 A kind of analysis of thermal conductivity method of aerogel heat-proof layer in integral type T PS
WO2019129959A1 (en) * 2017-12-29 2019-07-04 Saint-Gobain Isover Method and device for the nondestructive testing of a wall
JP2020041717A (en) * 2018-09-07 2020-03-19 株式会社前川製作所 Performance evaluation method of heating/cooling device
JP7446381B2 (en) 2021-10-27 2024-03-08 高周波熱錬株式会社 Cooling simulation method, cooling simulation program, cooling simulation device, and workpiece cooling method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333215A (en) * 2017-11-15 2018-07-27 北京空天技术研究所 A kind of analysis of thermal conductivity method of aerogel heat-proof layer in integral type T PS
WO2019129959A1 (en) * 2017-12-29 2019-07-04 Saint-Gobain Isover Method and device for the nondestructive testing of a wall
FR3076353A1 (en) * 2017-12-29 2019-07-05 Saint-Gobain Isover METHOD AND DEVICE FOR NON-DESTRUCTIVE CONTROL OF A WALL
JP2020041717A (en) * 2018-09-07 2020-03-19 株式会社前川製作所 Performance evaluation method of heating/cooling device
JP7126410B2 (en) 2018-09-07 2022-08-26 株式会社前川製作所 Heating and cooling device performance evaluation method
JP7446381B2 (en) 2021-10-27 2024-03-08 高周波熱錬株式会社 Cooling simulation method, cooling simulation program, cooling simulation device, and workpiece cooling method

Similar Documents

Publication Publication Date Title
JP2017125754A (en) Heat conductivity calculation method for treatment object, and heat treatment method for treatment object using the same
Zhao et al. Comparison of the methods for calculating the interfacial heat transfer coefficient in hot stamping
JP2007071686A (en) Method and device for estimating temperature of container wall or heat flux, computer program, computer-readable recording medium, and method of estimating container wall thickness
CN105046030B (en) The preparation method of the aluminium alloy element quenching process coefficient of heat transfer under the conditions of Three-dimensional Heat-transfer based on FInite Element
Parikh et al. A comprehensive experimental and numerical estimation of thermal contact conductance
Li et al. Identification methods on blank-die interfacial heat transfer coefficient in press hardening
Broucaret et al. Heat transfer and thermo-mechanical stresses in a gravity casting die: Influence of process parameters
Woolley et al. Thermocouple data in the inverse heat conduction problem
Delpueyo et al. A specific device for enhanced measurement of mechanical dissipation in specimens subjected to long‐term tensile tests in fatigue
JP7126410B2 (en) Heating and cooling device performance evaluation method
CN101147050B (en) Metal surface temperature measuring device
Wen et al. Investigations on the interfacial heat transfer coefficient during hot stamping of ultra-high strength steel with Al-Si coating
JP4743781B2 (en) Method, apparatus, and computer program for estimating temperature and heat flux of inner wall surface of container
Landek et al. A prediction of quenching parameters using inverse analysis
JP2016221537A (en) Method for controlling temperature of molten metal holding vessel, method for controlling refractory layer thickness of molten metal holding vessel, method for controlling molten metal temperature inside molten metal holding vessel, device for controlling temperature of molten metal holding vessel, and program for controlling temperature of molten metal holding vessel
Mishra et al. Determination of thermal diffusivity of the material, absorptivity of the material and laser beam radius during laser forming by inverse heat transfer
Meekisho et al. Computer-aided cooling curve analysis using WinProbe
Rothermel et al. Parameter estimation of temperature dependent material parameters in the cooling process of TMCP steel plates
Kotrbacek et al. Study of heat transfer distribution during plate heat treatment
Draganov et al. Experimental data and simulation by the finite element method of the cylindrical steel shaft quenching in water
JP5055851B2 (en) Local heat transfer coefficient determination program and local heat transfer coefficient determination device
Bubnoff et al. Evaluation of martensite fraction in 1026 steel by infrared thermography combined with the Koistinen-Marburger model
Hafid et al. Prediction of the thermal parameters of a high-temperature metallurgical reactor using inverse heat transfer
Ferguson et al. Characterizing water quenching systems with a quench probe
JP6716964B2 (en) Steel sheet surface composition determination method, surface composition determination apparatus, manufacturing method, and manufacturing apparatus