JP4743781B2 - Method, apparatus, and computer program for estimating temperature and heat flux of inner wall surface of container - Google Patents

Method, apparatus, and computer program for estimating temperature and heat flux of inner wall surface of container Download PDF

Info

Publication number
JP4743781B2
JP4743781B2 JP2006239412A JP2006239412A JP4743781B2 JP 4743781 B2 JP4743781 B2 JP 4743781B2 JP 2006239412 A JP2006239412 A JP 2006239412A JP 2006239412 A JP2006239412 A JP 2006239412A JP 4743781 B2 JP4743781 B2 JP 4743781B2
Authority
JP
Japan
Prior art keywords
temperature
container
wall surface
heat flux
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006239412A
Other languages
Japanese (ja)
Other versions
JP2008064470A (en
Inventor
淳一 中川
忠幸 伊藤
昌宏 山本
彦博 王
晋 程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006239412A priority Critical patent/JP4743781B2/en
Publication of JP2008064470A publication Critical patent/JP2008064470A/en
Application granted granted Critical
Publication of JP4743781B2 publication Critical patent/JP4743781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、内壁面と外壁面とに温度差を有する容器における内壁面の温度及び熱流束の推定方法、装置、並びにコンピュータプログラムに関する。   The present invention relates to a method, an apparatus, and a computer program for estimating the temperature and heat flux of an inner wall surface in a container having a temperature difference between an inner wall surface and an outer wall surface.

高炉、転炉、脱ガス炉、燃焼による鋼材加熱炉、石炭ガス化反応炉等の高温のガス反応又は液体反応を伴う反応容器や、混銑車、溶銑鍋、溶鋼鍋等の溶鉄を運搬する容器を使用しての操業を管理する場合、これら高温物質を取り扱う容器の壁の状況(例えば、内壁面の損耗状態)を観測し、管理する必要がある。   Reaction vessels with high temperature gas reaction or liquid reaction, such as blast furnaces, converters, degassing furnaces, steel heating furnaces by combustion, coal gasification reactors, and containers for transporting molten iron, such as kneading cars, hot metal ladle, molten steel pans, etc. In the case of managing the operation using the container, it is necessary to observe and manage the state of the wall of the container that handles these high-temperature substances (for example, the worn state of the inner wall surface).

従来、容器壁の損耗状態は、容器内に溶鋼等の高温物質が存在しないときに、内壁面の状態を目視で観察することで管理されてきた。   Conventionally, the wear state of the container wall has been managed by visually observing the state of the inner wall surface when there is no high-temperature material such as molten steel in the container.

しかしながら、容器内に高温物質が存在しないときでも、高温物質の排出直後には耐火物表面は500℃以上の高温に熱せられている。上記のような目視による推定では、損耗状態を定量的な数値として捉えることは極めて困難であり、定性的な管理とならざるを得ない。また、容器内に高温物質が存在しないことを条件とした管理を余儀無くされるため、稼動中の高温物質の流出という事態を管理することができなかった。   However, even when there is no high temperature substance in the container, the surface of the refractory is heated to a high temperature of 500 ° C. or more immediately after the discharge of the high temperature substance. In the visual estimation as described above, it is extremely difficult to grasp the wear state as a quantitative numerical value, and qualitative management is unavoidable. In addition, since the management is forced on the condition that no high-temperature material is present in the container, the situation of the outflow of the high-temperature material during operation cannot be managed.

ここで、容器壁の損耗状態は、容器壁の厚みによって判断することができる。例えば、損耗が均一な形状で1次元形状に近似できる場合、容器壁が熱的に定常状態にあれば、容器壁内部の温度分布は直線状になる。したがって、容器壁の厚みLは、容器の外壁面で計測した熱流束Q、容器壁の厚み方向の熱伝導率kx、容器の内壁面温度Tin、及び容器の外壁面温度Toutを用いて次式(51)より推定できる。 Here, the worn state of the container wall can be determined by the thickness of the container wall. For example, when the wear can be approximated to a one-dimensional shape with a uniform shape, if the container wall is in a thermally steady state, the temperature distribution inside the container wall is linear. Therefore, the thickness L of the container wall uses the heat flux Q measured on the outer wall surface of the container, the thermal conductivity k x in the thickness direction of the container wall, the inner wall surface temperature T in of the container, and the outer wall surface temperature T out of the container. And can be estimated from the following equation (51).

Figure 0004743781
Figure 0004743781

しかしながら、実際の容器壁の温度は、稼動(容器内に高温物質が存在する)・非稼動(容器内に高温物質が存在しない)の時間サイクルによって異なった値を示すため、容器の外壁面で計測した熱流束Qも非定常的に変化する。これに加え、容器壁内部の温度分布は曲線形状で非定常的に変化するため、上式で容器壁の厚みを推定すると、大きな誤差を引き起こすことになる。   However, the actual temperature of the container wall shows different values depending on the time cycle of operation (high-temperature material is present in the container) and non-operation (no high-temperature material is present in the container). The measured heat flux Q also changes unsteadily. In addition to this, since the temperature distribution inside the container wall changes unsteadily in a curved shape, estimating the thickness of the container wall with the above equation causes a large error.

一方、容器壁内部の熱伝導現象を非定常熱伝導逆問題と考えて、容器壁に設置した温度計測手段によって計測された温度データを基に、非定常熱伝導逆問題により容器壁内部の温度を計算し、容器壁の温度が溶鉄の凝固温度に一致する位置を検索することにより容器壁の厚みを推定する方法が提案されている(特許文献1を参照)。   On the other hand, considering the heat conduction phenomenon inside the container wall as an unsteady heat conduction inverse problem, based on the temperature data measured by the temperature measurement means installed on the container wall, the temperature inside the container wall by the unsteady heat conduction problem And a method of estimating the thickness of the container wall by searching for a position where the temperature of the container wall matches the solidification temperature of the molten iron has been proposed (see Patent Document 1).

特開2001−234217号公報JP 2001-234217 A

しかしながら、特許文献1に開示されている逆問題解析は、容器壁の厚みを推定するにあたって、容器壁内部の初期温度を仮定して計算するものである。そのため、初期温度の設定が適切でない場合は、温度計算結果に大きな誤差が入り、計算精度の著しい低下を招き、場合によっては、計算が発散し、計算の続行の中断を余儀なくされる場合もある。   However, the inverse problem analysis disclosed in Patent Document 1 is performed by assuming the initial temperature inside the container wall when estimating the thickness of the container wall. For this reason, if the initial temperature setting is not appropriate, a large error will occur in the temperature calculation result, causing a significant decrease in calculation accuracy. In some cases, the calculation may diverge and the calculation may be interrupted. .

本発明は上記のような点に鑑みてなされたものであり、容器内に高温物質が存在する状態の容器壁厚みを推定する場合等において、従来法のように容器内部の初期温度を仮定しなくとも、容器壁の材料内部の初期温度分布を一義的に決定することで推定精度を向上させることを狙いとし、そのために必要な情報である容器の内壁面の温度及び熱流束を精度良く求めることができるようにすることを目的とする。   The present invention has been made in view of the above points, and in the case of estimating the container wall thickness in a state where a high-temperature substance exists in the container, the initial temperature inside the container is assumed as in the conventional method. Even if it is not, the aim is to improve the estimation accuracy by uniquely determining the initial temperature distribution inside the material of the container wall, and accurately calculate the temperature and heat flux of the inner wall surface of the container, which is necessary information for that purpose. The purpose is to be able to.

本発明による容器の内壁面の温度及び熱流束の推定手法は、容器内に高温物質が存在する状態での前記容器の内壁面の温度及び熱流束を推定するものであって、
(1).前記容器の外壁面における温度h(t)、及び熱流束を容器壁の材料の熱伝導率で除した物理量g(t)を取得する手順と、
内壁面(x=0)から外壁面方向をx軸とし、式(101)における容器壁の温度u(x,t)の代替として変数v(x,t)を定義して導入した式(102)から、変数v(l,ti)を算出し、
変数w(x,t)を定義して導入した式(103)から、変数w(x,t)を式(104)により表し、式(104)に基づき、式(105)のMA×Vx=Vwを解くことによりVxを決定し、
xから決定した内壁面の熱流束を容器壁の材料の熱伝導率で除した物理量f(t1)、f(t2)、・・・、f(tM)を使用して、式(106)に基づき、内壁面の温度p(t1)、p(t2)、・・・、p(tM)を決定するようにした。
The method for estimating the temperature and heat flux of the inner wall surface of the container according to the present invention is to estimate the temperature and heat flux of the inner wall surface of the container in a state where a high-temperature substance is present in the container ,
(1). Obtaining a temperature h (t) at the outer wall surface of the container and a physical quantity g (t) obtained by dividing the heat flux by the thermal conductivity of the material of the container wall;
An equation (102) in which a variable v (x, t) is defined and introduced as an alternative to the container wall temperature u (x, t) in equation (101) with the x direction from the inner wall surface (x = 0) to the outer wall surface direction. ) To calculate the variable v (l, t i )
The variable w (x, t) is expressed by the formula (104) from the formula (103) introduced by defining the variable w (x, t). Based on the formula (104), MA × V x of the formula (105) = Determine V x by solving for V w ,
Using physical quantities f (t 1 ), f (t 2 ),..., F (t M ) obtained by dividing the heat flux of the inner wall determined from V x by the thermal conductivity of the material of the container wall, Based on (106), the temperatures p (t 1 ), p (t 2 ),..., P (t M ) of the inner wall surface are determined.

Figure 0004743781
Figure 0004743781

Figure 0004743781
Figure 0004743781
Figure 0004743781
Figure 0004743781

Figure 0004743781
Figure 0004743781

(2).前記容器の外壁面における温度h(t)、及び熱流束を容器壁の材料の熱伝導率で除した物理量g(t)を取得し、
内壁面(x=0)から外壁面方向をx軸とし、式(101)における容器壁の温度u(x,t)の代替として変数v(x,t)を定義して導入した式(102)から、変数v(l,ti)を算出し、
変数w(x,t)を定義して導入した式(103)から、変数w(x,t)を式(104)により表し、式(104)に基づき、式(105)のMA×Vx=Vwを解くことによりVxを決定し、
xから決定した内壁面の熱流束を容器壁の材料の熱伝導率で除した物理量f(t2)、f(t4)、・・・、f(tM)を使用して、式(106)に基づき、内壁面の温度p(t2)、p(t4)、・・・、p(tM)を決定するようにしてもよい。
(2). Obtaining a temperature h (t) at the outer wall surface of the container and a physical quantity g (t) obtained by dividing the heat flux by the thermal conductivity of the material of the container wall;
An equation (102) in which a variable v (x, t) is defined and introduced as an alternative to the container wall temperature u (x, t) in equation (101) with the x direction from the inner wall surface (x = 0) to the outer wall surface direction. ) To calculate the variable v (l, t i )
The variable w (x, t) is expressed by the formula (104) from the formula (103) introduced by defining the variable w (x, t). Based on the formula (104), MA × V x of the formula (105) = Determine V x by solving for V w ,
Using physical quantities f (t 2 ), f (t 4 ),..., F (t M ) obtained by dividing the heat flux of the inner wall determined from V x by the thermal conductivity of the container wall material, Based on (106), the temperatures p (t 2 ), p (t 4 ),..., P (t M ) of the inner wall surface may be determined.

Figure 0004743781
Figure 0004743781

Figure 0004743781
Figure 0004743781

Figure 0004743781
Figure 0004743781
Figure 0004743781

Figure 0004743781

Figure 0004743781
Figure 0004743781

ここで、内壁面と外壁面とに温度差を有する容器としては、高炉、転炉、脱ガス炉、燃焼による鋼材加熱炉、石炭ガス化反応炉等の高温のガス反応又は液体反応を伴う反応容器や、混銑車、溶銑鍋、溶鋼鍋等の溶鉄を運搬する容器等がある。また、材料内部の欠陥等を調査するために材料の片面を急速に加熱又は冷却する場合も該当する。   Here, as a container having a temperature difference between the inner wall surface and the outer wall surface, a reaction involving a high temperature gas reaction or liquid reaction such as a blast furnace, a converter, a degassing furnace, a steel heating furnace by combustion, a coal gasification reactor, etc. There are containers, containers for transporting molten iron, such as kneading cars, hot metal ladle, and molten steel ladle. This also applies to the case where one side of the material is rapidly heated or cooled in order to investigate defects inside the material.

本発明によれば、従来法のように容器壁内部の初期温度分布の仮定を行わなくとも、容器内に高温物質が存在する状態で、容器壁の厚みを推定するため必要な情報である内壁面の温度及び熱流束を精度良く推定することができる。   According to the present invention, it is necessary information to estimate the thickness of the container wall in a state where a high-temperature substance exists in the container without assuming the initial temperature distribution inside the container wall as in the conventional method. It is possible to accurately estimate the temperature and heat flux of the wall surface.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。
まず、本発明による容器の内壁面の温度及び熱流束の推定手法の基本的な考え方について説明する。図1は、容器壁の一部を表わす図であり、x=0が容器の内壁面の位置である。同図において、容器壁の厚みをl、容器壁の温度をu(x,t)、外壁面の温度計測点にて計測された温度をh(t)、温度h(t)を基に算出した熱流束(又は外壁面の温度計測点にて計測された熱流束)を材料の熱伝導率で除した物理量をg(t)とする。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
First, the basic concept of the method for estimating the temperature and heat flux of the inner wall surface of the container according to the present invention will be described. FIG. 1 is a diagram showing a part of the container wall, where x = 0 is the position of the inner wall surface of the container. In the figure, the thickness of the container wall is l, the temperature of the container wall is u (x, t), the temperature measured at the temperature measurement point on the outer wall surface is calculated based on h (t) and the temperature h (t). Let g (t) be the physical quantity obtained by dividing the heat flux (or the heat flux measured at the temperature measurement point on the outer wall surface) by the thermal conductivity of the material.

(定式化)
式(1)は、非定常熱伝導方程式を表わす。なお。utは∂u/∂tを、uxxは∂2u/∂x2を表わす。式(1)において、αは熱拡散係数(温度伝導率ともいい、熱伝導度/(密度×比熱)で定義される)、u(x,0)=u0(x)は容器壁の温度の初期値である。この場合、容器壁の温度の初期値u(x,0)=u0(x)は未知である。
(Formulation)
Equation (1) represents an unsteady heat conduction equation. Note that. u t represents ∂u / ∂t, and u xx represents ∂ 2 u / ∂x 2 . In equation (1), α is the thermal diffusion coefficient (also called temperature conductivity, defined by thermal conductivity / (density × specific heat)), u (x, 0) = u 0 (x) is the temperature of the container wall Is the initial value of. In this case, the initial value u (x, 0) = u 0 (x) of the temperature of the container wall is unknown.

Figure 0004743781
Figure 0004743781

ここで、式(2)を導入してフーリエ展開することにより、式(1)の容器壁の温度u(x,t)は式(3)のように求められる。   Here, by introducing the formula (2) and performing Fourier expansion, the temperature u (x, t) of the container wall of the formula (1) is obtained as the formula (3).

Figure 0004743781
Figure 0004743781

Figure 0004743781
Figure 0004743781

x=lとすると、式(4)が得られる。   If x = 1, equation (4) is obtained.

Figure 0004743781
Figure 0004743781

ところが、コンピュータによる演算処理を実行する場合、式(4)の右辺において、特に第2項、第3項の計算は打ち切り誤差を引き起こしやすいという問題がある。   However, when performing arithmetic processing by a computer, there is a problem that the calculation of the second term and the third term in particular on the right side of Equation (4) tends to cause a truncation error.

そこで、本発明においては、容器壁の温度u(x,t)の代替として変数v(x,t)を定義し、式(5)を導入する。式(5)において、内壁面の熱流束を材料の熱伝導率で除した物理量の初期値g(0)は既知とすることができるので、変数の初期値v(x,0)=(x2/2l)g(0)も既知とすることができる。したがって、変数v(x,t)については、例えば後退差分法により直接計算することができる。 Therefore, in the present invention, the variable v (x, t) is defined as an alternative to the container wall temperature u (x, t), and the equation (5) is introduced. In equation (5), since the initial value g (0) of the physical quantity obtained by dividing the heat flux of the inner wall surface by the thermal conductivity of the material can be known, the initial value of the variable v (x, 0) = (x 2 / 2l) g (0) can also be known. Therefore, the variable v (x, t) can be directly calculated by the backward difference method, for example.

Figure 0004743781
Figure 0004743781

さらに、容器壁の温度u(x,t)と変数v(x,t)との差をw(x,t)と定義すると、式(6)のようになる。   Further, when the difference between the temperature u (x, t) of the container wall and the variable v (x, t) is defined as w (x, t), the equation (6) is obtained.

Figure 0004743781
Figure 0004743781

ここで、上述したのと同様にフーリエ展開することにより、式(6)の変数w(x,t)は式(7)のように求められる。式(7)においては、式(3)と比較して明らかなように、第3項のない簡単な式とすることができる。   Here, by performing Fourier expansion in the same manner as described above, the variable w (x, t) in Equation (6) is obtained as in Equation (7). In formula (7), as is clear from comparison with formula (3), a simple formula without the third term can be obtained.

Figure 0004743781
Figure 0004743781

x=l、t=tjとし、無限級数を有限のN項までとると、式(8)が得られる。 When x = 1 and t = t j and the infinite series is taken up to a finite N term, Expression (8) is obtained.

Figure 0004743781
Figure 0004743781

式(8)の第2項及び第3項を計算する代わりに、式(9)を定義し、定義したG^(x,t)を満足する式(10)を解くことにより、式(8)のw(l,tj)は式(11)で表せる。なお、本明細書中においては、式(9)等に記載の記号Gのハットマークは、G^と表記する。 Instead of calculating the second and third terms of equation (8), define equation (9) and solve equation (10) that satisfies the defined G ^ (x, t), ) W (l, t j ) can be expressed by equation (11). In the present specification, the hat mark of the symbol G described in the equation (9) or the like is expressed as G ^.

Figure 0004743781
Figure 0004743781

また、w(l,t)=u(l,t)−v(l,t)である。そして、u(l,t)は既知のh(t)であり、また、v(l,t)は式(5)から後退差分法により直接計算することができる。したがって、w(l,t)が既知であるとして、式(11)からBn(l)とf(ti)の近似値を得ることができる。 Further, w (l, t) = u (l, t) −v (l, t). U (l, t) is a known h (t), and v (l, t) can be directly calculated from the equation (5) by the backward difference method. Therefore, assuming that w (l, t) is known, approximate values of B n (l) and f (t i ) can be obtained from the equation (11).

Figure 0004743781
Figure 0004743781

(容器の内壁面の温度及び熱流束を求めるための逆問題)
逆問題においては、容器の内壁表面の熱流束(熱流束を材料の熱伝導率で除した物理量f(t))と温度p(t)は未知である。観察時間を(Tst,Tend)と設定し、Tst<T1<T2<Tendとする。そして、T1=t1<t2<・・・<tM=T2と均一格子にする。
(Inverse problem to find the temperature and heat flux of the inner wall of the container)
In the inverse problem, the heat flux (the physical quantity f (t) obtained by dividing the heat flux by the thermal conductivity of the material) and the temperature p (t) on the inner wall surface of the container are unknown. The observation time is set as (T st , T end ), and T st <T 1 <T 2 <T end . Then, T 1 = t 1 <t 2 <... <T M = T 2 and a uniform lattice.

ここで、外壁面の温度計測点にて計測された温度h(t)は既知で、変数v(l,ti)は式(5)から後退差分法により求められる。式(12)のように、MA1はM×(N+1)行列、MA2はM×M行列で、MAはこれらを横に並べたM×(N+M+1)行列である。Vxは(N+M+1)×1ベクトル、VwはM×1ベクトルであって、MA×Vx=Vwを解くことにより、各温度計測点t1、t2、・・・、tMにおける内壁面の熱流束を材料の熱伝導率で除した物理量f(t1)、f(t2)、・・・、f(tM)が求められる。 Here, the temperature h (t) measured at the temperature measurement point of the outer wall surface is known, and the variable v (l, t i ) is obtained from the equation (5) by the backward difference method. As shown in Expression (12), MA 1 is an M × (N + 1) matrix, MA 2 is an M × M matrix, and MA is an M × (N + M + 1) matrix in which these are arranged side by side. V x is (N + M + 1) × 1 vector, Vw is a M × 1 vector, by solving the MA × V x = V w, the temperature measuring points t 1, t 2, · · ·, inner in t M Physical quantities f (t 1 ), f (t 2 ),..., F (t M ) obtained by dividing the heat flux of the wall surface by the thermal conductivity of the material are obtained.

Figure 0004743781
Figure 0004743781

しかし、式(12)のMAはM×(N+M+1)行列であるため、未知数の数は方程式の数より大きくなり、このままの状態では解を求めることができないため、例えば、行列MAのM+1行目のゼロだけの行をN+1行挿入し、MAを正方行列にして解を求めることができる。   However, since MA in Expression (12) is an M × (N + M + 1) matrix, the number of unknowns is larger than the number of equations, and a solution cannot be obtained in this state. N + 1 rows are inserted, and MA is a square matrix, so that a solution can be obtained.

また、これとは別の解法として、新たに式(13)を定義する。式(13)では、MA1はM×(N+1)行列、MA2はM×M/2行列で、MAはこれらの和でM×(N+M/2+1)行列である。Vxは(N+M/2+1)×1ベクトル、VwはM×1ベクトルであって、MA×Vx=Vwを解くことにより、各温度計測点t2、t4、・・・、tMにおける内壁面の熱流束を材料の熱伝導率で除した物理量f(t2)、f(t4)、・・・、f(tM)のが求められる。ここでは、N≦M/2−1に設定することにより、未知数の数は方程式の数と同等もしくは小さくなり、解を求めることができる。 Further, as a different solution, Equation (13) is newly defined. In Equation (13), MA 1 is an M × (N + 1) matrix, MA 2 is an M × M / 2 matrix, and MA is an M × (N + M / 2 + 1) matrix as a sum of these. V x is an (N + M / 2 + 1) × 1 vector and Vw is an M × 1 vector. By solving MA × V x = V w , each temperature measurement point t 2 , t 4 ,. The physical quantities f (t 2 ), f (t 4 ),..., F (t M ) obtained by dividing the heat flux of the inner wall surface by the thermal conductivity of the material are obtained. Here, by setting N ≦ M / 2-1, the number of unknowns becomes equal to or smaller than the number of equations, and a solution can be obtained.

Figure 0004743781
Figure 0004743781

そして、Vxから決定した容器壁内壁面の熱流束を材料の熱伝導率で除した物理量f(t2)、f(t4)、・・・、f(tM)を使用して、式(14)に基づき、交代差分法により直接計算したw(0,t2)、w(0,t4)、・・・、w(0,tM)とv(0,t2)、v(0,t4)、・・・、v(0,tM)から、容器の内壁面の温度p(t2)、p(t4)、・・・、p(tM)を決定する。 Then, using physical quantities f (t 2 ), f (t 4 ),..., F (t M ) obtained by dividing the heat flux of the inner wall surface of the container determined from V x by the thermal conductivity of the material, W (0, t 2 ), w (0, t 4 ),..., W (0, t M ) and v (0, t 2 ) directly calculated by the alternating difference method based on the equation (14). v (0, t 4), determined ... from v (0, t M), the temperature p of the inner wall surface of the vessel (t 2), p (t 4), ···, p a (t M) To do.

Figure 0004743781
Figure 0004743781

図2は、本実施形態に係る容器の内壁面の温度及び熱流束の推定装置の概略構成を示す図である。また、図3A及び図3Bは、本実施形態における容器の内壁面の温度及び熱流束の推定処理を説明するためのフローチャートである。   FIG. 2 is a diagram illustrating a schematic configuration of the temperature and heat flux estimation device for the inner wall surface of the container according to the present embodiment. 3A and 3B are flowcharts for explaining the estimation process of the temperature and heat flux of the inner wall surface of the container in the present embodiment.

図2において、101は入力部であり、容器の外壁面の温度計測点にて計測された温度h(ti)が入力される(ステップS101)。 In FIG. 2, 101 is an input unit, and the temperature h (t i ) measured at the temperature measurement point on the outer wall surface of the container is input (step S101).

102は熱流束算出部であり、入力部101に入力される温度h(ti)を基に熱流束g(ti)を算出する(ステップS102)。なお、外壁面の温度計測点にて計測された熱流束g(ti)が入力部101に入力されるようにしてもよく、その場合、熱流束算出部102は不要である。 Reference numeral 102 denotes a heat flux calculator, which calculates a heat flux g (t i ) based on the temperature h (t i ) input to the input unit 101 (step S102). Note that the heat flux g (t i ) measured at the temperature measurement point on the outer wall surface may be input to the input unit 101, and in that case, the heat flux calculation unit 102 is unnecessary.

103は演算部であり、上述した容器の内壁面の温度及び熱流束の推定手法により容器の内壁面の温度及び熱流束を演算する。即ち、式(5)から変数v(l,ti)を求める(ステップS103)。そして、式(13)のMA×Vx=Vwを解くことにより、ベクトルVxを決定し、その成分であるB0(l)、B1(l)、・・・、BN(l)とともに内壁面の熱流束を材料の熱伝導率で除した物理量f(t2)、f(t4)、・・・、f(tM)を求めることができる(ステップS104)。式(14)から内壁面の温度p(t2)、p(t4)、・・・、p(tM)を計算する。決定した物理量f(t2)、f(t4)、・・・、f(tM)に容器壁の熱伝導率を乗じることにより容器の内壁面の熱流束を求めることができる(ステップS105)。 Reference numeral 103 denotes a calculation unit that calculates the temperature and heat flux of the inner wall surface of the container by the above-described method for estimating the temperature and heat flux of the inner wall surface of the container. That is, the variable v (l, t i ) is obtained from the equation (5) (step S103). Then, the vector V x is determined by solving MA × V x = V w in the equation (13), and its components B 0 (l), B 1 (l),..., B N (l ) And physical quantities f (t 2 ), f (t 4 ),..., F (t M ) obtained by dividing the heat flux of the inner wall surface by the thermal conductivity of the material (step S104). The temperature p (t 2 ), p (t 4 ),..., P (t M ) of the inner wall surface is calculated from the equation (14). The heat flux of the inner wall surface of the container can be obtained by multiplying the determined physical quantities f (t 2 ), f (t 4 ),..., F (t M ) by the thermal conductivity of the container wall (step S105). ).

104は出力部であり、演算部103により演算、推定された容器の内壁面の温度及び熱流束を、例えば不図示のディスプレイに表示等する。   An output unit 104 displays the temperature and heat flux of the inner wall surface of the container calculated and estimated by the calculation unit 103, for example, on a display (not shown).

容器壁の材料が複数種類重なっている場合は、上述の方法で決定した第1層目の容器壁材料の内壁面の熱流束を熱伝導率で除した物理量f(t2)、f(t4)、・・・、f(tM)を第2層目の容器壁材料の外壁面における熱流束を熱伝導率で除した物理量g(t2)、g(t4)、・・・、g(tM)とし、第1層目の内壁面の温度p(t2)、p(t4)、・・・、p(tM)をもとに、式(15)で算出した第2層目の容器壁材料の外壁面の温度h(t2)、h(t4)、・・・、h(tM)として、上述の演算を繰り返す。式(15)において、Rは第1層目と第2層目の容器壁材料間の接触伝熱抵抗を示す。例えば、第1層目と第2層目がモルタル等の接着材で接着されている場合のRは、式(16)に示すように、接着材の厚みdsを接着剤の熱伝導率λsで除した値になる。また、第1層目と第2層目に空隙がある場合式は、式(15)の替わりに式(17)を使って第2層目の容器壁材料の外壁面の温度h(t2)、h(t4)、・・・、h(tM)を計算する。σはステファンボルツマン係数、ε1は第層目の容器壁材料の放射率、ε2は第2層目の容器壁材料の放射率を示す。第1層目に第3層目以降の容器壁材料についても同様である。 When a plurality of types of container wall materials overlap, physical quantities f (t 2 ) and f (t (t) obtained by dividing the heat flux of the inner wall surface of the first-layer container wall material determined by the above method by the thermal conductivity. 4 ), ..., f (t M ), physical quantities g (t 2 ), g (t 4 ), ... obtained by dividing the heat flux on the outer wall surface of the container wall material of the second layer by the thermal conductivity. , and g (t M), the temperature p of the inner wall surface of the first layer (t 2), p (t 4), · · ·, based on p (t M), was calculated by the formula (15) The above calculation is repeated with the temperatures h (t 2 ), h (t 4 ),..., H (t M ) of the outer wall surface of the second-layer container wall material. In Formula (15), R shows the contact heat transfer resistance between the container wall material of the 1st layer and the 2nd layer. For example, when the first layer and the second layer are bonded with an adhesive such as mortar, R represents the thickness ds of the adhesive as the thermal conductivity λs of the adhesive, as shown in Equation (16). The divided value. Further, when there is a gap between the first layer and the second layer, the equation is obtained by using the equation (17) instead of the equation (15), and the temperature h (t 2 ) of the outer wall surface of the second layer container wall material. ), H (t 4 ),..., H (t M ). σ is the Stefan Boltzmann coefficient, ε 1 is the emissivity of the container wall material of the second layer, and ε 2 is the emissivity of the container wall material of the second layer. The same applies to the container wall material from the third layer onward in the first layer.

Figure 0004743781
Figure 0004743781

(実施例)
本発明の手法(本法)による容器の内壁面の温度及び熱流束の推定結果について説明する。本実施例においては、上述の式(13)及び式(14)を導入した方法を用いた。予め厚みが分かっている3種の溶鋼鍋(容器壁の厚み100mm、150mm、200mm)について、本法と、従来法(特許文献1に開示された手法)とにより容器壁の厚みを推定し、その結果を比較した。
(Example)
The estimation result of the temperature and heat flux of the inner wall surface of the container according to the method of the present invention (this method) will be described. In this example, a method in which the above formulas (13) and (14) were introduced was used. For three types of molten steel pans (thickness of container wall 100 mm, 150 mm, 200 mm) whose thickness is known in advance, the thickness of the container wall is estimated by this method and the conventional method (the method disclosed in Patent Document 1), The results were compared.

本実施例において、溶鋼鍋(耐火物)の熱拡散係数αは0.00865m2/Hr(熱伝導率:8.49W/m/K、比熱:1214.2J/kg/K、密度2910kg/m3)であった。容器のなかには1600℃の溶鋼が充満されており、耐火物内壁面の温度は溶鋼温度に等しく1600℃になっている。 In this example, the thermal diffusion coefficient α of the molten steel pan (refractory) is 0.00865 m 2 / Hr (thermal conductivity: 8.49 W / m / K, specific heat: 124.2 J / kg / K, density 2910 kg / m). 3 ). The container is filled with molten steel at 1600 ° C., and the temperature of the inner wall surface of the refractory is 1600 ° C. equal to the molten steel temperature.

図4〜6に、各溶鋼鍋の外壁面の温度及び熱流束のデータを示す。本実施例では、受鋼から1200秒経過後、外壁面の温度計測点にて5秒おきに温度を5回計測し、各温度を基に熱流束を算出した。熱流束は、放射伝熱による放熱を仮定し、式(18)により計算した。σは放射伝熱のステファンボルツマン係数、εは放射率、uaは外気雰囲気温度を示す。ここでのεは1.0とした。 The data of the temperature and heat flux of the outer wall surface of each molten steel pan are shown in FIGS. In this example, after 1200 seconds from the steel receiving, the temperature was measured 5 times every 5 seconds at the temperature measurement point on the outer wall surface, and the heat flux was calculated based on each temperature. The heat flux was calculated by equation (18) assuming heat release by radiant heat transfer. σ is the Stefan Boltzmann coefficient of radiant heat transfer, ε is the emissivity, and u a is the ambient air temperature. Here, ε was 1.0.

Figure 0004743781
Figure 0004743781

図7〜9に、本法により推定した容器壁(耐火物)の内壁面温度の推定値と真値(1590℃)の比較を示す。容器壁厚み(耐火物厚み)が厚くなるにつれ推定精度の低下はみられるが、誤差1%以下であり、高精度の推定ができている。   7 to 9 show a comparison between the estimated value of the inner wall surface temperature of the container wall (refractory) estimated by this method and the true value (1590 ° C.). As the container wall thickness (refractory thickness) increases, the estimation accuracy decreases, but the error is 1% or less, and high accuracy estimation is possible.

図10は、容器壁(耐火物)の設定厚みを変化させ、耐火物内壁面温度が溶鋼温度に一致するように容器壁厚み(耐火物厚み)を決定した結果を示す。従来法では、特に容器壁が厚い溶鋼鍋において、残存厚みの推定値に誤差が生じやすくなっている。既述したように、従来法では、耐火物内壁面の初期温度を一定温度(300℃)に仮定して計算したことにより、この誤差が生じたものと考えられる。   FIG. 10 shows the result of determining the container wall thickness (refractory thickness) so that the set thickness of the container wall (refractory) is changed and the inner wall surface temperature of the refractory matches the molten steel temperature. In the conventional method, an error is likely to occur in the estimated value of the remaining thickness, particularly in a molten steel pan having a thick container wall. As described above, in the conventional method, it is considered that this error is caused by calculation assuming that the initial temperature of the inner wall surface of the refractory is a constant temperature (300 ° C.).

それに対して、本法では、いずれの溶鋼鍋においても、実際の厚みと推定厚みとが略一致しており、良好な推定値が得られた。   On the other hand, in this method, the actual thickness and the estimated thickness almost coincided with each other, and a good estimated value was obtained.

以上述べた本発明の目的は、上述した実施形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、システム或いは装置に供給し、そのシステム或いは装置のコンピュータ(又はCPUやMPU)が記憶媒体に格納されたプログラムコードを読み出し実行することによっても、達成されることは言うまでもない。   The object of the present invention described above is to supply a storage medium storing software program codes for realizing the functions of the above-described embodiments to a system or apparatus, and store the computer (or CPU or MPU) of the system or apparatus. Needless to say, this can also be achieved by reading and executing the program code stored in the medium.

この場合、記憶媒体から読み出されたプログラムコード自体が上述した実施形態の機能を実現することになり、プログラムコード自体及びそのプログラムコードを記憶した記憶媒体は本発明を構成することになる。プログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD−ROM、CD−R、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。   In this case, the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the program code itself and the storage medium storing the program code constitute the present invention. As a storage medium for supplying the program code, for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a CD-R, a magnetic tape, a nonvolatile memory card, a ROM, or the like can be used.

容器壁の一部を表す図である。It is a figure showing a part of container wall. 本実施形態に係る容器の内壁面の温度及び熱流束の推定装置の概略構成を示す図である。It is a figure which shows schematic structure of the estimation apparatus of the temperature and heat flux of the inner wall face of the container which concerns on this embodiment. 本実施形態における容器の内壁面の温度及び熱流束の推定処理を説明するためのフローチャートである。It is a flowchart for demonstrating the estimation process of the temperature and heat flux of the inner wall face of the container in this embodiment. 本実施形態における容器の内壁面の温度及び熱流束の推定処理を説明するためのフローチャートである。It is a flowchart for demonstrating the estimation process of the temperature and heat flux of the inner wall face of the container in this embodiment. 容器壁の厚みが100mmの場合における外壁面の温度及び熱流束のデータを示す特性図である。It is a characteristic view which shows the data of the temperature and heat flux of an outer wall surface in case the thickness of a container wall is 100 mm. 容器壁の厚みが150mmの場合における外壁面の温度及び熱流束のデータを示す特性図である。It is a characteristic view which shows the temperature and heat flux data of an outer wall surface in case the thickness of a container wall is 150 mm. 容器壁の厚みが200mmの場合における外壁面の温度及び熱流束のデータを示す特性図である。It is a characteristic view which shows the temperature and heat flux data of an outer wall surface in case the thickness of a container wall is 200 mm. 実施例における容器壁の厚みが100mmの場合の推定した内壁面温度の推定値と真値の比較を示した図である。It is the figure which showed the comparison with the estimated value and true value of the estimated inner wall surface temperature in case the thickness of the container wall in an Example is 100 mm. 実施例における容器壁の厚みが150mmの場合の推定した内壁面温度の推定値と真値の比較を示した図である。It is the figure which showed the comparison with the estimated value and true value of the estimated inner wall surface temperature in case the thickness of the container wall in an Example is 150 mm. 実施例における容器壁の厚みが200mmの場合の推定した内壁面温度の推定値と真値の比較を示した図である。It is the figure which showed the comparison with the estimated value and true value of the estimated inner wall surface temperature in case the thickness of the container wall in an Example is 200 mm. 実施例及び比較例における容器壁の厚さの推定結果を示す図である。It is a figure which shows the estimation result of the thickness of the container wall in an Example and a comparative example.

符号の説明Explanation of symbols

101 入力部
102 熱流束算出部
103 演算部
104 出力部
DESCRIPTION OF SYMBOLS 101 Input part 102 Heat flux calculation part 103 Operation part 104 Output part

Claims (6)

容器内に高温物質が存在する状態での前記容器の内壁面の温度及び熱流束の推定方法であって、
前記容器の外壁面における温度h(t)、及び熱流束を容器壁の材料の熱伝導率で除した物理量g(t)を取得する手順と、
内壁面(x=0)から外壁面方向をx軸とし、式(101)における容器壁の温度u(x,t)の代替として変数v(x,t)を定義して導入した式(102)から、変数v(l,ti)を算出する手順と、
Figure 0004743781
変数w(x,t)を定義して導入した式(103)から、変数w(x,t)を式(104)により表し、式(104)に基づき、式(105)のMA×Vx=Vwを解くことによりVxを決定する手順と、
Figure 0004743781
Figure 0004743781
xから決定した内壁面の熱流束を容器壁の材料の熱伝導率で除した物理量f(t1)、f(t2)、・・・、f(tM)を使用して、式(106)に基づき、内壁面の温度p(t1)、p(t2)、・・・、p(tM)を決定する手順と、
Figure 0004743781
を有することを特徴とする容器の内壁面の温度及び熱流束の推定方法。
A method for estimating the temperature and heat flux of the inner wall surface of the container in the presence of a high-temperature substance in the container ,
Obtaining a temperature h (t) at the outer wall surface of the container and a physical quantity g (t) obtained by dividing the heat flux by the thermal conductivity of the material of the container wall;
An equation (102) in which a variable v (x, t) is defined and introduced as an alternative to the container wall temperature u (x, t) in equation (101) with the x direction from the inner wall surface (x = 0) to the outer wall surface direction. ) To calculate the variable v (l, t i ),
Figure 0004743781
The variable w (x, t) is expressed by the formula (104) from the formula (103) introduced by defining the variable w (x, t). Based on the formula (104), MA × V x of the formula (105) = Determining V x by solving for V w ;
Figure 0004743781
Figure 0004743781
Using physical quantities f (t 1 ), f (t 2 ),..., F (t M ) obtained by dividing the heat flux of the inner wall determined from V x by the thermal conductivity of the material of the container wall, (106) a procedure for determining the temperature p (t 1 ), p (t 2 ),..., P (t M ) of the inner wall surface;
Figure 0004743781
A method for estimating the temperature and heat flux of the inner wall surface of the container.
容器内に高温物質が存在する状態での前記容器の内壁面の温度及び熱流束の推定方法であって、
前記容器の外壁面における温度h(t)、及び熱流束を容器壁の材料の熱伝導率で除した物理量g(t)を取得する手順と、
内壁面(x=0)から外壁面方向をx軸とし、式(101)における容器壁の温度u(x,t)の代替として変数v(x,t)を定義して導入した式(102)から、変数v(l,ti)を算出する手順と、
Figure 0004743781
変数w(x,t)を定義して導入した式(103)から、変数w(x,t)を式(104)により表し、式(104)に基づき、式(105)のMA×Vx=Vwを解くことによりVxを決定する手順と、
Figure 0004743781
Figure 0004743781
xから決定した内壁面の熱流束を容器壁の材料の熱伝導率で除した物理量f(t2)、f(t4)、・・・、f(tM)を使用して、式(106)に基づき、内壁面の温度p(t2)、p(t4)、・・・、p(tM)を決定する手順と、
Figure 0004743781
を有することを特徴とする容器の内壁面の温度及び熱流束の推定方法。
A method for estimating the temperature and heat flux of the inner wall surface of the container in the presence of a high-temperature substance in the container ,
Obtaining a temperature h (t) at the outer wall surface of the container and a physical quantity g (t) obtained by dividing the heat flux by the thermal conductivity of the material of the container wall;
An equation (102) in which a variable v (x, t) is defined and introduced as an alternative to the container wall temperature u (x, t) in equation (101) with the x direction from the inner wall surface (x = 0) to the outer wall surface direction. ) To calculate the variable v (l, t i ),
Figure 0004743781
The variable w (x, t) is expressed by the formula (104) from the formula (103) introduced by defining the variable w (x, t). Based on the formula (104), MA × V x of the formula (105) = Determining V x by solving for V w ;
Figure 0004743781
Figure 0004743781
Using physical quantities f (t 2 ), f (t 4 ),..., F (t M ) obtained by dividing the heat flux of the inner wall determined from V x by the thermal conductivity of the container wall material, (106) a procedure for determining the temperature p (t 2 ), p (t 4 ),..., P (t M ) of the inner wall surface;
Figure 0004743781
A method for estimating the temperature and heat flux of the inner wall surface of the container.
容器内に高温物質が存在する状態での前記容器の内壁面の温度及び熱流束の推定装置であって、
前記容器の外壁面における温度h(t)、及び熱流束を材料の熱伝導率で除した物理量g(t)を取得する手段と、
内壁面(x=0)から外壁面方向をx軸とし、式(101)における容器壁の温度u(x,t)の代替として変数v(x,t)を定義して導入した式(102)から、変数v(l,ti)を算出する手段と、
Figure 0004743781
変数w(x,t)を定義して導入した式(103)から、変数w(x,t)を式(104)により表し、式(104)に基づき、式(105)のMA×Vx=Vwを解くことによりVxを決定する手段と、
Figure 0004743781
Figure 0004743781
xから決定した内壁面の熱流束を材料の熱伝導率で除した物理量f(t1)、f(t2)、・・・、f(tM)を使用して、式(106)に基づき、内壁面の温度p(t1)、p(t2)、・・・、p(tM)を決定する手段と、
Figure 0004743781
を有することを特徴とする容器の内壁面の温度及び熱流束の推定装置。
An apparatus for estimating the temperature and heat flux of the inner wall surface of the container in the presence of a high-temperature substance in the container ,
Means for obtaining a temperature h (t) at the outer wall surface of the container and a physical quantity g (t) obtained by dividing the heat flux by the thermal conductivity of the material;
An equation (102) in which a variable v (x, t) is defined and introduced as an alternative to the container wall temperature u (x, t) in equation (101) with the x direction from the inner wall surface (x = 0) to the outer wall surface direction. ) To calculate the variable v (l, t i );
Figure 0004743781
The variable w (x, t) is expressed by the formula (104) from the formula (103) introduced by defining the variable w (x, t). Based on the formula (104), MA × V x of the formula (105) = Means to determine V x by solving for V w ;
Figure 0004743781
Figure 0004743781
Using physical quantities f (t 1 ), f (t 2 ),..., F (t M ) obtained by dividing the heat flux of the inner wall surface determined from V x by the thermal conductivity of the material, equation (106) , P (t M ) for determining the temperature p (t 1 ), p (t 2 ),.
Figure 0004743781
An apparatus for estimating the temperature and heat flux of the inner wall surface of the container, characterized by comprising:
容器内に高温物質が存在する状態での前記容器の内壁面の温度及び熱流束の推定装置であって、
前記容器の外壁面における温度h(t)、及び熱流束を容器壁の材料の熱伝導率で除した物理量g(t)を取得する手段と、
内壁面(x=0)から外壁面方向をx軸とし、式(101)における容器壁の温度u(x,t)の代替として変数v(x,t)を定義して導入した式(102)から、変数v(l,ti)を算出する手段と、
Figure 0004743781
変数w(x,t)を定義して導入した式(103)から、変数w(x,t)を式(104)により表し、式(104)に基づき、式(105)のMA×Vx=Vwを解くことによりVxを決定する手段と、
Figure 0004743781
Figure 0004743781
xから決定した内壁面の熱流束を材料の熱伝導率で除した物理量f(t2)、f(t4)、・・・、f(tM)を使用して、式(106)に基づき、内壁面の温度p(t2)、p(t4)、・・・、p(tM)を決定する手段と、
Figure 0004743781
を有することを特徴とする容器の内壁面の温度及び熱流束の推定装置。
An apparatus for estimating the temperature and heat flux of the inner wall surface of the container in the presence of a high-temperature substance in the container ,
Means for obtaining a temperature h (t) at the outer wall surface of the container and a physical quantity g (t) obtained by dividing the heat flux by the thermal conductivity of the material of the container wall;
An equation (102) in which a variable v (x, t) is defined and introduced as an alternative to the container wall temperature u (x, t) in equation (101) with the x direction from the inner wall surface (x = 0) to the outer wall surface direction. ) To calculate the variable v (l, t i );
Figure 0004743781
The variable w (x, t) is expressed by the formula (104) from the formula (103) introduced by defining the variable w (x, t). Based on the formula (104), MA × V x of the formula (105) = Means to determine V x by solving for V w ;
Figure 0004743781
Figure 0004743781
Using physical quantities f (t 2 ), f (t 4 ),..., F (t M ) obtained by dividing the heat flux of the inner wall surface determined from V x by the thermal conductivity of the material, equation (106) , P (t M ) for determining the temperature p (t 2 ), p (t 4 ),.
Figure 0004743781
An apparatus for estimating the temperature and heat flux of the inner wall surface of the container, characterized by comprising:
容器内に高温物質が存在する状態での前記容器の内壁面の温度及び熱流束の推定演算をコンピュータに実行させるコンピュータプログラムであって、
前記容器の外壁面における温度h(t)、及び熱流束を材料の熱伝導率で除した物理量g(t)を取得する処理と、
内壁面(x=0)から外壁面方向をx軸とし、式(101)における容器壁の温度u(x,t)の代替として変数v(x,t)を定義して導入した式(102)から、変数v(l,ti)を算出する処理と、
Figure 0004743781
変数w(x,t)を定義して導入した式(103)から、変数w(x,t)を式(104)により表し、式(104)に基づき、式(105)のMA×Vx=Vwを解くことによりVxを決定する処理と、
Figure 0004743781
Figure 0004743781
xから決定した内壁面の熱流束を材料の熱伝導率で除した物理量f(t1)、f(t2)、・・・、f(tM)を使用して、式(106)に基づき、内壁面の温度p(t1)、p(t2)、・・・、p(tM)を決定する処理と、
Figure 0004743781
をコンピュータに実行させることを特徴とするコンピュータプログラム。
A computer program for causing a computer to execute an estimation calculation of the temperature and heat flux of the inner wall surface of the container in a state where a high-temperature substance is present in the container ,
A process of obtaining a temperature h (t) at the outer wall surface of the container and a physical quantity g (t) obtained by dividing the heat flux by the thermal conductivity of the material;
An equation (102) in which a variable v (x, t) is defined and introduced as an alternative to the container wall temperature u (x, t) in equation (101) with the x direction from the inner wall surface (x = 0) to the outer wall surface direction. ) To calculate the variable v (l, t i ),
Figure 0004743781
The variable w (x, t) is expressed by the formula (104) from the formula (103) introduced by defining the variable w (x, t). Based on the formula (104), MA × V x of the formula (105) Processing to determine V x by solving = V w ;
Figure 0004743781
Figure 0004743781
Using physical quantities f (t 1 ), f (t 2 ),..., F (t M ) obtained by dividing the heat flux of the inner wall surface determined from V x by the thermal conductivity of the material, equation (106) , P (t M ) for determining the temperature p (t 1 ), p (t 2 ),.
Figure 0004743781
A computer program for causing a computer to execute.
容器内に高温物質が存在する状態での前記容器の内壁面の温度及び熱流束の推定演算をコンピュータに実行させるコンピュータプログラムであって、
前記容器の外壁面における温度h(t)及び熱流束を材料の熱伝導率で除した物理量g(t)を取得する処理と、
内壁面(x=0)から外壁面方向をx軸とし、式(101)における容器壁の温度u(x,t)の代替として変数v(x,t)を定義して導入した式(102)から、変数v(l,ti)を算出する処理と、
Figure 0004743781
変数w(x,t)を定義して導入した式(103)から、変数w(x,t)を式(104)により表し、式(104)に基づき、式(105)のMA×Vx=Vwを解くことによりVxを決定する処理と、
Figure 0004743781
Figure 0004743781
Figure 0004743781
xから決定した内壁面の熱流束を材料の熱伝導率で除した物理量f(t2)、f(t4)、・・・、f(tM)を使用して、式(106)に基づき、内壁面の温度p(t2)、p(t4)、・・・、p(tM)を決定する処理と、
Figure 0004743781
をコンピュータに実行させることを特徴とするコンピュータプログラム。
A computer program for causing a computer to execute an estimation calculation of the temperature and heat flux of the inner wall surface of the container in a state where a high-temperature substance is present in the container ,
A process of obtaining a physical quantity g (t) obtained by dividing the temperature h (t) and heat flux at the outer wall surface of the container by the thermal conductivity of the material;
An equation (102) in which a variable v (x, t) is defined and introduced as an alternative to the container wall temperature u (x, t) in equation (101) with the x direction from the inner wall surface (x = 0) to the outer wall surface direction. ) To calculate the variable v (l, t i ),
Figure 0004743781
The variable w (x, t) is expressed by the formula (104) from the formula (103) introduced by defining the variable w (x, t). Based on the formula (104), MA × V x of the formula (105) Processing to determine V x by solving = V w ;
Figure 0004743781
Figure 0004743781
Figure 0004743781
Using physical quantities f (t 2 ), f (t 4 ),..., F (t M ) obtained by dividing the heat flux of the inner wall surface determined from V x by the thermal conductivity of the material, equation (106) , P (t M ) for determining the temperature p (t 2 ), p (t 4 ),.
Figure 0004743781
A computer program for causing a computer to execute.
JP2006239412A 2006-09-04 2006-09-04 Method, apparatus, and computer program for estimating temperature and heat flux of inner wall surface of container Active JP4743781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006239412A JP4743781B2 (en) 2006-09-04 2006-09-04 Method, apparatus, and computer program for estimating temperature and heat flux of inner wall surface of container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006239412A JP4743781B2 (en) 2006-09-04 2006-09-04 Method, apparatus, and computer program for estimating temperature and heat flux of inner wall surface of container

Publications (2)

Publication Number Publication Date
JP2008064470A JP2008064470A (en) 2008-03-21
JP4743781B2 true JP4743781B2 (en) 2011-08-10

Family

ID=39287330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006239412A Active JP4743781B2 (en) 2006-09-04 2006-09-04 Method, apparatus, and computer program for estimating temperature and heat flux of inner wall surface of container

Country Status (1)

Country Link
JP (1) JP4743781B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4850803B2 (en) * 2007-09-14 2012-01-11 新日本製鐵株式会社 Method for estimating temperature inside material, method for estimating heat flux, apparatus, and computer program
CN107590333A (en) * 2017-09-07 2018-01-16 北京金恒博远科技股份有限公司 The emulation mode and device of the bed of material inside blast furnace
CN107609261A (en) * 2017-09-07 2018-01-19 北京金恒博远科技股份有限公司 The emulation mode of blast furnace material distribution process, apparatus and system
RU2770168C1 (en) * 2018-09-28 2022-04-14 Роузмаунт Инк. Non-invasive indication of the temperature of the process medium with reduced error

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429021A (en) * 1990-05-25 1992-01-31 Hitachi Ltd Temperature calculating method
JP3769164B2 (en) * 2000-02-28 2006-04-19 新日本製鐵株式会社 Blast furnace bottom condition estimation and prediction method
JP3926571B2 (en) * 2000-08-17 2007-06-06 独立行政法人科学技術振興機構 Method and apparatus for measuring temperature conductivity etc. of solid
JP4299554B2 (en) * 2003-02-21 2009-07-22 新日本製鐵株式会社 Inverse problem analysis method, apparatus, computer program, and computer-readable storage medium
JP2007071686A (en) * 2005-09-07 2007-03-22 Nippon Steel Corp Method and device for estimating temperature of container wall or heat flux, computer program, computer-readable recording medium, and method of estimating container wall thickness
JP4753374B2 (en) * 2006-09-04 2011-08-24 新日本製鐵株式会社 Container wall thickness estimation method, apparatus, and computer program

Also Published As

Publication number Publication date
JP2008064470A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP2007071686A (en) Method and device for estimating temperature of container wall or heat flux, computer program, computer-readable recording medium, and method of estimating container wall thickness
JP5505086B2 (en) Method, apparatus and program for estimating state in mold in continuous casting
JP6884448B2 (en) Scale thickness estimation system, scale thickness estimation method, and scale thickness estimation program
JP4753374B2 (en) Container wall thickness estimation method, apparatus, and computer program
JP4743781B2 (en) Method, apparatus, and computer program for estimating temperature and heat flux of inner wall surface of container
JP5068559B2 (en) Container wall state management method, apparatus, and computer program
JP2007167871A (en) Apparatus and method for determining operating state of working surfaces of casting mold or casting die, method for operating casting mold or casting die, computer program, and recording medium readable by computer
Wang et al. Thermal conductivity of the ternary eutectic LiNO3–NaNO3–KNO3 salt mixture in the solid state using a simple inverse method
Fredman et al. Two-dimensional dynamic simulation of the thermal state of ladles
JP5304734B2 (en) Heat treatment simulation method
JP2016166781A (en) Monitoring system and method of scale in pipeline
JP2017125754A (en) Heat conductivity calculation method for treatment object, and heat treatment method for treatment object using the same
JP4695376B2 (en) Heating or cooling characteristic evaluation method and apparatus, reaction vessel operation management method and apparatus, computer program, and computer-readable recording medium
JP4833621B2 (en) Method, apparatus, computer program, and computer-readable recording medium for estimating temperature or heat flux of reaction vessel
Fredman et al. Model for temperature profile estimation in the refractory of a metallurgical ladle
JP5064433B2 (en) Method, apparatus and program for estimating heat flux on inner surface of container
KR102531803B1 (en) Method for monitoring wear of refractory linings of blast furnaces
JP2004025202A (en) Method and instrument for detecting molten metal surface level, computer program and computer readable storage medium
JP2004251843A (en) Method, apparatus, and computer program for analyzing inverse problem, and computer-readable recording medium
JP2016221537A (en) Method for controlling temperature of molten metal holding vessel, method for controlling refractory layer thickness of molten metal holding vessel, method for controlling molten metal temperature inside molten metal holding vessel, device for controlling temperature of molten metal holding vessel, and program for controlling temperature of molten metal holding vessel
JP6721273B2 (en) Determination method, determination device, and determination program for chemical cleaning time of boiler water cooling wall pipe material
JP2005082862A (en) Method and device for estimating inner surface position in reaction vessel, and computer program
JP4964720B2 (en) Method, apparatus, and computer program for estimating future temperature of measured object
JP4559708B2 (en) Evaluation method for evaluating state in reaction vessel, operation management method, evaluation apparatus, computer program, and computer-readable storage medium
JP2023005279A (en) Remaining lifetime evaluation method for heat transfer tube, and remaining lifetime evaluation device for heat transfer tube

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4743781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350