JP2005082862A - Method and device for estimating inner surface position in reaction vessel, and computer program - Google Patents

Method and device for estimating inner surface position in reaction vessel, and computer program Download PDF

Info

Publication number
JP2005082862A
JP2005082862A JP2003317288A JP2003317288A JP2005082862A JP 2005082862 A JP2005082862 A JP 2005082862A JP 2003317288 A JP2003317288 A JP 2003317288A JP 2003317288 A JP2003317288 A JP 2003317288A JP 2005082862 A JP2005082862 A JP 2005082862A
Authority
JP
Japan
Prior art keywords
temperature
surface position
reaction vessel
assumed
heat flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003317288A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yoshino
博之 吉野
Taiji Kurita
泰司 栗田
Hiroyuki Furuta
博之 古田
Masatoshi Miyawaki
雅敏 宮脇
Junichi Nakagawa
淳一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003317288A priority Critical patent/JP2005082862A/en
Publication of JP2005082862A publication Critical patent/JP2005082862A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve an estimating accuracy with which unsteady changing behavior of the temperature and the heat flux is caught from an inverse problem analysis by using an unsteady heat-conductivity equation and e.g. the remaining thickness of the furnace wall in a blast furnace is estimated and also, the calculation at this time is stabilized. <P>SOLUTION: In a some time step, the temperature at each thermocouple position, is calculated with the unsteady heat-conductivity equation from an assumed value of the heat flux at the inner surface assumed position and the outer surface position in the blast furnace, and based on the calculated temperature at each thermocouple position and the measured temperature with each thermocouple, the heat fluxes at the inner surface assumed position and the outer surface position and further, a treatment obtaining the temperature given from the heat flux, are performed by changing the inner surface assumed positions in the above reaction vessel at the same time step in plurality of times. Then, a corresponding relation between the temperature obtained at each inner surface assumed position and each fixed length is obtained and the inner surface assumed position becoming 1150°C (the solidifying point temperature of molten iron) is estimated as the inner surface position, and the remaining thickness of the furnace wall in the blast furnace is estimated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば高炉炉壁の侵食や付着する凝固層の形成により変化する残存厚みを推定するのに好適な反応容器の内表面位置推定方法、装置、コンピュータプログラムに関する。   The present invention relates to a method, apparatus, and computer program for estimating the inner surface position of a reaction vessel suitable for estimating a remaining thickness that changes due to, for example, erosion of a blast furnace wall or formation of an adhering solidified layer.

従来、高炉炉壁の残存厚みは、例えば炉壁に埋め込まれた2点の熱電対で測定される温度に基づいて、2点間の温度と距離及び煉瓦の熱伝導率から熱流束を計算し、稼動面の温度を例えば溶銑の凝固温度に仮定して残存厚みを算出することにより推定されている。   Conventionally, the remaining thickness of the blast furnace wall is calculated by calculating the heat flux from the temperature and distance between the two points and the thermal conductivity of the brick, based on the temperature measured by two thermocouples embedded in the furnace wall, for example. The remaining surface thickness is estimated by assuming the operating surface temperature as the solidification temperature of the hot metal, for example.

しかしながら、上記従来の手法では、炉壁煉瓦内の温度分布が煉瓦内に埋め込まれた2点の熱電対温度を結ぶ直線上にあることが前提となっており、煉瓦内の温度分布が常に定常状態にあると仮定して熱流束を算出している。ところが、炉壁煉瓦は大きな熱容量を有し、煉瓦内の温度分布が定常状態になるのに長時間要するのに対して、炉内状況は時々刻々変化するため、煉瓦内の温度分布が定常状態となることはなく、煉瓦内の温度分布を定常状態にあると仮定して残存厚みを推定する手法では、実際の値との間に大きな剥離がある。   However, in the above conventional method, it is assumed that the temperature distribution in the furnace wall brick is on a straight line connecting two thermocouple temperatures embedded in the brick, and the temperature distribution in the brick is always steady. The heat flux is calculated on the assumption that it is in a state. However, the furnace wall bricks have a large heat capacity, and it takes a long time for the temperature distribution in the brick to reach a steady state. In the method of estimating the remaining thickness assuming that the temperature distribution in the brick is in a steady state, there is a large separation between the actual value.

上記の点に鑑みて、特許文献1には、非定常熱伝導方程式を用いた逆問題解析を行うことにより、稼動面又は炉内溶融凝固付着物層稼動面の熱流束の非定常変化挙動と炉壁の残存厚みを推定する手法が開示されている。   In view of the above points, Patent Document 1 discloses an unsteady change behavior of the heat flux on the working surface or the molten solidified deposit layer working surface in the furnace by performing an inverse problem analysis using the unsteady heat conduction equation. A technique for estimating the remaining thickness of the furnace wall is disclosed.

特開2001−234217号公報JP 2001-234217 A

特許文献1に開示された手法は、炉壁に付着する炉内溶融物による厚みの変化と熱流束変化とを同時に推定するものである。しかしながら、凝固・溶解現象によって付着量を増減するロジックを逆問題解析に導入すると、計算手続が複雑になって計算が不安定化しやすくなり、また、厚みを変化させた前後に不確定な要素が混入する可能性があるため推定精度が悪くなるおそれがある。   The technique disclosed in Patent Document 1 simultaneously estimates a change in thickness and a change in heat flux due to the in-furnace melt adhering to the furnace wall. However, if logic that increases or decreases the amount of adhesion due to the solidification / dissolution phenomenon is introduced in inverse problem analysis, the calculation procedure becomes complicated and the calculation tends to become unstable, and there are uncertain factors before and after changing the thickness. Since there is a possibility of mixing, the estimation accuracy may be deteriorated.

本発明は上記の点に鑑みてなされたものであり、非定常熱伝導方程式を用いた逆問題解析により温度や熱流束の非定常変化挙動を捉え、例えば高炉炉壁の残存厚みを推定するとともに、その際の計算を安定化させ、推定精度を向上させることを目的とする。   The present invention has been made in view of the above points, and captures an unsteady change behavior of temperature and heat flux by inverse problem analysis using an unsteady heat conduction equation to estimate the remaining thickness of a blast furnace wall, for example. The purpose of this is to stabilize the calculation and improve the estimation accuracy.

本発明の内表面位置推定方法は、温度変化反応を伴う反応容器の壁内部の少なくとも厚み方向に複数配置された温度測定点で測定される温度に基づいて、上記反応容器の内表面位置を推定する反応容器の内表面位置推定方法であって、上記反応容器の内表面仮定位置及び外表面位置での温度或いは熱流束の仮定値から非定常熱伝導方程式により上記各温度測定点での温度或いは熱流束を算出し、その算出された各温度測定点での温度或いは熱流束と、上記各温度測定点で測定された温度とに基づいて、上記反応容器の内表面仮定位置及び外表面位置での温度或いは熱流束を求める処理を、同一の対象時間について上記反応容器の内表面仮定位置を変更して行う点に特徴を有する。   The inner surface position estimation method of the present invention estimates the inner surface position of the reaction vessel based on temperatures measured at a plurality of temperature measurement points arranged at least in the thickness direction inside the wall of the reaction vessel accompanied by a temperature change reaction. A method for estimating the inner surface position of the reaction vessel, wherein the temperature at each temperature measurement point or the temperature at each of the temperature measurement points according to the unsteady heat conduction equation is calculated from the assumed temperature or heat flux at the assumed inner surface position and outer surface position of the reaction vessel. A heat flux is calculated, and based on the calculated temperature or heat flux at each temperature measurement point and the temperature measured at each temperature measurement point, the assumed inner surface position and the outer surface position of the reaction vessel. The temperature or heat flux is obtained by changing the assumed inner surface position of the reaction vessel for the same target time.

また、本発明の反応容器の内表面位置推定方法の他の特徴とするところは、上記反応容器の各内表面仮定位置での温度を求めていき、所定温度となる内表面仮定位置を内表面位置と推定する点にある。   Another feature of the method for estimating the inner surface position of the reaction vessel of the present invention is that the temperature at each assumed inner surface position of the reaction vessel is obtained, and the assumed inner surface position at which the predetermined temperature is reached is determined as the inner surface. It is a point to be estimated as a position.

また、本発明の反応容器の内表面位置推定方法の他の特徴とするところは、上記各温度測定点で測定された温度と、上記反応容器の内表面仮定位置及び外表面位置での温度或いは熱流束の仮定値から非定常熱伝導方程式により算出された各温度測定点位置での温度との差の二乗の和が最小となる上記仮定値を上記反応容器の内表面仮定位置及び外表面位置での温度或いは熱流束として求める点にある。   Another feature of the method for estimating the inner surface position of the reaction vessel according to the present invention is that the temperature measured at each temperature measurement point and the temperature at the assumed inner surface position and outer surface position of the reaction vessel or The above assumed values at which the sum of the squares of the differences from the temperature at each temperature measurement point position calculated from the assumed value of heat flux by the unsteady heat conduction equation is the minimum are the assumed inner surface position and outer surface position of the reaction vessel. It is in the point calculated | required as temperature or heat flux in.

また、本発明の反応容器の内表面位置推定方法の他の特徴とするところは、反応容器である高炉炉壁の残存厚みを推定するのに利用される点にある。   Another feature of the method for estimating the inner surface position of the reaction vessel of the present invention is that it is used to estimate the remaining thickness of the blast furnace wall that is the reaction vessel.

本発明の反応容器の内表面位置推定装置は、温度変化反応を伴う反応容器の壁内部の少なくとも厚み方向に複数配置された温度測定点で測定される温度に基づいて、上記反応容器の内表面位置を推定する反応容器の内表面位置推定装置であって、上記反応容器の内表面仮定位置及び外表面位置での温度或いは熱流束の仮定値から非定常熱伝導方程式により上記各温度測定点での温度或いは熱流束を算出し、その算出された各温度測定点での温度或いは熱流束と、上記各温度測定点で測定された温度とに基づいて、上記反応容器の内表面仮定位置及び外表面位置での温度或いは熱流束を求める処理を、同一の対象時間について上記反応容器の内表面仮定位置を変更して行う手段を備えた点に特徴を有する。   The reaction vessel inner surface position estimation apparatus according to the present invention is based on the temperature measured at a plurality of temperature measurement points arranged at least in the thickness direction inside the wall of the reaction vessel accompanied by a temperature change reaction. An apparatus for estimating the position of the inner surface of a reaction vessel for estimating a position, wherein the temperature at each assumed temperature and heat flux at the assumed inner surface position and outer surface position of the reaction vessel is measured at each temperature measurement point according to an unsteady heat conduction equation. The temperature or heat flux of the reaction vessel is calculated, and based on the calculated temperature or heat flux at each temperature measurement point and the temperature measured at each temperature measurement point, the assumed position of the inner surface of the reaction vessel and the outer heat flux are calculated. The present invention is characterized in that there is provided means for performing the process of obtaining the temperature or heat flux at the surface position by changing the assumed inner surface position of the reaction vessel for the same target time.

本発明のコンピュータプログラムは、温度変化反応を伴う反応容器の壁内部の少なくとも厚み方向に複数配置された温度測定点で測定される温度に基づいて、上記反応容器の内表面位置を推定するための処理をコンピュータに実行させるコンピュータプログラムであって、上記反応容器の内表面仮定位置及び外表面位置での温度或いは熱流束の仮定値から非定常熱伝導方程式により上記各温度測定点での温度或いは熱流束を算出し、その算出された各温度測定点での温度或いは熱流束と、上記各温度測定点で測定された温度とに基づいて、上記反応容器の内表面仮定位置及び外表面位置での温度或いは熱流束を求める処理をコンピュータに実行させるとともに、その処理を同一の対象時間について上記反応容器の内表面仮定位置を変更して行う点に特徴を有する。   The computer program of the present invention is for estimating the inner surface position of the reaction vessel based on temperatures measured at a plurality of temperature measurement points arranged at least in the thickness direction inside the wall of the reaction vessel accompanied by a temperature change reaction. A computer program for causing a computer to execute processing, wherein the temperature or heat flow at each temperature measurement point is calculated from an assumed value of temperature or heat flux at the assumed inner surface position and outer surface position of the reaction vessel according to an unsteady heat conduction equation. The bundle is calculated, and based on the calculated temperature or heat flux at each temperature measurement point and the temperature measured at each temperature measurement point, the inner surface assumed position and the outer surface position of the reaction vessel Let the computer execute a process for obtaining temperature or heat flux, and change the assumed inner surface position of the reaction vessel for the same target time. Characterized by a point.

以上述べたように本発明によれば、非定常熱伝導方程式を用いた逆問題解析により温度や熱流束の非定常変化挙動を捉えて、例えば高炉炉壁の残存厚みを推定することができる。そして、その際に内表面仮定位置と外表面位置との長さを固定するようにしたので、計算を安定化させるとともに、推定精度を向上させることができる。   As described above, according to the present invention, the residual thickness of the blast furnace wall can be estimated, for example, by capturing the unsteady change behavior of temperature and heat flux by inverse problem analysis using the unsteady heat conduction equation. In this case, since the length between the assumed inner surface position and the outer surface position is fixed, the calculation can be stabilized and the estimation accuracy can be improved.

以下、図面を参照して、本発明の実施の形態を説明する。
図1には、本発明による反応容器の内表面位置推定手法を利用した高炉炉壁の残存厚み推定装置の構成を示す。同図において、101は入力部であり、高炉(本発明でいう反応容器に相当する)の炉壁内部に埋め込まれた複数の熱電対(図2を参照)で測定される温度データが入力される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows the configuration of a blast furnace wall residual thickness estimation apparatus using the reaction vessel inner surface position estimation method according to the present invention. In the figure, 101 is an input unit for inputting temperature data measured by a plurality of thermocouples (see FIG. 2) embedded in the furnace wall of a blast furnace (corresponding to a reaction vessel in the present invention). The

102は逆問題解析部であり、高炉の内表面位置を仮定するとともに、その内表面仮定位置及び外表面位置での熱流束の仮定値から非定常熱伝導方程式により各熱電対位置での温度を算出し、その算出された各熱電対位置での温度と、各熱電対で測定された温度とに基づいて、内表面仮定位置及び外表面位置での熱流束、更にその熱流束により与えられる温度を求める。そして、この逆問題解析処理を、同一の時間ステップで(同一の対象時間について)高炉の内表面仮定位置を複数回変更して行う。   Reference numeral 102 denotes an inverse problem analysis unit, which assumes the inner surface position of the blast furnace and calculates the temperature at each thermocouple position from the assumed value of the heat flux at the inner surface assumed position and the outer surface position by an unsteady heat conduction equation. Based on the calculated temperature at each thermocouple position and the temperature measured at each thermocouple, the heat flux at the assumed inner surface position and the outer surface position, and the temperature given by the heat flux Ask for. Then, the inverse problem analysis processing is performed by changing the assumed inner surface position of the blast furnace a plurality of times at the same time step (for the same target time).

103は残存厚み推定部であり、時間ステップごとに、高炉の各内表面仮定位置で求められた温度と、各固定長(外表面位置と内表面仮定位置との間の長さ)との対応関係を求める。そして、温度が1150℃(溶銑の凝固点温度)となる内表面仮定位置を内表面位置と推定する。   103 is a remaining thickness estimation unit, and for each time step, the correspondence between the temperature obtained at each assumed inner surface position of the blast furnace and each fixed length (the length between the outer surface position and the assumed inner surface position) Seeking a relationship. The assumed inner surface position at which the temperature is 1150 ° C. (freezing point temperature of hot metal) is estimated as the inner surface position.

104は出力部であり、残存厚み推定部103により出力される高炉の内表面仮定位置で求められた温度と固定長との対応関係等を、ディスプレイ105に視認可能に表示等する。   Reference numeral 104 denotes an output unit which displays the correspondence between the temperature obtained at the assumed inner surface position of the blast furnace and the fixed length output by the remaining thickness estimation unit 103 so as to be visible on the display 105.

ここで、本実施の形態で利用する逆問題解析について説明する。特許文献1にもあるように、反応容器の壁内部での熱伝導現象を非定常1次元の熱伝導逆問題と考えて、1つの熱電対温度変化、又は、1次元方向に並んだ複数の熱電対温度変化から、反応容器の内表面での熱流束変化を推定する手法が提案されている。   Here, the inverse problem analysis used in this embodiment will be described. As also disclosed in Patent Document 1, the heat conduction phenomenon inside the reaction vessel wall is considered as an unsteady one-dimensional heat conduction inverse problem, and one thermocouple temperature change or a plurality of one-dimensional directions are arranged. A method has been proposed for estimating the heat flux change on the inner surface of the reaction vessel from the thermocouple temperature change.

図2は、複数の熱電対「×」が埋め込まれた高炉炉壁近くの2次元断面を示している。炉壁内に破線で境界を示しているが、1次元とはこの破線に沿った方向(厚み方向)の熱流れのみを考慮したことを意味している。すなわち、例えば、1a→1b→1cや1d→1e方向の熱伝導を想定した場合に、炉内表面での熱流束を推定する。このとき、炉外表面の冷却条件を既知と仮定して、未知とした炉内表面での熱流束を求めることが一般的である。もちろん、既知と未知の境界条件を反対にすることも可能である。   FIG. 2 shows a two-dimensional cross section near the blast furnace wall in which a plurality of thermocouples “x” are embedded. Although the boundary is indicated by a broken line in the furnace wall, the one-dimensional means that only the heat flow in the direction (thickness direction) along the broken line is considered. That is, for example, when heat conduction in the directions of 1a → 1b → 1c and 1d → 1e is assumed, the heat flux at the furnace inner surface is estimated. At this time, assuming that the cooling condition of the outer surface of the furnace is known, it is common to obtain the heat flux on the unknown inner surface of the furnace. Of course, it is also possible to reverse the known and unknown boundary conditions.

ところが、本来の非定常1次元の熱伝導逆問題は、炉内表面及び炉外表面での境界条件を同時推定することであり、片側の境界条件を既知と仮定した逆問題解法では、未知とした境界条件の近似的な答えしか得ることができない。例えば、ある熱電対により測定された温度変動が、上述のような反応容器の内表面における熱流束変化によるものなのか、反応容器外に設置された冷却装置の接触不良等によって引き起こされるような反応容器の外表面における熱流束変化によるものかを区別することはできないことになる。   However, the original unsteady one-dimensional inverse heat conduction problem is to simultaneously estimate the boundary conditions on the inner and outer surfaces of the furnace, and in the inverse solution method assuming that one of the boundary conditions is known, We can only get an approximate answer to the boundary condition. For example, a reaction that is caused by a temperature fluctuation measured by a certain thermocouple due to a change in the heat flux on the inner surface of the reaction vessel as described above or due to poor contact of a cooling device installed outside the reaction vessel. It cannot be distinguished whether it is due to a heat flux change on the outer surface of the container.

また、より厳密に評価するには、熱伝導現象は、図2に示す破線を跨いで上方向にも起こるはずであり、2次元での熱伝導逆問題を解くことが必要となる。この場合には、図2の上下境界が断熱と仮定した場合においても、左右境界の細かな熱流束分布を推定する2次元逆問題を構成する必要があることになる。   In order to evaluate more strictly, the heat conduction phenomenon should also occur in the upward direction across the broken line shown in FIG. 2, and it is necessary to solve the inverse heat conduction problem in two dimensions. In this case, even when the upper and lower boundaries in FIG. 2 are assumed to be adiabatic, it is necessary to construct a two-dimensional inverse problem for estimating a fine heat flux distribution at the left and right boundaries.

そこで、本願出願人は、反応容器の内表面及び外表面での熱流束変化や温度変化を同時推定可能とするための逆問題解析について提案している。以下、本願出願人が提案する逆問題解析について詳細に説明すると、逆問題解析に用いられる非定常熱伝導方程式は、下記の数1に示すように表される。   Therefore, the applicant of the present application has proposed inverse problem analysis for enabling simultaneous estimation of changes in heat flux and temperature on the inner and outer surfaces of the reaction vessel. Hereinafter, the inverse problem analysis proposed by the present applicant will be described in detail. The unsteady heat conduction equation used for the inverse problem analysis is expressed as shown in the following Equation 1.

Figure 2005082862
Figure 2005082862

数1において、ρは反応容器の材料の密度、Cpは反応容器の材料の比熱、Tは反応容器内部の温度の計算値、tは時間、kは反応容器の材料の熱伝導度を表す。 In Equation 1, ρ is the density of the reaction vessel material, C p is the specific heat of the reaction vessel material, T is the calculated value of the temperature inside the reaction vessel, t is time, and k is the thermal conductivity of the reaction vessel material. .

熱伝導逆問題解析というのは、計算領域を支配する非定常熱伝導方程式を基にして、領域内部の温度を既知として、領域境界での温度や熱流束等の境界条件を推定することをいう。これに対して、熱伝導順問題解析というのは、既知である領域境界での温度や熱流束等の境界条件から領域内部の温度を推定することをいう。   Inverse heat conduction problem analysis refers to estimating boundary conditions such as temperature and heat flux at the boundary of the region based on the unsteady heat conduction equation that governs the calculation region, assuming the temperature inside the region as known. . On the other hand, the heat conduction order problem analysis is to estimate the temperature inside the region from the known boundary conditions such as the temperature at the region boundary and the heat flux.

本実施の形態では、逆問題解析の手法として、下記の数2に示すように、ある1次元方向(図2に示す1a→1b→1cや1d→1e等)に配置された各熱電対で測定された温度Yjと、反応容器の内表面及び外表面での熱流束の仮定値から非定常熱伝導方程式により算出された各熱電対位置での温度Tjとの差の二乗の和が最小となる仮定値を反応容器の内表面及び外表面での熱流束として求める。なお、Jは熱電対の数を表し、jは熱電対の番号(1〜J)を表す。 In the present embodiment, as an inverse problem analysis method, as shown in the following equation 2, each thermocouple arranged in a certain one-dimensional direction (1a → 1b → 1c, 1d → 1e, etc. shown in FIG. 2) is used. The sum of the squares of the differences between the measured temperature Y j and the temperature T j at each thermocouple position calculated by the unsteady heat conduction equation from the assumed heat flux on the inner and outer surfaces of the reaction vessel is The minimum assumed value is determined as the heat flux at the inner and outer surfaces of the reaction vessel. J represents the number of thermocouples, and j represents the thermocouple number (1 to J).

Figure 2005082862
Figure 2005082862

このように複数の熱電対位置での温度T、Yを完全に一致させるような解(反応容器の内表面及び外表面での熱流束)を求めるのではなく、最小二乗的に満たすような解を求めることにより、現実的な熱流束変化の推定が可能となる。その理由は、測定温度データには様々な測定誤差要因が含まれるため、完全に一致させることは実用的に意味がないといえるからである。   In this way, instead of obtaining a solution (heat flux on the inner and outer surfaces of the reaction vessel) that perfectly matches the temperatures T and Y at a plurality of thermocouple positions, a solution that satisfies the least squares. Thus, it is possible to estimate a realistic change in heat flux. The reason is that since the measurement temperature data includes various measurement error factors, it can be said that it is practically meaningless to make them completely match.

なお、計算を安定化させるために、正則化項を付加するようにしてもよい。下記の数3には、0次の正則化項の例を示す。pは推定熱流束の分割数の数であり、α0は経験値から得られる正則化パラメータである。 In order to stabilize the calculation, a regularization term may be added. Equation 3 below shows an example of a zero-order regularization term. p is the number of divisions of the estimated heat flux, and α 0 is a regularization parameter obtained from empirical values.

Figure 2005082862
Figure 2005082862

以下に、より具体的に、複数の熱電対位置での温度Yを既知として、反応容器の内表面及び外表面での熱流束を推定する定式化と、計算手続きの一例を示す。   More specifically, an example of a formulation and calculation procedure for estimating the heat fluxes on the inner surface and the outer surface of the reaction vessel with the temperatures Y at a plurality of thermocouple positions as known will be described.

下記の数4のSmは全体の目的関数を表し、下記の数5は、実測温度Yと計算温度Tの偏差を表す目的関数を示す。下記の数6は、計算を安定化するために付加した目的関数であり、空間分割方向の値の急激な変化を抑える働きがある。数6中のα0やα1は、一定の経験値から得られる正則化パラメータである。 S m number 4 below represents the entire objective function of the number 5 below shows the objective function representing the deviation of the measured temperature Y and calculated temperature T. The following Equation 6 is an objective function added to stabilize the calculation, and has a function of suppressing a rapid change in the value in the space division direction. Α 0 and α 1 in Equation 6 are regularization parameters obtained from certain empirical values.

Figure 2005082862
Figure 2005082862

Figure 2005082862
Figure 2005082862

Figure 2005082862
Figure 2005082862

上記数5では、ある熱電対で測定された温度Yと、熱流束の仮定値から熱伝導方程式モデルにより算出された温度Tの差の二乗が最小となるように目的関数を設定している。また、上記数6では、温度測定誤差があっても解が安定するように空間方向の正則化を施す目的関数を設定している。そして、数4を全体の目的関数として、下記の数7に示すように、未知である熱流束分割領域に対して極小点を探す。   In the above formula 5, the objective function is set so that the square of the difference between the temperature Y measured by a certain thermocouple and the temperature T calculated by the heat conduction equation model from the assumed value of the heat flux is minimized. In the above equation 6, an objective function for regularizing the spatial direction is set so that the solution is stable even if there is a temperature measurement error. Then, using Equation 4 as an overall objective function, a minimum point is searched for an unknown heat flux division region as shown in Equation 7 below.

Figure 2005082862
Figure 2005082862

ここで、数8に示すように、解を安定させる目的で、各時間ステップの熱流束値が、一定の未来時間まで不変であると仮定する。時間ステップは、対象とする材料の熱物性・形状等によって変わる。数8のqは熱流束を示し、m時間ステップにおける熱流束qmから、将来時間m+r−1時間ステップにおける熱流束qm+r-1が一定であると仮定している。 Here, as shown in Equation 8, for the purpose of stabilizing the solution, it is assumed that the heat flux value at each time step remains unchanged until a certain future time. The time step varies depending on the thermophysical properties and shape of the target material. The q number 8 shows the heat flux, the heat flux q m at m time step, is assumed to be heat flux q m + r-1 in the future time m + r-1 time step is constant.

Figure 2005082862
Figure 2005082862

そして、数7の極小化を、数8の仮定を用いて展開すると、数9に示すように、マトリクス形に展開することができる。   Then, if the minimization of Expression 7 is expanded using the assumption of Expression 8, it can be expanded into a matrix form as shown in Expression 9.

Figure 2005082862
Figure 2005082862

数9のXTXは数4の右辺第1項から導かれ、XTXに続く2項(α00 T0+α11 T1)は、数4の右辺第2項から導かれる(上付のTは、転置行列を表す)。Xの構成は、補足式数10として下部に、Xj,i,kとして示している。ここで、時間方向の分割数を示すiは、最大M時間ステップまで変化し、熱電対の数を示すjは、最大J個まで変化して、熱流束分布の分割数を示すkは、最大pまで変化する。なお、数9の上付の*は、繰り返し収束計算での参照値であることを示しており、T*は温度参照値、q*は熱流束参照値である。1次元の場合は、両端の境界条件を推定するので、熱流束分布の分割数kは、最大p=2である。 X T X in Formula 9 is derived from the first term on the right side of Formula 4, and the two terms (α 0 H 0 T H 0 + α 1 H 1 T H 1 ) following X T X are the second term on the right side of Formula 4. (The superscript T represents a transposed matrix). The configuration of X is shown as X j, i, k at the bottom as a supplementary equation 10. Here, i indicating the number of divisions in the time direction changes up to maximum M time steps, j indicating the number of thermocouples changes up to J, and k indicating the number of divisions of the heat flux distribution is maximum. It changes to p. Note that the superscript * in Equation 9 indicates a reference value in repeated convergence calculation, T * is a temperature reference value, and q * is a heat flux reference value. In the case of the one-dimensional case, the boundary condition at both ends is estimated, so the division number k of the heat flux distribution is p = 2 at the maximum.

Figure 2005082862
Figure 2005082862

数9は、温度変化が起きた場合の熱流束の変化を推定する連立方程式であり、各時間ステップにおいて、この数9を用いて両端の熱流束qを求める。まずは、前時間ステップでの熱電対位置での計算温度を初期T*とし、数9によりqを求める。このqを、並行して計算している順問題熱伝導方程式モデルの境界条件として与え、温度分布を計算する。ここで求めた温度計算値を、次の温度参照値T*として、qを再修正する(数9に代入してqを再び求める)。この操作を、数5が一定残差以下になる(収束)まで、qとT*の修正を繰り返し、各時間ステップにおける両端の熱流束(最終的なq)を求めていく。この計算手続きを繰り返すことにより、両端の熱流束qの変化を、2つ同時に推定することが可能となる。 Equation 9 is a simultaneous equation for estimating a change in heat flux when a temperature change occurs. In each time step, Equation 9 is used to obtain the heat flux q at both ends. First, the calculated temperature at the thermocouple position in the previous time step is set as the initial T *, and q is obtained by Equation (9). This q is given as a boundary condition of the forward problem heat conduction equation model calculated in parallel, and the temperature distribution is calculated. The calculated temperature value obtained here is used as the next temperature reference value T * to correct q again (substituting into Equation 9 to obtain q again). This operation is repeated until q 5 is equal to or less than a certain residual (convergence), and correction of q and T * is repeated to obtain the heat flux (final q) at both ends in each time step. By repeating this calculation procedure, two changes in the heat flux q at both ends can be estimated simultaneously.

数10は、一種の感度行列を表しており、端的に言うと、境界端点での熱流束qの単位変化に対する熱電対位置での計算温度Tの変化の大きさの比率を示している。数10は、逆解析と同時に計算している順問題計算によって、各時間ステップにおいて、単位時間ステップあたりの値の計算が可能である。   Equation 10 represents a kind of sensitivity matrix. In short, it represents the ratio of the magnitude of the change in the calculated temperature T at the thermocouple position to the unit change in the heat flux q at the boundary end point. Equation 10 can calculate the value per unit time step at each time step by the forward problem calculation calculated simultaneously with the inverse analysis.

以下、1次元の逆問題解析を例にして、より望ましい解法について説明する。上述のように、2つの端面(反応容器の内表面及び外表面)での熱流束を未知の境界条件とした1次元逆問題を構成(定式化)しても、原理上は解を求めることができる。   Hereinafter, a more preferable solution will be described by taking a one-dimensional inverse problem analysis as an example. As described above, even if a one-dimensional inverse problem is formulated (formulated) using the heat fluxes at the two end faces (inner and outer surfaces of the reaction vessel) as unknown boundary conditions, a solution can be obtained in principle. Can do.

ただし、熱電対の数や材料の熱物性条件等によって多解となる場合があり、計算が不安定となる可能性がある。その理由の一つは、「未知両端面の熱流束差」の組み合わせを適当に選ぶことができれば、離散的な温度測定点の温度変化を表現する熱流束の組み合わせは無数に存在する可能性があるためである。特に、熱伝導度の低い物質の場合、表面温度が極端に大きくなったり、小さくなったりしてしまうような境界条件を推定してしまう場合でも、離散測定点の温度の変化だけを再現すれば、一つの解として認識してしまうことも起こり得る。これは、現実の現象としてはあり得ないことであるばかりでなく、逆問題計算を非常に不安定なものとする。   However, there may be many solutions depending on the number of thermocouples, the thermophysical condition of the material, etc., and the calculation may become unstable. One reason for this is that if a combination of “difference in heat flux at unknown end faces” can be selected appropriately, there may be an infinite number of heat flux combinations that represent temperature changes at discrete temperature measurement points. Because there is. In particular, in the case of a substance with low thermal conductivity, even if the boundary condition that the surface temperature becomes extremely large or small is estimated, if only the temperature change at the discrete measurement point is reproduced. It can happen that it is recognized as one solution. This is not only impossible as a real phenomenon, but also makes the inverse problem calculation very unstable.

また、実際の問題として、逆問題解析を開始する時の熱電対の温度(離散測定点の温度)は既知として与えられるが、その他の解析領域での温度分布の初期条件は不明であることが一般的である。このため、任意に与えた仮初期温度分布から計算を始め、計算ステップを進める中で、実際の温度分布を探索・推定し、妥当な温度分布へと徐々に修正しながら、安定的に計算を進めていけるような計算ロジックにすることが求められる(ここで言う温度分布とは、例えば、逆問題解析の計算手続きの中で、上記数9の解を修正するために並行して計算している順問題熱伝導方程式モデルの計算値である)。このように、初期温度分布が不確定であることも、逆問題計算を不安定なものとする大きな要因の一つとなる。   Moreover, as an actual problem, the temperature of the thermocouple when starting the inverse problem analysis (the temperature of the discrete measurement points) is given as known, but the initial conditions of the temperature distribution in other analysis areas may be unknown. It is common. For this reason, the calculation is started from the provisional initial temperature distribution given arbitrarily, and while proceeding with the calculation step, the actual temperature distribution is searched and estimated, and the calculation is stably performed while gradually correcting to an appropriate temperature distribution. It is required to have a calculation logic that can be advanced (the temperature distribution here is calculated in parallel in order to correct the solution of Equation 9 in the calculation procedure of the inverse problem analysis, for example) Is the calculated value of the forward problem heat conduction equation model). Thus, the fact that the initial temperature distribution is indefinite is one of the major factors that make the inverse problem calculation unstable.

以上のことは、逆問題を安定化するためには、逆問題解析の過程で、ある程度の表面温度の目安(拘束条件)を与える必要性があることを示しているといえる。この考え方に基づき、拘束条件を適当に与える手法を、図3のフローチャートを参照して説明する。   The above indicates that in order to stabilize the inverse problem, it is necessary to provide a standard (constraint condition) of a certain surface temperature in the process of inverse problem analysis. Based on this concept, a method for appropriately giving the constraint condition will be described with reference to the flowchart of FIG.

まず、反応容器の内表面及び外表面のいずれか片側、ここでは外表面での熱流束として仮の熱流束qを与える。この仮の熱流束qの与え方として、熱伝達率hと参照温度Tbとを用いて、
q=h(Tsurf−Tb
として与える(ステップS201)。
First, a temporary heat flux q is given as a heat flux on one side of the inner surface and the outer surface of the reaction vessel, here the outer surface. As a method of giving this temporary heat flux q, using the heat transfer coefficient h and the reference temperature T b ,
q = h (T surf −T b )
(Step S201).

surfは未知境界、ここでは反応容器の外表面での温度を示している。この表面温度Tsurfは、逆問題解析の過程で熱流束の値を修正するために、通常は順問題解析も同時に行うが、この順問題解析で求めた表面温度に相当する。 T surf indicates the temperature at an unknown boundary, here the outer surface of the reaction vessel. This surface temperature Tsurf is usually subjected to forward problem analysis at the same time in order to correct the value of heat flux in the inverse problem analysis process, and corresponds to the surface temperature obtained by this forward problem analysis.

また、参照温度Tbは反応容器の内部及び内外表面以外での温度である。本実施の形態では、反応容器の冷却条件、例えば、水冷ならば水温等に基づいて定めるようにしている。 Further, the reference temperature Tb is a temperature outside the inside and outside surfaces of the reaction vessel. In the present embodiment, the cooling condition of the reaction vessel is determined based on the water temperature or the like for water cooling, for example.

結果として、上式の左辺である熱流束qをあたかも既知の熱流束情報として与えることができる。このように仮の熱流束情報を与えることで、熱伝達率hと参照温度Tbという2つの拘束条件を与えることとなり、任意の熱流束を与えるのに比べて物理的な妥当性を確保して、極端な温度分布が生じることを防ぐことが可能となる。 As a result, the heat flux q, which is the left side of the above equation, can be given as known heat flux information. By giving temporary heat flux information in this way, two constraint conditions of the heat transfer coefficient h and the reference temperature T b are given, and the physical validity is ensured as compared with the case of giving an arbitrary heat flux. Thus, it is possible to prevent an extreme temperature distribution from occurring.

次に、反応容器の外表面での仮の熱流束q(=h(Tsurf−Tb))を与えて、上記数2、又は、数5に示した温度T、Yの差の二乗の和が最小となる反応容器の内表面での熱流束を、反応容器の内表面での仮の熱流束として算出する(ステップS202)。このステップは、逆問題解析のメインの計算手続きであり、具体的な解法の一つとして、数4から数9に示した定式化と計算手続きが、そのまま適用できる。この場合では、数9を解く際に、反応容器の外表面での仮の熱流束q(=h(Tsurf−Tb))は既知として与え、反応容器の内表面での仮の熱流束を未知として解くことを意味する。 Next, given a temporary heat flux q (= h (T surf −T b )) on the outer surface of the reaction vessel, the square of the difference between the temperatures T and Y shown in the above equation 2 or 5 is given. The heat flux on the inner surface of the reaction vessel that minimizes the sum is calculated as a temporary heat flux on the inner surface of the reaction vessel (step S202). This step is the main calculation procedure of the inverse problem analysis, and the formulation and calculation procedure shown in Equations 4 to 9 can be applied as they are as one specific solution. In this case, when solving Equation 9, the provisional heat flux q (= h (T surf −T b )) on the outer surface of the reaction vessel is given as known, and the provisional heat flux on the inner surface of the reaction vessel is given. Is solved as unknown.

ここで、上記のように片側(反応容器の外表面)の熱流束情報を与えて、逆問題解析により求めた反対側(反応容器の内表面)の熱流束は、一つの解の可能性を示しているに過ぎない。また、既知と仮定した熱伝達率hや参照温度Tbも概算値であり、本来ならば未知の値である。 Here, the heat flux information on one side (outer surface of the reaction vessel) is given as described above, and the heat flux on the opposite side (inner surface of the reaction vessel) obtained by inverse problem analysis indicates the possibility of one solution. It only shows. Further, the known and assumed heat transfer coefficient h and the reference temperature T b is also approximate, the unknown values would otherwise.

そこで、熱伝達率h及び外部参照温度Tbの両方或いはいずれかを数点変化させて、すなわち、反応容器の外表面での仮の熱流束qの値を数点(K点)振って、反応容器の外表面での仮の熱流束qと、各仮の熱流束情報qを与えたとき温度T、Yの差の二乗の和が最小となる反応容器の内表面での熱流束との組み合わせをK個得る(ステップS203)。 Therefore, by changing several points both or one of the heat transfer coefficient h and the external reference temperature T b, i.e., waving several points the value of the heat flux q provisional outside surface of the reaction vessel (K point), The provisional heat flux q on the outer surface of the reaction vessel and the heat flux on the inner surface of the reaction vessel that minimizes the sum of the squares of the differences between the temperatures T and Y when each provisional heat flux information q is given. K combinations are obtained (step S203).

そして、下記の数11に示すように、反応容器の外表面での仮の熱流束qと、各仮の熱流束情報qに対応して得られた反応容器の内表面での熱流束とのK個の組み合わせのうち、温度T、Yの差の二乗の値が最も小さくなる組み合わせを選び出し、その組み合わせを反応容器の内表面及び外表面での熱流束とする(ステップS204)。   And, as shown in the following equation 11, the temporary heat flux q on the outer surface of the reaction vessel and the heat flux on the inner surface of the reaction vessel obtained corresponding to each temporary heat flux information q Among the K combinations, the combination having the smallest square value of the difference between the temperatures T and Y is selected, and the combination is set as the heat flux on the inner surface and the outer surface of the reaction vessel (step S204).

Figure 2005082862
Figure 2005082862

上式の大括弧の中は、片側の熱流束を既知として逆問題解析した1ケースの計算結果を示し、その計算をKケース計算した中から更に最小二乗差の最も小さな結果を選び出すことを意味する。   The brackets in the above formula show the calculation results of one case where the inverse heat problem analysis was performed with the heat flux on one side known, and it means that the result with the smallest least squares difference is selected from the K case calculations. To do.

この手続を、各時間ステップにおいて繰り返し行うことにより、反応容器の内表面及び外表面での熱流束経時変化を逐次同時計算していくことができる。   By repeating this procedure at each time step, it is possible to sequentially and simultaneously calculate changes in heat flux with time on the inner and outer surfaces of the reaction vessel.

以上述べたように、反応容器の内表面及び外表面での熱流束変化を同時に求めるような1次元逆問題解析を安定して実行することができる。そして、反応容器の内表面及び外表面での温度変化や熱流束変化を同時推定できれば、例えば、ある温度測定点での温度変動が、反応容器の内表面における熱流束変化によるものなのか、反応容器外に設置された冷却装置の接触不良等によって引き起こされるような反応容器の外表面における熱流束変化によるものかを区別するようなことが可能となる。   As described above, it is possible to stably execute a one-dimensional inverse problem analysis that simultaneously obtains heat flux changes on the inner surface and the outer surface of the reaction vessel. If the temperature change and heat flux change at the inner surface and outer surface of the reaction vessel can be estimated simultaneously, for example, whether the temperature fluctuation at a certain temperature measurement point is due to the heat flux change at the inner surface of the reaction vessel. It is possible to distinguish whether it is due to a change in the heat flux on the outer surface of the reaction vessel caused by poor contact of the cooling device installed outside the vessel.

上記手法は1次元逆問題解析に適用すると簡便であり、実際問題として有効である場合が多い。その理由は、一般的には、反応容器の上端と下端とは断熱条件(対称)とする場合が多く、実用的にも問題ないからである。   The above method is simple when applied to one-dimensional inverse problem analysis, and is often effective as an actual problem. The reason is that, generally, the upper and lower ends of the reaction vessel are often adiabatic (symmetric), and there is no practical problem.

したがって、図2の破線で区切られた範囲での厚み方向1次元を仮定して逆問題解析し、その結果を上下方向に組み合わせることで、2次元化することも可能である。   Therefore, an inverse problem analysis is performed assuming a one-dimensional thickness direction in a range delimited by a broken line in FIG. 2, and the result can be combined in the vertical direction to be two-dimensional.

より厳密に図2の上下方向の熱流れも考慮したい場合には、2次元逆問題解析が必要である。このような2次元解析は、図2の左右両端部の熱流束分割を上方向に細かくして、これらの熱電対位置での温度を最小二乗的に最小な熱流束分布を求めることと等価であり、上述した逆問題定式化と同様の手法に従って本発明を適用すればよいこととなる。   To more strictly consider the heat flow in the vertical direction in FIG. 2, a two-dimensional inverse problem analysis is necessary. Such a two-dimensional analysis is equivalent to finely dividing the heat flux at the left and right ends of FIG. 2 upward and obtaining a heat flux distribution that minimizes the temperature at these thermocouple positions in a least-square manner. Yes, the present invention may be applied according to the same method as the inverse problem formulation described above.

この場合に、図2の上端下端の熱流束に関しては、未知としても、既知としても構わないが、計算の安定性を考慮すると、物理的な考察から適当な熱流束(例えば、断熱等)を与えて既知とした方が望ましい。   In this case, the heat flux at the upper and lower ends of FIG. 2 may be unknown or known, but considering the stability of calculation, an appropriate heat flux (for example, heat insulation) is determined from physical considerations. It is better to give it and make it known.

同様の考えに基づいて、3次元解析への拡張も容易に行うことができる。   Based on the same idea, the extension to the three-dimensional analysis can be easily performed.

以下、図4のフローチャートを参照して、高炉炉壁の残存厚みの推定方法について説明する。上述した逆問題解析手法に従って、ある時間ステップにおいて、高炉の内表面(稼動面)仮定位置及び外表面位置での熱流束の仮定値から非定常熱伝導方程式により各熱電対位置での温度を算出し、その算出された各熱電対位置での温度と、各熱電対で測定された温度とに基づいて、内表面仮定位置及び外表面位置での熱流束、更にその熱流束により与えられる温度を求める(ステップS401)。   Hereinafter, a method for estimating the remaining thickness of the blast furnace wall will be described with reference to the flowchart of FIG. According to the inverse problem analysis method described above, the temperature at each thermocouple position is calculated from the assumed value of heat flux at the inner surface (working surface) assumed position and outer surface position of the blast furnace using the unsteady heat conduction equation at a certain time step. Based on the calculated temperature at each thermocouple position and the temperature measured at each thermocouple, the heat flux at the assumed inner surface position and the outer surface position, and the temperature given by the heat flux are Obtain (step S401).

ここで、上記数2に示したように、各熱電対で測定された温度Yjと、高炉の内表面仮定位置及び外表面位置での熱流束の仮定値から非定常熱伝導方程式により算出された各温度測定点位置での温度Tjとの差の二乗の和が最小となる上記仮定値を高炉の内表面仮定位置及び外表面位置での熱流束とし、さらにその熱流束により与えられる温度を求めるのであるが、内表面仮定位置(すなわち固定長)が異なると、数2に示す式を満たすレベルも変化してしまうので、異なった固定長を仮定して求めた2つの解(内表面仮定位置及び外表面位置での熱流束)を同列に比較することはできない。 Here, as shown in the above equation 2, the temperature Y j measured by each thermocouple and the heat flux assumption values at the inner surface assumed position and the outer surface position of the blast furnace are calculated by an unsteady heat conduction equation. Further, the above assumed value that minimizes the sum of the squares of the differences from the temperature T j at each temperature measurement point position is defined as the heat flux at the assumed inner surface position and the outer surface position of the blast furnace, and the temperature given by the heat flux. However, if the assumed inner surface position (that is, the fixed length) is different, the level satisfying the equation shown in Equation 2 also changes. Therefore, two solutions (inner surface obtained by assuming different fixed lengths) The heat flux at the assumed position and the outer surface position) cannot be compared in the same row.

図5(a)、(b)に示す2つのモデル(固定長L1、L2)を考えると、両端での熱流束qは、
1,L1≠q1,L2
2,L1≠q2,L2
となり、異なった値となる。その理由は、上記逆問題解析により求めた両端での熱流束は長さが異なれば変化するからであり、図5のモデルの場合、熱流束q1,L1>熱流束q1,L2となる。
Considering the two models (fixed lengths L 1 and L 2 ) shown in FIGS. 5A and 5B, the heat flux q at both ends is
q 1, L1 ≠ q 1, L2
q 2, L1 ≠ q 2, L2
And different values. The reason is that the heat flux at both ends obtained by the inverse problem analysis changes if the length is different. In the case of the model of FIG. 5, the heat flux q 1, L1 > heat flux q 1, L2. .

また、固定長L1を仮定して逆問題解析した結果での、その中間位置(長さL2)における熱流束をq1,L2*とすると、その値についても、
1,L2*≠q1,L2
となり、固定長L2としたときの同位置での熱流束q1,L2に必ずしも一致するわけではない。その理由は、短い長さの方が分布の自由が大きくなり、上記数2に示す式の値がより小さくしやすくなるためである。
In addition, assuming that the heat flux at the intermediate position (length L 2 ) in the result of the inverse problem analysis assuming the fixed length L 1 is q 1, L2 *, the value is
q 1, L2 * ≠ q 1, L2
Therefore, it does not necessarily coincide with the heat fluxes q 1 and L 2 at the same position when the fixed length L 2 is used. The reason is that the shorter the length, the greater the freedom of distribution, and the easier it is to make the value of the equation shown in Equation 2 smaller.

そこで、高炉の内表面位置を複数仮定して、各内表面仮定位置での温度を求めるようにしたものである。すなわち、図4のフローチャートにおいて、高炉の内表面仮定位置を変更するか否かを判定し(ステップS402)、内表面仮定位置を変更する場合、内表面仮定位置を変更した上で(ステップS403)、ステップS401に戻って高炉の内表面仮定位置及び外表面位置での温度を求める。このようにして、例えば図6に示すように、固定長をL1〜Lnと順次変更して、固定長L1〜Lnの場合における内表面仮定位置及び外表面位置での温度を求めていく。なお、内表面仮定位置を変更する範囲やピッチについては、例えばユーザにより適宜設定される。 Accordingly, a plurality of inner surface positions of the blast furnace are assumed, and the temperature at each assumed inner surface position is obtained. That is, in the flowchart of FIG. 4, it is determined whether to change the assumed inner surface position of the blast furnace (step S402), and when changing the assumed inner surface position, the assumed inner surface position is changed (step S403). Returning to step S401, the temperatures at the assumed inner surface position and the outer surface position of the blast furnace are obtained. Thus, for example, as shown in FIG. 6, the fixed length by sequentially changing the L 1 ~L n, determine the temperature of the inner surface presumed position and an outer surface located in the case of a fixed length L 1 ~L n To go. The range and pitch for changing the assumed inner surface position are appropriately set by the user, for example.

所定の回数nだけ高炉の内表面仮定位置を変更したならば、ステップS404に進む。ステップS404では、高炉の各内表面仮定位置で求められた温度と、各固定長とをプロットしていき、スプライン補間等の関数補間を施すことにより、図7に示すように、内表面仮定位置で求められた温度と固定長との対応関係が得られる。   If the assumed inner surface position of the blast furnace is changed by a predetermined number n, the process proceeds to step S404. In step S404, the temperature obtained at each assumed inner surface position of the blast furnace and each fixed length are plotted, and by performing function interpolation such as spline interpolation, the assumed inner surface position as shown in FIG. Correspondence between the temperature obtained in step 1 and the fixed length is obtained.

そして、温度が1150℃(溶銑の凝固点温度)となる内表面仮定位置を内表面位置と推定する(ステップS405)。これにより、高炉炉壁の残存厚みを推定することができる。   Then, the assumed inner surface position at which the temperature becomes 1150 ° C. (freezing point temperature of the hot metal) is estimated as the inner surface position (step S405). Thereby, the remaining thickness of the blast furnace wall can be estimated.

次に、異なる時間ステップに移るか否かを判定する(ステップS406)。そして、異なる時間ステップで処理を繰り返す場合は、時間ステップを変更した上で(ステップS407)、ステップS401〜S405の処理を繰り返す。これにより、各時間ステップでの内表面位置と推定することができるので、高炉炉壁の残存厚みの経時変化を捉えることができる。なお、異なる時間ステップで処理を繰り返さない場合は、一連の処理を終了する。   Next, it is determined whether or not to move to a different time step (step S406). And when repeating a process at a different time step, after changing a time step (step S407), the process of step S401-S405 is repeated. Thereby, since it can be estimated as the inner surface position at each time step, it is possible to capture the change with time of the remaining thickness of the blast furnace wall. If the process is not repeated at different time steps, the series of processes ends.

(実施例)
図8〜10を参照して、ある高炉炉壁の残存厚みを推定する例について説明する。図8には、本例における残存厚み推定モデルを模式的に示す。高炉の外表面(冷却面)側に偏って、高温側熱電対T1、低温側熱電対T2が冷却面からの距離0.150m、0.050mの位置に挿入されている。なお、カーボン煉瓦の熱物性値は一定と仮定し、その値は図中に付記する。
(Example)
With reference to FIGS. 8-10, the example which estimates the residual thickness of a certain blast furnace furnace wall is demonstrated. FIG. 8 schematically shows a remaining thickness estimation model in this example. The high temperature side thermocouple T1 and the low temperature side thermocouple T2 are inserted at positions of distances of 0.150 m and 0.050 m from the cooling surface, biased toward the outer surface (cooling surface) side of the blast furnace. In addition, the thermophysical property value of carbon brick is assumed to be constant, and the value is added to the figure.

各時間ステップにて、高炉の内表面(高温面)仮定位置を1.8m位置として、上述した逆問題解析手法により1.8m位置での推定温度推移を記録する。次に、内表面仮定位置を0.2mだけ冷却面から離れる方向に移動させて、同じく逆問題解析手法により2.0m位置での推定温度推移を記録する。この手続きを、内表面仮定位置を0.2mピッチで冷却面から離れる方向に移動させながら、5.6m位置となるまで繰り返し実行する。   At each time step, assuming the assumed inner surface (high temperature surface) position of the blast furnace as the 1.8 m position, the estimated temperature transition at the 1.8 m position is recorded by the inverse problem analysis method described above. Next, the assumed inner surface position is moved away from the cooling surface by 0.2 m, and the estimated temperature transition at the 2.0 m position is recorded by the inverse problem analysis method. This procedure is repeated until the inner surface assumed position is moved away from the cooling surface at a pitch of 0.2 m until the position becomes 5.6 m.

各時間ステップにおいて得られたそれぞれの内表面仮定位置での推定温度を使って、推定温度と固定長との対応関係をプロットする。そして、この結果から、スプライン補間を使って、各時間ステップにおける1150℃(溶銑の凝固点温度)になる内表面仮定位置を求め、残存する煉瓦厚みであると推定することができる。   Using the estimated temperature at each assumed inner surface position obtained at each time step, the correspondence between the estimated temperature and the fixed length is plotted. From this result, using spline interpolation, the assumed inner surface position at 1150 ° C. (freezing point temperature of the hot metal) at each time step is obtained, and it can be estimated that the remaining brick thickness.

図9、10に、7月23日から10月11日までの熱電対温度変化データを用いた逆問題解析による解析結果例を示す。図9、10は、高炉炉底側壁の異なる円周方向位置での解析結果である。各図(a)に示すグラフは、残存厚み(高温面位置)推移、(b)に示すグラフは、高温面での熱流束推移、(c)に示すグラフは、解析に用いた熱電対温度推移を示している。   9 and 10 show examples of analysis results by inverse problem analysis using thermocouple temperature change data from July 23rd to October 11th. 9 and 10 are analysis results at different circumferential positions of the blast furnace bottom wall. The graph shown in each figure (a) is the remaining thickness (hot surface position) transition, the graph shown in (b) is the heat flux transition at the high temperature surface, and the graph shown in (c) is the thermocouple temperature used for the analysis. It shows the transition.

定常法は、上記従来例でも述べたように2点の熱電対温度を直線で結んで、1150度(溶銑の凝固点温度)となる交点の位置を、凝固点位置(残存厚み)であると仮定して推定する方法であり、カーボン煉瓦の熱容量の効果を全く無視するものである。両方法による推定結果は全く異なり、図9、10を比較して明らかなように、特に残存厚みが厚いほど、その差が大きくなることが理解される。   As described in the above-mentioned conventional example, the steady-state method assumes that the position of the intersection where 1150 degrees (freezing point temperature of hot metal) is obtained by connecting two thermocouple temperatures with a straight line is the freezing point position (residual thickness). The effect of the heat capacity of carbon bricks is completely ignored. The estimation results by both methods are completely different, and it is understood that the difference becomes larger as the remaining thickness is thicker, as is apparent from comparison between FIGS.

(他の実施の形態)
以上説明した逆問題解析装置は、コンピュータのCPU或いはMPU、RAM、ROM、RAM等で構成されるものであり、上述のようにRAMやROM等に記憶されたプログラムが動作することによって実現される。
(Other embodiments)
The inverse problem analysis apparatus described above is composed of a CPU or MPU of a computer, RAM, ROM, RAM, and the like, and is realized by operating a program stored in the RAM, ROM, etc. as described above. .

したがって、プログラム自体が上述した実施の形態の機能を実現することになり、本発明を構成する。プログラムの伝送媒体としては、プログラム情報を搬送波として伝搬させて供給するためのコンピュータネットワーク(LAN、インターネット等のWAN、無線通信ネットワーク等)システムにおける通信媒体(光ファイバ等の有線回線や無線回線等)を用いることができる。   Therefore, the program itself realizes the functions of the above-described embodiment, and constitutes the present invention. As a program transmission medium, a communication medium (wired line or wireless line such as an optical fiber) in a computer network (LAN, WAN such as the Internet, wireless communication network, etc.) system for propagating and supplying program information as a carrier wave Can be used.

さらに、上記プログラムをコンピュータに供給するための手段、例えばかかるプログラムを格納した記憶媒体は本発明を構成する。かかる記憶媒体としては、例えばフレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD−ROM、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。   Furthermore, means for supplying the above program to a computer, for example, a storage medium storing such a program constitutes the present invention. As such a storage medium, for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a nonvolatile memory card, a ROM, or the like can be used.

なお、上記実施の形態において示した各部の形状及び構造は、何れも本発明を実施するにあたっての具体化のほんの一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその精神、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。例えば、本発明をネットワーク環境で利用すべく、一部のプログラムが他のコンピュータで実行されるようになっていてもかまわない。   It should be noted that the shapes and structures of the respective parts shown in the above embodiments are merely examples of implementation in carrying out the present invention, and these limit the technical scope of the present invention. It should not be interpreted. That is, the present invention can be implemented in various forms without departing from the spirit or the main features thereof. For example, in order to use the present invention in a network environment, some programs may be executed on another computer.

本発明を適用した高炉炉壁の残存厚み推定装置の構成を示す図である。It is a figure which shows the structure of the remaining thickness estimation apparatus of the blast furnace furnace wall to which this invention is applied. 熱電対の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of a thermocouple. 逆問題解析の例を説明するためのフローチャートである。It is a flowchart for demonstrating the example of an inverse problem analysis. 高炉炉壁の残存厚みの推定方法について説明するためのフローチャートである。It is a flowchart for demonstrating the estimation method of the residual thickness of a blast furnace wall. 固定長の異なる2つのモデルを説明するための図である。It is a figure for demonstrating two models from which fixed length differs. 固定長をL1〜Lnと順次変更していく様子を表す図である。The fixed length is a diagram showing the state of successively changed L 1 ~L n. 内表面仮定位置で求められた温度と固定長との対応関係を示す図である。It is a figure which shows the correspondence of the temperature calculated | required in the inner surface assumed position, and fixed length. 実施例での残存厚み推定モデルを模式的に示す図である。It is a figure which shows typically the remaining thickness estimation model in an Example. 実施例での解析結果例を示す図である。It is a figure which shows the example of an analysis result in an Example. 実施例での解析結果例を示す図である。It is a figure which shows the example of an analysis result in an Example.

符号の説明Explanation of symbols

101 入力部
102 逆問題解析部
103 残存厚み推定部
104 出力部
101 Input unit 102 Inverse problem analysis unit 103 Remaining thickness estimation unit 104 Output unit

Claims (6)

温度変化反応を伴う反応容器の壁内部の少なくとも厚み方向に複数配置された温度測定点で測定される温度に基づいて、上記反応容器の内表面位置を推定する反応容器の内表面位置推定方法であって、
上記反応容器の内表面仮定位置及び外表面位置での温度或いは熱流束の仮定値から非定常熱伝導方程式により上記各温度測定点での温度或いは熱流束を算出し、その算出された各温度測定点での温度或いは熱流束と、上記各温度測定点で測定された温度とに基づいて、上記反応容器の内表面仮定位置及び外表面位置での温度或いは熱流束を求める処理を、同一の対象時間について上記反応容器の内表面仮定位置を変更して行うことを特徴とする反応容器の内表面位置推定方法。
A reaction vessel inner surface position estimation method for estimating an inner surface position of the reaction vessel based on temperatures measured at a plurality of temperature measurement points arranged at least in the thickness direction inside the wall of the reaction vessel accompanied by a temperature change reaction. There,
The temperature or heat flux at each temperature measurement point is calculated from the assumed temperature or heat flux at the assumed inner surface position and outer surface position of the reaction vessel by the unsteady heat conduction equation, and each calculated temperature measurement is performed. The processing for obtaining the temperature or heat flux at the assumed inner surface position and outer surface position of the reaction vessel based on the temperature or heat flux at the point and the temperature measured at each temperature measurement point is the same subject. A method for estimating an inner surface position of a reaction vessel, wherein the inner surface assumed position of the reaction vessel is changed with respect to time.
上記反応容器の各内表面仮定位置での温度を求めていき、所定温度となる内表面仮定位置を内表面位置と推定することを特徴とする請求項1に記載の反応容器の内表面位置推定方法。   2. The estimation of the inner surface position of the reaction vessel according to claim 1, wherein the temperature at each assumed inner surface position of the reaction vessel is obtained, and the assumed inner surface position at a predetermined temperature is estimated as the inner surface position. Method. 上記各温度測定点で測定された温度と、上記反応容器の内表面仮定位置及び外表面位置での温度或いは熱流束の仮定値から非定常熱伝導方程式により算出された各温度測定点位置での温度との差の二乗の和が最小となる上記仮定値を上記反応容器の内表面仮定位置及び外表面位置での温度或いは熱流束として求めることを特徴とする請求項1又は2に記載の反応容器の内表面位置推定方法。   The temperature measured at each temperature measurement point and the temperature at each temperature measurement point calculated by the unsteady heat conduction equation from the assumed temperature or heat flux at the assumed inner and outer surface positions of the reaction vessel. 3. The reaction according to claim 1, wherein the assumed value that minimizes the sum of squares of differences from the temperature is obtained as temperature or heat flux at the assumed inner surface position and outer surface position of the reaction vessel. Container inner surface position estimation method. 反応容器である高炉炉壁の残存厚みを推定するのに利用されることを特徴とする請求項1〜3のいずれか1項に記載の反応容器の内表面位置推定方法。   The method for estimating the inner surface position of a reaction vessel according to any one of claims 1 to 3, wherein the method is used to estimate a remaining thickness of a blast furnace wall that is a reaction vessel. 温度変化反応を伴う反応容器の壁内部の少なくとも厚み方向に複数配置された温度測定点で測定される温度に基づいて、上記反応容器の内表面位置を推定する反応容器の内表面位置推定装置であって、
上記反応容器の内表面仮定位置及び外表面位置での温度或いは熱流束の仮定値から非定常熱伝導方程式により上記各温度測定点での温度或いは熱流束を算出し、その算出された各温度測定点での温度或いは熱流束と、上記各温度測定点で測定された温度とに基づいて、上記反応容器の内表面仮定位置及び外表面位置での温度或いは熱流束を求める処理を、同一の対象時間について上記反応容器の内表面仮定位置を変更して行う手段を備えたことを特徴とする反応容器の内表面位置推定装置。
An inner surface position estimation device for a reaction container that estimates the inner surface position of the reaction container based on temperatures measured at a plurality of temperature measurement points arranged at least in the thickness direction inside the wall of the reaction container with a temperature change reaction. There,
The temperature or heat flux at each temperature measurement point is calculated from the assumed temperature or heat flux at the assumed inner surface position and outer surface position of the reaction vessel by the unsteady heat conduction equation, and each calculated temperature measurement is performed. The processing for obtaining the temperature or heat flux at the assumed inner surface position and outer surface position of the reaction vessel based on the temperature or heat flux at the point and the temperature measured at each temperature measurement point is the same subject. An apparatus for estimating an inner surface position of a reaction vessel, comprising means for changing the assumed inner surface position of the reaction vessel with respect to time.
温度変化反応を伴う反応容器の壁内部の少なくとも厚み方向に複数配置された温度測定点で測定される温度に基づいて、上記反応容器の内表面位置を推定するための処理をコンピュータに実行させるコンピュータプログラムであって、
上記反応容器の内表面仮定位置及び外表面位置での温度或いは熱流束の仮定値から非定常熱伝導方程式により上記各温度測定点での温度或いは熱流束を算出し、その算出された各温度測定点での温度或いは熱流束と、上記各温度測定点で測定された温度とに基づいて、上記反応容器の内表面仮定位置及び外表面位置での温度或いは熱流束を求める処理をコンピュータに実行させるとともに、その処理を同一の対象時間について上記反応容器の内表面仮定位置を変更して行うことを特徴とするコンピュータプログラム。
A computer for causing a computer to execute a process for estimating the inner surface position of the reaction vessel based on temperatures measured at a plurality of temperature measurement points arranged at least in the thickness direction inside the wall of the reaction vessel with a temperature change reaction A program,
The temperature or heat flux at each temperature measurement point is calculated from the assumed temperature or heat flux at the assumed inner surface position and outer surface position of the reaction vessel by the unsteady heat conduction equation, and each calculated temperature measurement is performed. Based on the temperature or heat flux at the point and the temperature measured at each temperature measurement point, the computer is caused to execute processing for obtaining the temperature or heat flux at the assumed inner surface position and outer surface position of the reaction vessel. A computer program characterized in that the processing is performed by changing the assumed inner surface position of the reaction vessel for the same target time.
JP2003317288A 2003-09-09 2003-09-09 Method and device for estimating inner surface position in reaction vessel, and computer program Withdrawn JP2005082862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003317288A JP2005082862A (en) 2003-09-09 2003-09-09 Method and device for estimating inner surface position in reaction vessel, and computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003317288A JP2005082862A (en) 2003-09-09 2003-09-09 Method and device for estimating inner surface position in reaction vessel, and computer program

Publications (1)

Publication Number Publication Date
JP2005082862A true JP2005082862A (en) 2005-03-31

Family

ID=34416919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003317288A Withdrawn JP2005082862A (en) 2003-09-09 2003-09-09 Method and device for estimating inner surface position in reaction vessel, and computer program

Country Status (1)

Country Link
JP (1) JP2005082862A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071686A (en) * 2005-09-07 2007-03-22 Nippon Steel Corp Method and device for estimating temperature of container wall or heat flux, computer program, computer-readable recording medium, and method of estimating container wall thickness
JP2007075789A (en) * 2005-09-16 2007-03-29 Nippon Steel Corp Method, apparatus, and computer program for estimating temperature or heat flux of reaction container and computer-readable recording medium
JP2007121203A (en) * 2005-10-31 2007-05-17 Nippon Steel Corp Bottom of blast furnace management method
JP2008063593A (en) * 2006-09-04 2008-03-21 Nippon Steel Corp Method and apparatus for estimating thickness of vessel wall, and computer program
WO2019123574A1 (en) * 2017-12-20 2019-06-27 日本製鉄株式会社 Device for managing loss of refractory material in electric furnaces, system for managing loss of refractory material in electric furnaces, method for managing loss of refractory material in electric furnaces, and computer-readable storage medium
JP2019126834A (en) * 2018-01-26 2019-08-01 日鉄ステンレス株式会社 Apparatus and method for equipment monitoring and program
CN111961776A (en) * 2020-07-31 2020-11-20 中南大学 Thermocouple position mapping method for corner area of blast furnace hearth lining

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071686A (en) * 2005-09-07 2007-03-22 Nippon Steel Corp Method and device for estimating temperature of container wall or heat flux, computer program, computer-readable recording medium, and method of estimating container wall thickness
JP2007075789A (en) * 2005-09-16 2007-03-29 Nippon Steel Corp Method, apparatus, and computer program for estimating temperature or heat flux of reaction container and computer-readable recording medium
JP2007121203A (en) * 2005-10-31 2007-05-17 Nippon Steel Corp Bottom of blast furnace management method
JP2008063593A (en) * 2006-09-04 2008-03-21 Nippon Steel Corp Method and apparatus for estimating thickness of vessel wall, and computer program
WO2019123574A1 (en) * 2017-12-20 2019-06-27 日本製鉄株式会社 Device for managing loss of refractory material in electric furnaces, system for managing loss of refractory material in electric furnaces, method for managing loss of refractory material in electric furnaces, and computer-readable storage medium
CN111279143A (en) * 2017-12-20 2020-06-12 日本制铁株式会社 Refractory wear management device, system, method and storage medium for electric furnace
JP2019126834A (en) * 2018-01-26 2019-08-01 日鉄ステンレス株式会社 Apparatus and method for equipment monitoring and program
JP7016706B2 (en) 2018-01-26 2022-02-07 日鉄ステンレス株式会社 Equipment monitoring equipment, equipment monitoring methods, and programs
CN111961776A (en) * 2020-07-31 2020-11-20 中南大学 Thermocouple position mapping method for corner area of blast furnace hearth lining

Similar Documents

Publication Publication Date Title
JP2007071686A (en) Method and device for estimating temperature of container wall or heat flux, computer program, computer-readable recording medium, and method of estimating container wall thickness
CN105046030B (en) The preparation method of the aluminium alloy element quenching process coefficient of heat transfer under the conditions of Three-dimensional Heat-transfer based on FInite Element
Malinowski et al. Inverse method implementation to heat transfer coefficient determination over the plate cooled by water spray
JP2005082862A (en) Method and device for estimating inner surface position in reaction vessel, and computer program
Niroomand et al. Experimental characterization of frost growth on a horizontal plate under natural convection
JP4753374B2 (en) Container wall thickness estimation method, apparatus, and computer program
JP4299554B2 (en) Inverse problem analysis method, apparatus, computer program, and computer-readable storage medium
JP4743781B2 (en) Method, apparatus, and computer program for estimating temperature and heat flux of inner wall surface of container
CN113573826B (en) Device and method for estimating thickness of solidified shell in casting mold
JP4695376B2 (en) Heating or cooling characteristic evaluation method and apparatus, reaction vessel operation management method and apparatus, computer program, and computer-readable recording medium
JP4559708B2 (en) Evaluation method for evaluating state in reaction vessel, operation management method, evaluation apparatus, computer program, and computer-readable storage medium
WO2016060164A1 (en) Device, method, and program for detecting molten-metal surface level in continuous casting mold
JP2008082901A (en) Thermal analysis method, thermal analysis device, and thermal analysis program
JP3978090B2 (en) Hot water surface position detection method, computer program, and computer-readable storage medium
Nowak et al. Application of Bezier surfaces to the 3-D inverse geometry problem in continuous casting
JP4681127B2 (en) Hot water surface height detection apparatus, method, and computer-readable storage medium
CN115048803B (en) Establishment method of temperature distribution map library and acquisition method of wafer surface temperature
JP4833621B2 (en) Method, apparatus, computer program, and computer-readable recording medium for estimating temperature or heat flux of reaction vessel
WO2014030118A2 (en) A method and a system for determination of refractory wear profile in a blast furnace
Song et al. Driving force induced transition in thermal behavior of grain boundary migration in Ni
JP2004003800A (en) Operation management method and device for reaction vessel, computer program, and computer readable storage medium
JP2010230564A (en) Method, device and program for estimation of heat flux on container inner surface
JP4850803B2 (en) Method for estimating temperature inside material, method for estimating heat flux, apparatus, and computer program
JP6620610B2 (en) Method for estimating surface heat flux of heat-treated members
JP6702014B2 (en) Scrap burn-through determination method in electric furnace, furnace wall wear amount estimation method, program and system in electric furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609