JP7016706B2 - Equipment monitoring equipment, equipment monitoring methods, and programs - Google Patents

Equipment monitoring equipment, equipment monitoring methods, and programs Download PDF

Info

Publication number
JP7016706B2
JP7016706B2 JP2018011550A JP2018011550A JP7016706B2 JP 7016706 B2 JP7016706 B2 JP 7016706B2 JP 2018011550 A JP2018011550 A JP 2018011550A JP 2018011550 A JP2018011550 A JP 2018011550A JP 7016706 B2 JP7016706 B2 JP 7016706B2
Authority
JP
Japan
Prior art keywords
temperature
measuring means
temperature measuring
equipment
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018011550A
Other languages
Japanese (ja)
Other versions
JP2019126834A (en
Inventor
淳一 中川
洋 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2018011550A priority Critical patent/JP7016706B2/en
Publication of JP2019126834A publication Critical patent/JP2019126834A/en
Application granted granted Critical
Publication of JP7016706B2 publication Critical patent/JP7016706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、設備監視装置、設備監視方法、およびプログラムに関し、特に、溶融金属が内部に存在する設備の内周面を構成する耐火物の状態を監視するために用いて好適なものである。 The present invention relates to equipment monitoring equipment, equipment monitoring methods, and programs, and is particularly suitable for use in monitoring the state of refractories constituting the inner peripheral surface of equipment in which molten metal is present.

溶融金属を製造する炉として、例えば、サブマージドアーク炉(SAF)や電気炉等がある。サブマージドアーク炉は、抵抗加熱式溶融処理炉や密閉式電気製鉄炉等とも称される。サブマージドアーク炉では、所定の形状に成型された原料を電極により通電加熱することにより溶解する。電気炉では、アーク放電により鉄スクラップを溶解する。このような炉では炉内が高温になるため、炉の内周面に耐火煉瓦等の耐火物が配置される。 Examples of the furnace for producing molten metal include a submerged arc furnace (SAF) and an electric furnace. The submerged arc furnace is also referred to as a resistance heating type melting treatment furnace, a closed electric iron making furnace, or the like. In a submerged arc furnace, a raw material molded into a predetermined shape is melted by being energized and heated by an electrode. In an electric furnace, iron scrap is melted by arc discharge. In such a furnace, the temperature inside the furnace becomes high, so refractory materials such as refractory bricks are arranged on the inner peripheral surface of the furnace.

耐火物は、高温の溶融金属(溶銑やスラグ等)に曝されるため、炉の使用に伴い、その一部が溶損したり剥離したりすることにより損耗する。そこで、耐火物の損耗の状態を監視する技術が求められる。この種の技術として、特許文献1、2に記載の技術がある。 Since refractories are exposed to high-temperature molten metal (hot metal, slag, etc.), some of them are melted or peeled off with the use of the furnace, resulting in wear. Therefore, a technique for monitoring the state of wear of refractories is required. As this kind of technique, there is a technique described in Patent Documents 1 and 2.

特許文献1では、電気炉の耐火物の内部に温度センサを配置し、通電開始の時刻から温度センサにより測定される温度が最大値となる時刻との差を遅れ時間として監視する。この遅れ時間が短くなることは、温度センサと溶融金属との間隔が近いことに対応する。このことを利用して、遅れ時間が予め設定された基準時間よりも短い場合に、耐火物の侵食が進んでいると判定する。 In Patent Document 1, a temperature sensor is arranged inside a refractory material of an electric furnace, and the difference between the time when the energization starts and the time when the temperature measured by the temperature sensor becomes the maximum value is monitored as a delay time. This shortening of the delay time corresponds to the close distance between the temperature sensor and the molten metal. Utilizing this fact, when the delay time is shorter than the preset reference time, it is determined that the refractory erosion is progressing.

特許文献2では、電気炉の耐火物の内部に温度センサを配置し、温度センサにより測定される温度と、耐火物の損耗量とが比例関係であることを利用して、温度センサにより測定される温度から、耐火物の損耗量を推定することができることが記載されている。 In Patent Document 2, a temperature sensor is arranged inside a fire-resistant material of an electric furnace, and the temperature measured by the temperature sensor is measured by the temperature sensor by utilizing the fact that the amount of wear of the fire-resistant material is in a proportional relationship. It is stated that the amount of wear of the fireproof material can be estimated from the above temperature.

特開平3-223658号公報Japanese Unexamined Patent Publication No. 3-223658 特開平8-94264号公報Japanese Unexamined Patent Publication No. 8-94264 特開2015-227733号公報JP-A-2015-227733 特許第3403093号公報Japanese Patent No. 3403093

しかしながら、特許文献1に記載の技術では、遅れ時間と基準時間とを比較することによって、耐火物の侵食が起こっているかどうかを判定するので、耐火物の損耗がどの程度あるのかを正確に知ることが容易ではない。また、基準時間の設定値を所望の判定結果が得られるように定めることは容易ではない。更に、特定のタイミングでしか耐火物の侵食が起こっているかどうかを判定することができない。 However, in the technique described in Patent Document 1, since it is determined whether or not the refractory is eroded by comparing the delay time with the reference time, it is possible to know exactly how much the refractory is worn. It's not easy. Further, it is not easy to set the set value of the reference time so that a desired determination result can be obtained. Furthermore, it is only possible to determine if refractory erosion has occurred at a specific time.

また、特許文献2に記載の技術では、温度センサにより測定される温度と、耐火物の損耗量との関係を、オフラインで予め用意しなければならない。また、特許文献2に記載の技術では、耐火物の温度の測定値と耐火物の熱伝導率とから耐火物の残厚を計算するとしている。しかしながら、耐火物の温度の測定値と耐火物の熱伝導率とを考慮するだけでは、耐火物の残厚を高精度に計算することは容易ではない。従って、耐火物の損耗の程度を正確に求めることは容易ではない。 Further, in the technique described in Patent Document 2, the relationship between the temperature measured by the temperature sensor and the amount of wear of the refractory must be prepared in advance offline. Further, in the technique described in Patent Document 2, the residual thickness of the refractory is calculated from the measured value of the temperature of the refractory and the thermal conductivity of the refractory. However, it is not easy to calculate the residual thickness of the refractory with high accuracy only by considering the measured value of the temperature of the refractory and the thermal conductivity of the refractory. Therefore, it is not easy to accurately determine the degree of wear of the refractory.

また、各チャージにおいて、温度センサにより測定される温度は変化する。従って、どの時点での温度を測定するかによって、耐火物の残厚が異なる。同一のチャージにおいて、温度センサにより測定される温度の変化に応じて耐火物の残厚が変化するわけではない。このため、特許文献2に記載の技術では、各チャージにおいて、耐火物の残厚を求めるために使用する温度センサにより測定される温度は、予め決められた共通の条件における温度でなければならない。特許文献2では、耐火物の残厚を求めるために使用する温度センサにより測定される温度は、各チャージにおける最高温度とする例が示されている。よって、特許文献2に記載の技術でも、耐火物の残厚を求めるタイミングが限定される。 In addition, the temperature measured by the temperature sensor changes with each charge. Therefore, the residual thickness of the refractory differs depending on the time point at which the temperature is measured. In the same charge, the residual thickness of the refractory does not change according to the change in temperature measured by the temperature sensor. Therefore, in the technique described in Patent Document 2, the temperature measured by the temperature sensor used to obtain the residual thickness of the refractory in each charge must be the temperature under a predetermined common condition. Patent Document 2 shows an example in which the temperature measured by the temperature sensor used to determine the residual thickness of the refractory is the maximum temperature at each charge. Therefore, even in the technique described in Patent Document 2, the timing for obtaining the residual thickness of the refractory is limited.

本発明は、以上のような問題点に鑑みてなされたものであり、溶融金属が内部に存在する設備の内周面を構成する耐火物の状態をリアルタイムで正確に監視することができるようにすることを目的とする。 The present invention has been made in view of the above problems so that the state of the refractory constituting the inner peripheral surface of the equipment in which the molten metal exists can be accurately monitored in real time. The purpose is to do.

本発明の設備監視装置は、溶融金属が内部に存在する設備であって、当該設備の内周面を構成する耐火物を有し、当該耐火物の内側が当該溶融金属と接する状態または他の物質が間に存在する状態で配置され、当該耐火物の外側が冷却媒体と接する状態または他の物質が間に存在する状態で配置される構成を有する設備を監視する設備監視装置であって、それぞれ前記耐火物の内部の異なる位置に配置された第1の温度測定手段、第2の温度測定手段、および第3の温度測定手段により測定された温度と、前記冷却媒体の温度を測定する第4の温度測定手段により測定された温度と、を取得する温度取得手段と、前記第1の温度測定手段により測定された温度と、前記第2の温度測定手段により測定された温度とを用いて、前記設備の部位のうち、前記耐火物の外側が冷却媒体と接する部位または冷却媒体との間に存在する物質と接する部位である外側部位の表面における温度と、前記設備の前記外側部位の表面における熱流束ベクトルの、前記耐火物の抜熱方向の成分の値とを、1次元非定常伝熱逆問題解析を行った結果に基づいて導出する第1の導出手段と、前記設備の前記外側部位の表面における温度と、前記設備の前記外側部位の表面における熱流束ベクトルの、前記耐火物の抜熱方向の成分の値と、前記冷却媒体の温度を測定する第4の温度測定手段により測定された温度とを用いて、前記耐火物を構成する材料と前記冷却媒体との間の熱伝達係数を導出する第2の導出手段と、前記第3の温度測定手段により測定された温度と、前記第2の導出手段により導出された熱伝達係数とを用いて、前記溶融金属の温度と温度が等しくなる前記耐火物の抜熱方向における位置である温度一致位置と、前記設備の溶融金属と接する部位の表面における熱流束ベクトルの、前記耐火物の抜熱方向の成分の値とを、1次元非定常伝熱逆問題解析を行った結果に基づいて導出する第3の導出手段と、を有し、前記第1の温度測定手段の前記耐火物の抜熱方向に垂直な方向における位置と前記第2の温度測定手段の前記耐火物の抜熱方向に垂直な方向における位置は略同じであり、前記第3の温度測定手段の前記耐火物の抜熱方向に垂直な方向における位置と、前記第1の温度測定手段および前記第2の温度測定手段の前記耐火物の抜熱方向に垂直な方向における位置は異なることを特徴とする。 The equipment monitoring device of the present invention is equipment in which molten metal is present inside, has a fire-resistant material constituting the inner peripheral surface of the equipment, and is in a state where the inside of the fire-resistant material is in contact with the molten metal or other. An equipment monitoring device that monitors equipment that is arranged with substances in between and is arranged with the outside of the fireproof material in contact with the cooling medium or with other substances in between. The temperature measured by the first temperature measuring means, the second temperature measuring means, and the third temperature measuring means, which are arranged at different positions inside the fireproof material, and the temperature of the cooling medium are measured. Using the temperature acquisition means for acquiring the temperature measured by the temperature measuring means of No. 4, the temperature measured by the first temperature measuring means, and the temperature measured by the second temperature measuring means. The temperature on the surface of the outer part of the equipment, which is the part where the outside of the fireproof material is in contact with the cooling medium or the part in contact with the substance existing between the cooling medium, and the surface of the outer part of the equipment. The first derivation means for deriving the value of the component of the heat flux vector in the heat transfer direction of the fireproof material based on the result of the one-dimensional non-stationary heat transfer reverse problem analysis, and the outside of the equipment. Measured by a fourth temperature measuring means for measuring the temperature on the surface of the portion , the value of the component of the heat transfer vector on the surface of the outer portion of the equipment in the heat removal direction of the fireproof material, and the temperature of the cooling medium. A second derivation means for deriving a heat transfer coefficient between the material constituting the refractory material and the cooling medium, and a temperature measured by the third temperature measuring means, and the temperature measured by the third temperature measuring means. Using the heat transfer coefficient derived by the second derivation means, the temperature matching position, which is the position in the heat removal direction of the fireproof material where the temperature of the molten metal becomes equal to the temperature, and the molten metal of the equipment. A third derivation means for deriving the value of the component of the heat flux vector on the surface of the contacting portion in the heat removal direction of the refractory material based on the result of one-dimensional non-stationary heat transfer reverse problem analysis. The position of the first temperature measuring means in the direction perpendicular to the heat transfer direction of the fireproof material and the position of the second temperature measuring means in the direction perpendicular to the heat transfer direction of the fireproof material are substantially the same. Yes, the position of the third temperature measuring means in the direction perpendicular to the heat removal direction of the fireproof material and the position perpendicular to the heat removal direction of the fireproof material of the first temperature measuring means and the second temperature measuring means. It is characterized in that the positions in different directions are different.

本発明の設備監視方法は、溶融金属が内部に存在する設備であって、当該設備の内周面を構成する耐火物を有し、当該耐火物の内側が当該溶融金属と接する状態または他の物質が間に存在する状態で配置され、当該耐火物の外側が冷却媒体と接する状態または他の物質が間に存在する状態で配置される構成を有する設備を監視する設備監視方法であって、それぞれ前記耐火物の内部の異なる位置に配置された第1の温度測定手段、第2の温度測定手段、および第3の温度測定手段により測定された温度と、前記冷却媒体の温度を測定する第4の温度測定手段により測定された温度と、を取得する温度取得工程と、前記第1の温度測定手段により測定された温度と、前記第2の温度測定手段により測定された温度とを用いて、前記設備の部位のうち、前記耐火物の外側が冷却媒体と接する部位または冷却媒体との間に存在する物質と接する部位である外側部位の表面における温度と、前記設備の前記外側部位の表面における熱流束ベクトルの、前記耐火物の抜熱方向の成分の値とを、1次元非定常伝熱逆問題解析を行った結果に基づいて導出する第1の導出工程と、前記設備の前記外側部位の表面における温度と、前記設備の前記外側部位の表面における熱流束ベクトルの、前記耐火物の抜熱方向の成分の値と、前記冷却媒体の温度を測定する第4の温度測定手段により測定された温度とを用いて、前記耐火物を構成する材料と前記冷却媒体との間の熱伝達係数を導出する第2の導出工程と、前記第3の温度測定手段により測定された温度と、前記第2の導出工程により導出された熱伝達係数とを用いて、前記溶融金属の温度と温度が等しくなる前記耐火物の抜熱方向における位置である温度一致位置と、前記設備の溶融金属と接する部位の表面における熱流束ベクトルの、前記耐火物の抜熱方向の成分の値とを、1次元非定常伝熱逆問題解析を行った結果に基づいて導出する第3の導出工程と、を有し、前記第1の温度測定手段の前記耐火物の抜熱方向に垂直な方向における位置と前記第2の温度測定手段の前記耐火物の抜熱方向に垂直な方向における位置は略同じであり、前記第3の温度測定手段の前記耐火物の抜熱方向に垂直な方向における位置と、前記第1の温度測定手段および前記第2の温度測定手段の前記耐火物の抜熱方向に垂直な方向における位置は異なることを特徴とする。 The equipment monitoring method of the present invention is a facility in which molten metal is present inside, has a fire resistant material constituting the inner peripheral surface of the facility, and is in a state where the inside of the fire resistant material is in contact with the molten metal or other. It is an equipment monitoring method for monitoring equipment having a configuration in which substances are arranged in a state where they are present in between and the outside of the fireproof material is in contact with a cooling medium or in a state where other substances are present in between. The temperature measured by the first temperature measuring means, the second temperature measuring means, and the third temperature measuring means, which are arranged at different positions inside the fireproof material, and the temperature of the cooling medium are measured. Using the temperature acquisition step of acquiring the temperature measured by the temperature measuring means of No. 4, the temperature measured by the first temperature measuring means, and the temperature measured by the second temperature measuring means. The temperature on the surface of the outer part of the equipment, which is the part where the outside of the fireproof material is in contact with the cooling medium or the part in contact with the substance existing between the cooling medium, and the surface of the outer part of the equipment. The first derivation step of deriving the value of the component of the heat flux vector in the heat transfer direction of the fireproof material based on the result of the one-dimensional non-stationary heat transfer reverse problem analysis, and the outside of the equipment. Measured by a fourth temperature measuring means for measuring the temperature on the surface of the portion , the value of the component of the heat transfer vector on the surface of the outer portion of the equipment in the heat removal direction of the fireproof material, and the temperature of the cooling medium. The second derivation step of deriving the heat transfer coefficient between the material constituting the refractory material and the cooling medium using the obtained temperature, and the temperature measured by the third temperature measuring means, Using the heat transfer coefficient derived by the second derivation step, the temperature matching position, which is the position in the heat removal direction of the fireproof material where the temperature of the molten metal becomes equal to the temperature, and the molten metal of the equipment. A third derivation step of deriving the value of the component of the heat flux vector on the surface of the contacting portion in the heat removal direction of the refractory material based on the result of one-dimensional non-stationary heat transfer reverse problem analysis. The position of the first temperature measuring means in the direction perpendicular to the heat transfer direction of the fireproof material and the position of the second temperature measuring means in the direction perpendicular to the heat transfer direction of the fireproof material are substantially the same. Yes, the position of the third temperature measuring means in the direction perpendicular to the heat removal direction of the fireproof material and the position perpendicular to the heat removal direction of the fireproof material of the first temperature measuring means and the second temperature measuring means. It is characterized in that the positions in different directions are different.

本発明のプログラムは、前記設備監視装置の各手段としてコンピュータを機能させるためのものである。 The program of the present invention is for making a computer function as each means of the equipment monitoring device.

本発明によれば、溶融金属が内部に存在する設備の内周面を構成する耐火物の状態をリアルタイムで正確に監視することができる。 According to the present invention, it is possible to accurately monitor the state of the refractory material constituting the inner peripheral surface of the equipment in which the molten metal is present in real time.

サブマージドアーク炉の構成の一例を示す図である。It is a figure which shows an example of the structure of the submerged arc furnace. 設備監視装置の機能的な構成の一例を示す図である。It is a figure which shows an example of the functional configuration of the equipment monitoring apparatus. 第1の逆問題解析部における非定常伝熱逆問題の座標系の一例を示す図である。It is a figure which shows an example of the coordinate system of the unsteady heat transfer inverse problem in the 1st inverse problem analysis part. 第2の逆問題解析部における非定常伝熱逆問題の座標系の一例を示す図である。It is a figure which shows an example of the coordinate system of the unsteady heat transfer inverse problem in the 2nd inverse problem analysis part. 設備監視装置による計算の結果の一例を示す図である。It is a figure which shows an example of the calculation result by the equipment monitoring apparatus. 設備監視装置を用いた設備監視方法の一例を説明するフローチャートである。It is a flowchart explaining an example of the equipment monitoring method using the equipment monitoring apparatus.

以下、図面を参照しながら、本発明の一実施形態を説明する。本実施形態では、溶融金属が内部に存在する設備として、サブマージドアーク炉を例に挙げて説明する。そこで、まず、サブマージドアーク炉の構成の概要を説明する。尚、サブマージドアーク炉の構成自体は、特許文献3、4等に記載されている公知の技術で実現されるので、ここでは、その概略を説明し詳細な説明を省略する。尚、サブマージドアーク炉は、所定の形状に成型された原料を電極により通電加熱することにより溶解する構成を有していれば、以下に説明する構成と異なる構成であってもよい。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In this embodiment, a submerged arc furnace will be described as an example of equipment in which molten metal is present. Therefore, first, an outline of the configuration of the submerged arc furnace will be described. Since the configuration of the submerged arc furnace itself is realized by the known techniques described in Patent Documents 3, 4, etc., the outline thereof will be described here and detailed description thereof will be omitted. The submerged arc furnace may have a configuration different from that described below as long as it has a configuration in which a raw material molded into a predetermined shape is melted by energizing and heating with an electrode.

(サブマージドアーク炉の構成)
図1は、サブマージドアーク炉100の構成の一例を示す図である。図1(a)は、サブマージドアーク炉100の全体構成を示す図である。図1(b)は、サブマージドアーク炉100の炉底を透視した図であり、サブマージドアーク炉100の炉底を構成する耐火物に埋設されている温度計の位置を説明する図である。図1(c)は、サブマージドアーク炉100の炉底を構成する耐火物をその側方から透視した図であり、耐火物に埋設されている温度計の位置を説明する図である。
(Composition of submerged arc furnace)
FIG. 1 is a diagram showing an example of the configuration of a submerged arc furnace 100. FIG. 1A is a diagram showing the overall configuration of the submerged arc furnace 100. FIG. 1B is a perspective view of the bottom of the submerged arc furnace 100, and is a diagram illustrating the position of the thermometer embedded in the refractory material constituting the bottom of the submerged arc furnace 100. .. FIG. 1C is a perspective view of the refractory material constituting the bottom of the submerged arc furnace 100 from the side thereof, and is a diagram illustrating the position of the thermometer embedded in the refractory material.

図1に示す例では、サブマージドアーク炉100は、上面に開口部を有する有底筒状の炉本体111と、炉本体111の上面の開口部を閉塞する炉蓋112とを有する。炉本体111および炉蓋112は、共に耐火物を用いて形成される。
炉本体111の上面の開口部に炉蓋112が設置されると、内部に、原料を充填する空間(充填部)が形成される。以下の説明では、この空間を必要に応じて炉内と称し、サブマージドアーク炉100の外側を必要に応じて炉外と称する。
In the example shown in FIG. 1, the submerged arc furnace 100 has a bottomed cylindrical furnace body 111 having an opening on the upper surface and a furnace lid 112 that closes the opening on the upper surface of the furnace body 111. The furnace body 111 and the furnace lid 112 are both formed by using a refractory material.
When the furnace lid 112 is installed in the opening on the upper surface of the furnace main body 111, a space (filling portion) for filling the raw material is formed inside. In the following description, this space is referred to as the inside of the furnace as necessary, and the outside of the submerged arc furnace 100 is referred to as the outside of the furnace as necessary.

炉蓋112には、炉内に原料を装入する筒状の原料装入シュート121、122が配置される。また、炉蓋112には、炉内で発生した排ガスを炉外に排気する筒状の排気部131、132が配置される。 On the furnace lid 112, cylindrical raw material charging chutes 121 and 122 for charging raw materials into the furnace are arranged. Further, the furnace lid 112 is arranged with cylindrical exhaust portions 131 and 132 for exhausting the exhaust gas generated in the furnace to the outside of the furnace.

炉蓋112の中心付近には、通電加熱(抵抗加熱)により炉内に充填された原料を溶解して、スラグ141と溶銑142とを形成するための電極151、152、153が設置されている。電極151、152、153は、その先端が炉内に配置された状態で、例えば等間隔に配置される。電極151、152、153に三相交流電力が印加されることにより原料が通電加熱される。スラグ141は、炉本体111の側壁に形成された出滓口161から炉外に排出される。溶銑142は、炉本体111の側壁に形成された出銑口162から炉外に排出される。また、ここでは、スラグ141と溶銑142を別々に炉外へ排出する構造を例に挙げて説明したが、スラグ141と溶銑142を同一の出銑口から炉外へ排出する構造であってもよい。 Near the center of the furnace lid 112, electrodes 151, 152, 153 for melting the raw material filled in the furnace by energization heating (resistance heating) to form the slag 141 and the hot metal 142 are installed. .. The electrodes 151, 152, and 153 are arranged at equal intervals, for example, with their tips arranged in the furnace. The raw material is energized and heated by applying three-phase AC power to the electrodes 151, 152, and 153. The slag 141 is discharged to the outside of the furnace from the slag opening 161 formed on the side wall of the furnace main body 111. The hot metal 142 is discharged to the outside of the furnace from the hot metal outlet 162 formed on the side wall of the furnace main body 111. Further, here, the structure in which the slag 141 and the hot metal 142 are separately discharged to the outside of the furnace has been described as an example, but even if the structure is such that the slag 141 and the hot metal 142 are discharged to the outside of the furnace from the same outlet. good.

炉本体111の底面である炉底には、空気の流通経路171が配置される。図1(a)に示す例では、流通経路171には、図1(a)の流通経路171の両側に付している矢印線の方向(y軸の負の方向)に空気が流通される。流通経路171を流通する空気が、炉本体111の炉底下部に均一な風速で直接全体にあたるように流通経路171が構成されている。 An air flow path 171 is arranged on the bottom of the furnace body 111, which is the bottom surface of the furnace body 111. In the example shown in FIG. 1 (a), air is circulated in the flow path 171 in the direction of the arrow lines (negative direction of the y-axis) attached to both sides of the flow path 171 in FIG. 1 (a). .. The distribution path 171 is configured so that the air flowing through the distribution path 171 directly hits the entire lower part of the bottom of the furnace body 111 at a uniform wind speed.

流通経路171には、温度計181、182が配置される。温度計181は、炉本体111よりも上流側の所定の位置において流通経路171の内部を流れる空気の温度を測定する。温度計182は、炉本体111よりも下流側の所定の位置において流通経路171の内部を流れる空気の温度を測定する。以下の説明では、温度計181を必要に応じて上流側温度計181と称し、温度計182を必要に応じて下流側温度計182と称する。 Thermometers 181 and 182 are arranged in the distribution channel 171. The thermometer 181 measures the temperature of the air flowing inside the distribution path 171 at a predetermined position on the upstream side of the furnace main body 111. The thermometer 182 measures the temperature of the air flowing inside the distribution path 171 at a predetermined position on the downstream side of the furnace main body 111. In the following description, the thermometer 181 will be referred to as an upstream thermometer 181 as necessary, and the thermometer 182 will be referred to as a downstream thermometer 182 as necessary.

炉本体111には、溶銑142の温度を測定する温度計183が配置される。以下の説明では、温度計183を必要に応じて溶銑温度計183と称する。
また、炉本体111の炉底を構成する部分の耐火物の内部に温度計191~193が配置(埋設)される。温度計191~193は、例えば、熱電対である。以下の説明では、炉本体111の炉底を構成する部分の耐火物を必要に応じて炉底耐火物と称する。
A thermometer 183 for measuring the temperature of the hot metal 142 is arranged in the furnace main body 111. In the following description, the thermometer 183 will be referred to as a hot metal thermometer 183, if necessary.
Further, thermometers 191 to 193 are arranged (buried) inside the refractory material of the portion constituting the bottom of the furnace body 111. The thermometers 191 to 193 are, for example, thermocouples. In the following description, the refractory of the portion constituting the bottom of the furnace body 111 will be referred to as a refractory of the bottom, if necessary.

図1(c)に示す例では、炉底耐火物は、耐火キャスタブル111a、パーマ煉瓦111b、ウェア煉瓦A111c、およびウェア煉瓦B111dを有する。炉外側から順に、耐火キャスタブル111a、パーマ煉瓦111b、ウェア煉瓦A111c、およびウェア煉瓦B111dが配置される。このように本実施形態では、炉底耐火物は、相互に熱伝導率が異なる4種類の材料を炉芯101に平行な方向(炉内からの熱が伝達する方向)に並べて配置することにより構成される。尚、炉底耐火物は、1種類の材料で構成されていても、4種以外の2種以上の材料で構成されていてもよい。 In the example shown in FIG. 1 (c), the refractory furnace bottom has a refractory castable 111a, a perm brick 111b, a ware brick A111c, and a ware brick B111d. The refractory castable 111a, the perm brick 111b, the ware brick A111c, and the ware brick B111d are arranged in this order from the outside of the furnace. As described above, in the present embodiment, the furnace bottom refractory is arranged by arranging four kinds of materials having different thermal conductivitys side by side in the direction parallel to the furnace core 101 (the direction in which heat is transferred from the inside of the furnace). It is composed. The refractory material at the bottom of the furnace may be made of one kind of material or may be made of two or more kinds of materials other than four kinds.

図1(a)~図1(c)に示すように、温度計191は、炉芯101(サブマージドアーク炉100の軸)と略一致する位置であって、炉内よりも炉外に近い領域に配置される。本実施形態では、温度計191は、耐火キャスタプル111aに埋設される。例えば、温度計191は、炉本体111の炉底からの距離L1が50mmの位置に埋設される。このように炉芯101と略一致する位置に温度計191を配置するのは、溶銑142の温度は炉芯101において最も高くなる傾向があるため、炉底の炉内側の表面の状態を監視するには、炉芯101に可及的に近い位置における熱流束を求めるのが好ましいからである。尚、以下の説明では、炉底の炉内側の表面を必要に応じて炉底内壁面と称する。また、炉底耐火物の炉外側の表面を必要に応じて炉底外壁面と称する。尚、炉底耐火物に付着物が付着している場合には、その付着物により炉底内壁面が構成される。また、炉底耐火物の炉外側の表面は鉄皮で覆われていてもよい。炉底外壁面には付着物が付着することはなく、炉底耐火物(を覆う鉄皮)により炉底外壁面が構成される。炉底内壁面と炉底外壁面とを最短距離で結ぶ方向が抜熱方向(x軸方向)になる。x軸方向(炉芯101に沿う方向(炉内からの熱が伝達する方向)は、炉底耐火物の抜熱方向である。 As shown in FIGS. 1 (a) to 1 (c), the thermometer 191 is located at a position substantially coincide with the furnace core 101 (axis of the submerged arc furnace 100) and is closer to the outside of the furnace than inside the furnace. Placed in the area. In this embodiment, the thermometer 191 is embedded in the refractory castaple 111a. For example, the thermometer 191 is embedded at a position where the distance L 1 from the bottom of the furnace body 111 is 50 mm. The reason why the thermometer 191 is placed at a position substantially coincide with the furnace core 101 in this way is that the temperature of the hot metal 142 tends to be the highest in the furnace core 101, so that the state of the surface inside the furnace bottom is monitored. This is because it is preferable to obtain the heat flux at a position as close as possible to the furnace core 101. In the following description, the inner surface of the furnace bottom will be referred to as the inner wall surface of the furnace bottom, if necessary. Further, the outer surface of the furnace bottom refractory is referred to as a furnace bottom outer wall surface as necessary. If deposits are attached to the refractory material on the bottom of the furnace, the deposits form the inner wall surface of the bottom of the furnace. Further, the outer surface of the furnace bottom refractory may be covered with an iron skin. No deposits adhere to the outer wall surface of the furnace bottom, and the outer wall surface of the furnace bottom is composed of the refractory material (iron skin covering the bottom). The direction connecting the inner wall surface of the furnace bottom and the outer wall surface of the furnace bottom at the shortest distance is the heat extraction direction (x-axis direction). The x-axis direction (direction along the furnace core 101 (direction in which heat is transferred from the inside of the furnace)) is the heat removal direction of the refractory material at the bottom of the furnace.

温度計192は、炉芯101(温度計191)から離れた位置であって、炉内よりも炉外に近い領域に配置される。本実施形態では、温度計192は、耐火キャスタプル111aに埋設される。例えば、温度計192は、炉本体111の炉底からの距離L2が50mmの位置であって、炉芯101からの距離L4が550mmの位置に埋設される。尚、図1(c)において、温度計191、192の炉本体111の炉底からの距離L1、L2は、同じでなくてもよい。 The thermometer 192 is located at a position away from the furnace core 101 (thermometer 191) and is arranged in a region closer to the outside of the furnace than inside the furnace. In this embodiment, the thermometer 192 is embedded in the refractory castaple 111a. For example, the thermometer 192 is embedded at a position where the distance L 2 from the bottom of the furnace body 111 is 50 mm and the distance L 4 from the furnace core 101 is 550 mm. In FIG. 1 (c), the distances L 1 and L 2 of the thermometers 191 and 192 from the bottom of the furnace body 111 do not have to be the same.

温度計193は、炉芯101から離れた位置であって、炉内よりも炉外に近い領域に配置される。本実施形態では、温度計193は、耐火キャスタプル111aに埋設される。温度計193は、温度計192よりも炉内側に埋設される。温度計192、193は、炉芯101に沿う方向(炉内からの熱が伝達する方向、x軸方向)の位置が異なり、その他の方向(y軸方向、z軸方向(炉芯101に垂直な面の方向))の位置は略同じである。例えば、温度計193は、炉本体111の炉底からの距離L3が100mmの位置であって、炉芯101からの距離L5が550mmの位置に埋設される。尚、図1(c)において、炉芯101からの距離L4、L5は、同じであっても異なっていてもよい(この点については次の段落以降で説明する)。また、図1(b)において、温度計193は、温度計192と重なる位置にあるので、図1(b)では、温度計193が示されない。 The thermometer 193 is located at a position away from the furnace core 101 and is located in a region closer to the outside of the furnace than inside the furnace. In this embodiment, the thermometer 193 is embedded in the refractory castaple 111a. The thermometer 193 is buried inside the furnace more than the thermometer 192. The thermometers 192 and 193 have different positions along the furnace core 101 (direction in which heat is transferred from the furnace, x-axis direction), and other directions (y-axis direction and z-axis direction (vertical to the furnace core 101). The positions of)) are almost the same. For example, the thermometer 193 is embedded at a position where the distance L 3 from the bottom of the furnace body 111 is 100 mm and the distance L 5 from the furnace core 101 is 550 mm. In FIG. 1 (c), the distances L 4 and L 5 from the furnace core 101 may be the same or different (this point will be described in the following paragraphs). Further, in FIG. 1 (b), the thermometer 193 is located at a position overlapping the thermometer 192, so that the thermometer 193 is not shown in FIG. 1 (b).

温度計192、193は、y軸方向、z軸方向(炉芯101に垂直な面の方向)の位置(y-z平面上の位置)が同じであるのが好ましい。しかしながら、後述するようにして導出される熱伝達係数haの精度が実用上要求される精度の範囲になっていれば、温度計192、193の、y軸方向、z軸方向の位置は異なっていてもよい。ただし、温度計192と温度計193の、炉芯101に垂直な面(y-z平面)の方向の距離は、温度計191と温度計192の、炉芯101に垂直な面の方向の距離、および、温度計191と温度計193の、炉芯101に垂直な面の方向の距離を下回るようにするのが好ましい。 It is preferable that the thermometers 192 and 193 have the same positions (positions on the yz plane) in the y-axis direction and the z-axis direction (direction of the plane perpendicular to the furnace core 101). However, if the accuracy of the heat transfer coefficient ha derived as described later is within the range of the accuracy required for practical use, the positions of the thermometers 192 and 193 in the y-axis direction and the z-axis direction are different. May be. However, the distance between the thermometer 192 and the thermometer 193 in the direction of the plane perpendicular to the furnace core 101 (yz plane) is the distance between the thermometer 191 and the thermometer 192 in the direction of the plane perpendicular to the furnace core 101. And, it is preferable that the distance between the thermometer 191 and the thermometer 193 is smaller than the distance in the direction of the plane perpendicular to the core 101.

炉芯101の位置における、x軸方向(炉芯101に沿う方向(炉内からの熱が伝達する方向)の熱流束を求める場合、炉芯101上にx軸方向において間隔を有して配置される2つの温度計で温度を測定することができれば、炉芯101(温度計191)の位置における、x軸方向の熱流束を非定常伝熱逆問題により導出することができる。温度計191~193は、増設することができるが、図1(a)に示す例では、流通経路171の下の領域であって、炉芯101付近には柱が形成されている。このため、炉底耐火物の領域であって、炉芯101およびその付近の領域に、温度計191以外の温度計を増設することができない(または多大なコストがかかり困難である)。 When obtaining the heat flux in the x-axis direction (direction along the furnace core 101 (direction in which heat is transferred from the inside of the furnace)) at the position of the furnace core 101, the heat flux is arranged on the furnace core 101 with an interval in the x-axis direction. If the temperature can be measured by the two thermometers, the heat flux in the x-axis direction at the position of the core 101 (thermometer 191) can be derived by the unsteady heat transfer reverse problem. ~ 193 can be expanded, but in the example shown in FIG. 1 (a), it is a region under the distribution path 171 and a pillar is formed in the vicinity of the core 101. Therefore, the furnace bottom. It is not possible (or very costly and difficult) to add a thermometer other than the thermometer 191 in the area of the fireproof material, which is the area of the furnace core 101 and its vicinity.

そこで、本発明者らは、炉本体111の炉底は強制空冷されているため、炉底耐火物(耐火キャスタブル111a)と流通経路171の内部を流れる空気との間の熱伝達係数の時間変化は、炉芯101であっても、炉芯101から離れた位置であってもそれほど変わらないという知見を得た。本発明者らは、このような知見に基づき、炉底耐火物の領域であって、炉芯101やその付近の領域に温度計を増設することができない(または困難である)場合であっても、炉芯101(温度計191)の位置における、x軸方向の熱流束を非定常伝熱逆問題により導出することができることを見出した。 Therefore, since the bottom of the furnace body 111 is forcibly air-cooled, the present inventors have changed the heat transfer coefficient between the refractory material (refractory 111a) at the bottom and the air flowing inside the flow path 171 over time. Obtained the finding that there is not much difference between the core 101 and the position away from the core 101. Based on such findings, the present inventors are in the case where it is not possible (or difficult) to add a thermometer to the area of the furnace core 101 or its vicinity in the area of the fire bottom refractory material. Also found that the heat flux in the x-axis direction at the position of the furnace core 101 (thermometer 191) can be derived by the unsteady heat transfer reverse problem.

詳細は後述するが、本実施形態では、温度計192、193で測定される各時刻における温度を用いて、炉底外壁面の位置であって、温度計192、193とy軸方向およびz軸方向の位置が同じ位置における、x軸方向の熱流束を1次元非定常伝熱逆問題により各時刻において導出し、導出した熱流束を用いて、温度計192、193のy軸方向、z軸方向の位置(y-z平面上の位置)における、炉底耐火物(耐火キャスタブル111a)と流通経路171の内部を流れる空気との間の熱伝達係数を各時刻において導出する。そして、この各時刻における熱伝達係数と温度計191で測定される各時刻における温度とを用いて、炉底内壁面の位置であって、炉芯101(温度計191)とy軸方向およびz軸方向の位置が同じ位置における、x軸方向の熱流束を1次元非定常伝熱逆問題により各時刻において導出する。ここで、非定常伝熱逆問題とは、計算領域を支配する非定常熱伝導方程式を基にして、領域内部の温度情報を既知として領域境界での温度や熱流束などの境界条件または初期条件を推定する問題を指す。これに対して、非定常伝熱準問題は、既知である境界条件を基にして、領域内部の温度情報を推定する問題を指す。 Details will be described later, but in the present embodiment, the temperature at each time measured by the thermometers 192 and 193 is used to determine the position of the outer wall surface of the furnace bottom, and the thermometers 192 and 193 and the y-axis direction and the z-axis. The heat flux in the x-axis direction at the same position in the direction is derived at each time by the one-dimensional unsteady heat transfer reverse problem, and the derived heat flux is used in the y-axis direction and z-axis of the thermometers 192 and 193. The heat transfer coefficient between the fire bottom fire resistant material (fire resistant castable 111a) and the air flowing inside the flow path 171 at the position in the direction (position on the yz plane) is derived at each time. Then, using the heat transfer coefficient at each time and the temperature at each time measured by the thermometer 191 at the position of the inner wall surface of the furnace bottom, the core 101 (thermometer 191) and the y-axis direction and z. The heat flux in the x-axis direction at the same position in the axial direction is derived at each time by the one-dimensional unsteady heat transfer inverse problem. Here, the unsteady heat transfer inverse problem is a boundary condition or initial condition such as temperature and heat flux at the region boundary, assuming that the temperature information inside the region is known based on the unsteady heat conduction equation that governs the calculation region. Refers to the problem of estimating. On the other hand, the unsteady heat transfer quasi-problem refers to the problem of estimating the temperature information inside the region based on the known boundary conditions.

温度計192、193とy軸方向およびz軸方向の位置が同じ位置における、炉底耐火物(耐火キャスタブル111a)と空気との間の熱伝達係数を、炉芯101(温度計191)とy軸方向およびz軸方向の位置が同じ位置における、炉底耐火物(耐火キャスタブル111a)と空気との間の熱伝達係数と見なしても、実用上要求される精度が得られる範囲で炉芯101からの距離L4、L5が定められる。また、炉底内壁面の位置であって、炉芯101(温度計191)とy軸方向およびz軸方向の位置が同じ位置における、x軸方向の熱流束を導出する際に、温度計191で測定される温度と温度計192または193で測定される温度とを用いると、熱流束の精度が実用上要求される精度にはならないほど、炉芯101からの距離L4、L5を大きくするのが好ましい。炉内からの熱が伝達する方向に2つの温度計がなくても(温度計191だけであっても)、炉底内壁面の位置であって、炉芯101(温度計191)とy軸方向およびz軸方向の位置が同じ位置における、x軸方向の熱流束を精度よく導出することができるからである。以上のような観点から、温度計191~193の位置が決められる。 The heat transfer coefficient between the refractory at the bottom of the furnace (fireproof castable 111a) and air at the same positions as the thermometers 192 and 193 in the y-axis direction and the z-axis direction is determined by the furnace core 101 (thermometer 191) and y. Even if it is regarded as the heat transfer coefficient between the refractory (fireproof castable 111a) at the bottom of the furnace and the air at the same position in the axial direction and the z-axis direction, the furnace core 101 can obtain the accuracy required for practical use. Distances L4 and L5 from are determined. Further, when deriving the heat flux in the x-axis direction at the position of the inner wall surface of the furnace bottom at the same position as the furnace core 101 (thermometer 191) in the y-axis direction and the z-axis direction, the thermometer 191 is used. When the temperature measured by the thermometer 192 or 193 is used, the distances L 4 and L 5 from the furnace core 101 are increased so that the accuracy of the heat flux is not practically required. It is preferable to do. Even if there are no two thermometers in the direction of heat transfer from the inside of the furnace (even if only the thermometer 191), it is the position of the inner wall surface of the bottom of the furnace, and the core 101 (thermometer 191) and the y-axis. This is because the heat flux in the x-axis direction can be accurately derived at the same position in the direction and the z-axis direction. From the above viewpoint, the positions of the thermometers 191 to 193 are determined.

以下の説明では、温度計191を必要に応じて炉芯温度計191と称し、温度計192を必要に応じて炉芯周辺炉外側温度計192と称し、温度計193を必要に応じて炉芯周辺炉内側温度計193と称する。 In the following description, the thermometer 191 is referred to as a core thermometer 191 as necessary, the thermometer 192 is referred to as a core peripheral thermometer 192 as necessary, and the thermometer 193 is referred to as a core as necessary. It is called a peripheral furnace inner thermometer 193.

(設備監視装置の構成)
図2は、設備監視装置200の機能的な構成の一例を示す図である。設備監視装置200のハードウェアは、例えば、CPU、ROM、RAM、HDD、および各種のインターフェースを有する情報処理装置、または、専用のハードウェアを用いることにより実現される。
<温度取得部201>
温度取得部201は、上流側温度計181、下流側温度計182、溶銑温度計183、炉芯温度計191、炉芯周辺炉外側温度計192、および炉芯周辺炉内側温度計193で測定された温度を取得する。本実施形態では、温度取得部201は、上流側温度計181、下流側温度計182、溶銑温度計183、炉芯温度計191、炉芯周辺炉外側温度計192、および炉芯周辺炉内側温度計193で測定された温度を入力し、上流側温度計181、下流側温度計182、溶銑温度計183、炉芯温度計191、炉芯周辺炉外側温度計192、および炉芯周辺炉内側温度計193で同じ時刻に測定された温度を取得する。温度取得部201は、このような温度の出力を所定のサンプリング時間ごとに行う。例えば、温度取得部201は、これらの温度を周期的に繰り返し取得することができる。これにより、上流側温度計181、下流側温度計182、溶銑温度計183、炉芯温度計191、炉芯周辺炉外側温度計192、および炉芯周辺炉内側温度計193で測定された各時刻の温度が得られる。
(Configuration of equipment monitoring device)
FIG. 2 is a diagram showing an example of a functional configuration of the equipment monitoring device 200. The hardware of the equipment monitoring device 200 is realized by using, for example, a CPU, a ROM, a RAM, an HDD, an information processing device having various interfaces, or dedicated hardware.
<Temperature acquisition unit 201>
The temperature acquisition unit 201 is measured by an upstream thermometer 181, a downstream thermometer 182, a hot metal thermometer 183, a core thermometer 191 and a core peripheral furnace outer thermometer 192, and a core peripheral furnace inner thermometer 193. To get the temperature. In the present embodiment, the temperature acquisition unit 201 includes an upstream thermometer 181, a downstream thermometer 182, a hot metal thermometer 183, a core thermometer 191 and a core peripheral furnace outer thermometer 192, and a core peripheral furnace inner temperature. Input the temperature measured by the total 193, upstream side thermometer 181, downstream side thermometer 182, hot metal thermometer 183, core thermometer 191 and core peripheral furnace outside thermometer 192, and core peripheral furnace inside temperature. Acquire the temperature measured at the same time with a total of 193. The temperature acquisition unit 201 outputs such a temperature at predetermined sampling times. For example, the temperature acquisition unit 201 can periodically and repeatedly acquire these temperatures. As a result, each time measured by the upstream thermometer 181, the downstream thermometer 182, the hot metal thermometer 183, the core thermometer 191 and the core peripheral thermometer 192, and the core peripheral thermometer 193. Temperature is obtained.

<第1の逆問題解析部202>
本実施形態では、炉底耐火物の抜熱方向(x軸方向)の温度を示す内外挿温度関数T^(x,t)を、炉底耐火物の抜熱方向(x軸方向)の1次元の領域の温度分布の時間変化を予測する数式とする。内外挿温度関数T^(x,t)を用いれば、x軸の座標xおよび時刻tを定めることにより、温度の内挿および外挿を行うことができる。第1の逆問題解析部202では、内外挿温度関数T^(x,t)を、温度計192、193とy軸方向およびz軸方向の位置が同じ位置における炉底耐火物の抜熱方向(x軸方向)の1次元の領域の温度分布の時間変化を予測する数式として用いる。
<First inverse problem analysis unit 202>
In the present embodiment, the internal / external temperature function T ^ (x, t) indicating the temperature in the heat removal direction (x-axis direction) of the bottom refractory is set to 1 in the heat removal direction (x-axis direction) of the bottom refractory. It is a mathematical formula that predicts the time change of the temperature distribution in the dimensional region. Interpolation / extrapolation By using the temperature function T ^ (x, t), the temperature can be interpolated and extrapolated by determining the coordinates x on the x-axis and the time t. In the first inverse problem analysis unit 202, the internal / external temperature function T ^ (x, t) is set in the heat removal direction of the fire bottom refractory material at the same positions in the y-axis direction and the z-axis direction as the thermometers 192 and 193. It is used as a formula for predicting the time change of the temperature distribution in the one-dimensional region (in the x-axis direction).

図3は、第1の逆問題解析部202における非定常伝熱逆問題の座標系の一例を示す図である。図3では、空間x-時刻tの2次元断面上の情報量の定義点を示す。図3は、2次元座標(空間x-時刻tの座標)の2次元断面を表したものである。 FIG. 3 is a diagram showing an example of the coordinate system of the unsteady heat transfer inverse problem in the first inverse problem analysis unit 202. FIG. 3 shows a definition point of an amount of information on a two-dimensional cross section of space x-time t. FIG. 3 shows a two-dimensional cross section of two-dimensional coordinates (coordinates of space x-time t).

図3において、x軸は、炉底外壁面をx=0とする軸であり、炉底耐火物の抜熱方向の位置を示す。t軸は、時間軸である。 In FIG. 3, the x-axis is an axis in which the outer wall surface of the furnace bottom is x = 0, and indicates the position of the refractory material in the furnace bottom in the heat removal direction. The t-axis is a time axis.

図3において、白丸で示すプロットは、それぞれ、情報量の定義点である。この白丸で示す情報量の定義点は、炉芯周辺炉外側温度計192の位置と、炉芯周辺炉外側温度計192で温度が測定された時刻とを示す。黒丸で示すプロットも、それぞれ、情報量の定義点である。この黒丸で示す情報量の定義点は、炉芯周辺炉内側温度計193の位置と、炉芯周辺炉内側温度計193で温度が測定された時刻とを示す。白丸で示す定義点における情報量は、炉芯周辺炉外側温度計192で測定された温度と当該温度の測定時刻とを含む。黒丸で示す定義点における情報量は、炉芯周辺炉内側温度計193で測定された温度と当該温度の測定時刻とを含む。 In FIG. 3, the plots indicated by white circles are the definition points of the amount of information. The definition points of the amount of information indicated by the white circles indicate the position of the furnace outside thermometer 192 around the core and the time when the temperature was measured by the furnace outside thermometer 192 around the core. The plots shown by black circles are also the definition points of the amount of information. The definition points of the amount of information indicated by the black circles indicate the position of the furnace core peripheral thermometer 193 and the time when the temperature was measured by the furnace core peripheral furnace inner thermometer 193. The amount of information at the definition point indicated by the white circle includes the temperature measured by the furnace outside thermometer 192 around the furnace core and the measurement time of the temperature. The amount of information at the definition point indicated by the black circle includes the temperature measured by the furnace inside thermometer 193 around the core and the measurement time of the temperature.

第1の逆問題解析部202は、図3に示す白丸で示すプロットと黒丸で示すプロットにより示される、x軸-t軸の2次元座標上の点のそれぞれを情報量の定義点として用いる。
図3において、タイミングtNは、温度計192、193で最新の温度が測定されたタイミングである。図3では、温度計192、193で測定された温度が取得されるたびに、新しいものから順に8個の温度測定タイミング(タイミングtO~tNの8つのタイミング)を、情報量の定義点を定める時刻tとして採用する場合を例に挙げて説明する。すなわち、第1の逆問題解析部202は、新たに温度計192、193で測定された温度が取得されると、8個の温度測定タイミングのうち、最も古い温度測定タイミングを含む2この情報量の定義点を16(8×2)個の情報量の定義点から除外する。そして、第1の逆問題解析部202は、最新の温度測定タイミングを含む2個の情報量の定義点を16個の情報量の定義点に加える。尚、情報量の定義点を定める時刻tの数は、8つに限定されない。
The first inverse problem analysis unit 202 uses each of the points on the two-dimensional coordinates of the x-axis and the t-axis shown by the plots shown by the white circles and the plots shown by the black circles shown in FIG. 3 as the definition points of the amount of information.
In FIG. 3, the timing t N is the timing at which the latest temperature is measured by the thermometers 192 and 193. In FIG. 3, each time the temperature measured by the thermometers 192 and 193 is acquired, eight temperature measurement timings (eight timings from timing t O to t N ) are set in order from the newest to the definition point of the amount of information. This will be described by taking as an example the case where the time t is adopted. That is, when the temperature newly measured by the thermometers 192 and 193 is newly acquired, the first inverse problem analysis unit 202 includes 2 of the 8 temperature measurement timings, including the oldest temperature measurement timing. Is excluded from the definition points of 16 (8 × 2) information quantities. Then, the first inverse problem analysis unit 202 adds the definition points of the two information amounts including the latest temperature measurement timing to the definition points of the 16 information amounts. The number of time t that defines the definition point of the amount of information is not limited to eight.

第1の逆問題解析部202は、以上の情報量の定義点における情報量に基づいて、内外挿温度関数T^(x,t)に含まれる重みベクトルα(の要素αj)を導出する。
ここで、内外挿温度関数T^(x,t)の一例について説明する。
まず、1次元非定常熱伝導方程式は、以下の(1)式で表される。
The first inverse problem analysis unit 202 derives the weight vector α (element α j ) included in the internal / external temperature function T ^ (x, t) based on the amount of information at the definition point of the above amount of information. ..
Here, an example of the internal / external temperature function T ^ (x, t) will be described.
First, the one-dimensional unsteady heat conduction equation is expressed by the following equation (1).

Figure 0007016706000001
Figure 0007016706000001

(1)式において、λは、炉底耐火物(耐火キャスタブル111a)の熱伝導率[kcal/(m・hr・K)]であり、ρは、炉底耐火物(耐火キャスタブル111a)の比重[kg/m3]であり、Cpは、炉底耐火物(耐火キャスタブル111a)の比熱[kcal/(kg・K)]である。λ/ρCpは、炉底耐火物(耐火キャスタブル111a)の熱拡散係数[m2/s]に対応する。また、0<x<1は、x軸の座標を、[0,1]で正規化していることを示す。 In equation (1), λ is the thermal conductivity [kcal / (m · hr · K)] of the refractory of the fire bottom (refractory 111a), and ρ is the specific gravity of the refractory of the bottom (refractory 111a). It is [kg / m 3 ], and C p is the specific heat [kcal / (kg · K)] of the refractory material (fireproof castable 111a) at the bottom. λ / ρC p corresponds to the thermal diffusivity [m 2 / s] of the refractory refractory (fireproof castable 111a). Further, 0 <x <1 indicates that the coordinates of the x-axis are normalized by [0,1].

ここで、図1(c)に示したように、炉底耐火物は、耐火キャスタブル111a、パーマ煉瓦111b、ウェア煉瓦A111c、およびウェア煉瓦B111dを有し、物性値(熱伝導率λ、密度ρ、比熱Cp)が異なる。従って、それぞれの耐火物ごとに1次元非定常熱伝導方程式を構成すると、異なる耐火物の接触による熱抵抗を考慮しなければならない。本発明者らは、炉底耐火物が、温度計191~193が埋設されている耐火物(耐火キャスタブル111a)のみで構成されているものとして、炉底耐火物の伝熱現象を1次元非定常熱伝導方程式でモデル化し、炉底耐火物が耐火キャスタブル111aのみから構成される場合の、炉底耐火物全体の抜熱方向(x軸方向)の長さ(厚み)に相当する長さである相当長を適切に設定し、前記1次元非定常熱伝導方程式を解き、その解に基づいて、熱流束や炉底内壁面の位置を導出しても、それらを精度よく導出することができることを見出した。また、異なる耐火物の接触による熱抵抗を精度よく表現する式(モデル)を構築することは困難であるため、異なる耐火物の接触による熱抵抗を考慮すると却ってモデルの誤差が大きくなる。そこで、本実施形態では、炉底耐火物が耐火キャスタブル111aのみから構成されるものとして1次元非定常熱伝導方程式を構築する。 Here, as shown in FIG. 1 (c), the refractory material at the bottom of the furnace has a refractory castable 111a, a perm brick 111b, a wear brick A111c, and a wear brick B111d, and has physical property values (thermal conductivity λ, density ρ). , Specific heat C p ) is different. Therefore, if a one-dimensional unsteady heat conduction equation is constructed for each refractory, the thermal resistance due to contact of different refractories must be considered. The present inventors assume that the refractory material at the bottom of the furnace is composed only of the refractory material (fireproof castable 111a) in which thermometers 191 to 193 are embedded, and that the heat transfer phenomenon of the refractory material at the bottom of the furnace is not one-dimensional. Modeled by the steady heat transfer equation, with a length corresponding to the length (thickness) of the entire refractory refractory in the heat removal direction (x-axis direction) when the refractory refractory is composed only of the refractory 111a. Even if a certain considerable length is set appropriately, the one-dimensional non-stationary heat transfer equation is solved, and the positions of the heat flux and the inner wall surface of the furnace bottom are derived based on the solution, they can be derived accurately. I found. Further, since it is difficult to construct an equation (model) that accurately expresses the thermal resistance due to the contact of different refractories, the error of the model becomes larger when the thermal resistance due to the contact of different refractories is taken into consideration. Therefore, in the present embodiment, a one-dimensional unsteady heat conduction equation is constructed assuming that the refractory at the bottom of the fire is composed only of the refractory castable 111a.

ここで、炉底耐火物が耐火キャスタブル111aのみから構成される場合の、炉底耐火物全体の抜熱方向(x軸方向)の長さ(厚み)に相当する長さである相当長を予め調査する。具体的には、サブマージドアーク炉100の炉底内壁面が新品のときと変化がないときに後述する<第1の逆問題解析部202>の項で説明する(4)式の内外挿温度関数T^(x,t)が溶銑142の温度と等しくなるときのx軸の座標を、炉底内壁面のx軸の座標の基準値として導出する。サブマージドアーク炉100の炉底内壁面が新品のときと変化がないときとしては、例えば、サブマージドアーク炉100の最初の操業時が挙げられる。相当長は、炉底外壁面のx軸の座標を「0」とした場合の炉底内壁面のx軸の座標で表されるものとする。 Here, when the refractory furnace bottom is composed of only the refractory castable 111a, a considerable length corresponding to the length (thickness) in the heat removal direction (x-axis direction) of the entire refractory furnace bottom is predetermined. investigate. Specifically, when the inner wall surface of the bottom of the submerged arc furnace 100 is the same as when it is new, the internal / external temperature of the equation (4) described later in the section <1st inverse problem analysis unit 202> will be described later. The x-axis coordinates when the function T ^ (x, t) becomes equal to the temperature of the hot metal 142 are derived as the reference values of the x-axis coordinates of the inner wall surface of the furnace bottom. When the inner wall surface of the bottom of the submerged arc furnace 100 is the same as when it is new, for example, the first operation of the submerged arc furnace 100 can be mentioned. The equivalent length shall be represented by the coordinates of the x-axis of the inner wall surface of the furnace bottom when the coordinates of the x-axis of the outer wall surface of the furnace bottom are set to "0".

そこで本実施形態では、炉底内壁面のx軸の座標の基準値が「1」、炉底外壁面におけるx軸の座標が「0」になるように、x軸の座標を定める(このことは、その他の説明でも同様であるものとする)。tmaxは、計算の終了条件が成立するときの時刻である。 Therefore, in the present embodiment, the x-axis coordinates are determined so that the reference value of the x-axis coordinates of the inner wall surface of the furnace bottom is "1" and the coordinates of the x-axis of the outer wall surface of the furnace bottom are "0". The same shall apply in other explanations). t max is the time when the calculation end condition is satisfied.

また、温度についての境界条件(温度の関数)として、以下の(2)式および(3)式を用いる。 Further, the following equations (2) and (3) are used as boundary conditions (functions of temperature) for temperature.

Figure 0007016706000002
Figure 0007016706000002

1 *は、炉芯周辺炉外側温度計192のx軸の座標である。obs1(t)は、時刻tにおいて炉芯周辺炉外側温度計192で測定される温度である。T1(x1 *,t)は、炉芯周辺炉外側温度計192で測定される温度を示す関数であって、炉芯周辺炉外側温度計192のx軸の座標x1 *および時刻tの関数である。x1 *∈[0,1]は、炉芯周辺炉外側温度計192のx軸の座標x1 *を、[0,1]で正規化していることを示す。すなわち、炉底内壁面のx軸の座標の基準値が「1」、炉底外壁面におけるx軸の座標が「0」になるように、炉芯周辺炉外側温度計192のx軸の座標を定める。 x 1 * is the coordinates of the x-axis of the furnace outside thermometer 192 around the furnace core. obs1 (t) is the temperature measured by the furnace outside thermometer 192 around the furnace core at time t. T 1 (x 1 * , t) is a function indicating the temperature measured by the core peripheral thermometer 192, and is the x-axis coordinate x 1 * and time t of the core peripheral thermometer 192. Is a function of. x 1 * ∈ [0, 1] indicates that the x-axis coordinates x 1 * of the furnace core peripheral thermometer 192 are normalized by [0, 1]. That is, the x-axis coordinates of the furnace outside thermometer 192 around the furnace core so that the reference value of the x-axis coordinates of the inner wall surface of the furnace bottom is "1" and the coordinates of the x-axis on the outer wall surface of the furnace bottom are "0". To determine.

2 *は、炉芯周辺炉内側温度計193のx軸の座標である。obs2(t)は、時刻tにおいて炉芯周辺炉内側温度計193で測定される温度である。T2(x2 *,t)は、炉芯周辺炉内側温度計193で測定される温度を示す関数であって、炉芯周辺炉内側温度計193のx軸の座標x2 *および時刻tの関数である。x2 *∈[0,1]は、炉芯周辺炉内側温度計193のx軸の座標x2 *を、[0,1]で正規化していることを示す。すなわち、炉底耐火物の炉底内壁面におけるx軸の座標が「1」、炉底外壁面におけるx軸の座標が「0」になるように、炉芯周辺炉内側温度計193のx軸の座標を定める。 x 2 * is the coordinates of the x-axis of the furnace core peripheral thermometer 193. obs2 (t) is the temperature measured by the furnace core peripheral thermometer 193 at time t. T 2 (x 2 * , t) is a function indicating the temperature measured by the core peripheral thermometer 193, and the x-axis coordinates x 2 * and time t of the core peripheral thermometer 193. Is a function of. x 2 * ∈ [0, 1] indicates that the x-axis coordinates x 2 * of the furnace core peripheral thermometer 193 are normalized by [0, 1]. That is, the x-axis of the furnace core peripheral thermometer 193 so that the x-axis coordinate on the inner wall surface of the furnace bottom refractory is "1" and the x-axis coordinate on the outer wall surface of the furnace bottom is "0". Determine the coordinates of.

(2)式および(3)式の境界条件の下、(1)式の1次元非定常熱伝導方程式を解くことになるが、ここでは、以下のようにして数値計算により(1)式の1次元非定常熱伝導方程式を解く場合を例に挙げて説明する。
まず、内外挿温度関数T^(x,t)を以下の(3)式で表す。
Under the boundary conditions of Eqs. (2) and (3), the one-dimensional unsteady heat conduction equation of Eq. (1) will be solved. Here, the numerical calculation of Eq. (1) is performed as follows. An example of solving a one-dimensional unsteady heat conduction equation will be described.
First, the internal / external temperature function T ^ (x, t) is expressed by the following equation (3).

Figure 0007016706000003
Figure 0007016706000003

(3)式において、内外挿温度関数T^(x,t)は、(1)式で示す1次元非定常熱伝導方程式を満たす温度であり、温度Tの近似解である。 In the equation (3), the internal / external temperature function T ^ (x, t) is a temperature satisfying the one-dimensional unsteady heat conduction equation shown in the equation (1), and is an approximate solution of the temperature T.

jは、任意の基準位置(x軸の座標)である。tjは、任意の基準時刻である。基準位置xjおよび基準時刻tjで定まる2次元座標上の点は、中心点と呼ばれる。通常は、基準xjおよび基準時刻tjを、前述した情報量の定義点と一致させるので、本実施形態でもこのようにする。ただし、基準位置xjおよび基準時刻tjを、前述した情報量の定義点と一致させなくてもよい。 x j is an arbitrary reference position (coordinates on the x-axis). t j is an arbitrary reference time. The point on the two-dimensional coordinates determined by the reference position x j and the reference time t j is called the center point. Normally, the reference x j and the reference time t j are made to match the above-mentioned definition points of the amount of information, and thus this is also done in this embodiment. However, the reference position x j and the reference time t j do not have to match the above-mentioned definition points of the amount of information.

jは、前述した中心点(基準位置xjと基準時刻tjとにより定まる2次元座標上の点)を識別する変数であり、1からm+lの範囲の整数である。 j is a variable that identifies the above-mentioned center point (a point on the two-dimensional coordinates determined by the reference position x j and the reference time t j ), and is an integer in the range of 1 to m + l.

mは、np1×ntで表され、lは、np2×ntで表される。
p1は、炉芯周辺炉外側温度計192の位置である。炉芯周辺外周側温度計192の位置は、内外挿温度関数T^(x,t)が(2)式を満足するように設定される、np2は、炉芯周辺炉内側温度計193の位置である。炉芯周辺炉内側温度計193の位置は、内外挿温度関数T^(x,t)が(3)式を満足するように設定される。ntは、時刻の数である。この時刻は、内外挿温度関数T^(x,t)が(2)式および(3)式を満足するように設定される。以上のように、mは、炉芯周辺炉外側温度計192の位置と時刻とにより定まる中心点jの数である。また、lは、炉芯周辺炉内側温度計193の位置と時刻とにより定まる中心点jの数である。
m is represented by n p1 × n t , and l is represented by n p2 × n t .
n p1 is the position of the furnace outside thermometer 192 around the furnace core. The position of the outer peripheral side thermometer 192 around the core is set so that the internal / external temperature function T ^ (x, t) satisfies the equation (2), and n p2 is the thermometer 193 around the core. The position. The position of the furnace inner thermometer 193 around the furnace core is set so that the internal / external temperature function T ^ (x, t) satisfies the equation (3). n t is the number of times. This time is set so that the internal / external temperature function T ^ (x, t) satisfies the equations (2) and (3). As described above, m is the number of center points j determined by the position and time of the furnace outside thermometer 192 around the furnace core. Further, l is the number of center points j determined by the position and time of the furnace inside thermometer 193 around the furnace core.

本実施形態では、中心点jを情報量の定義点と一致させている。したがって、図3に示す例では、jの最大値m+lは、黒丸および白丸で示すプロットの合計になる。ただし、実際には、例えば、炉芯周辺炉外側温度計192の位置と時刻とにより定まる中心点jの数mは、サンプリング周期300秒のときに30とすることができる。炉芯周辺炉内側温度計193の位置と時刻とにより定まる中心点jの数も同様に、サンプリング周期300秒のときにlは30とすることができる。 In the present embodiment, the center point j coincides with the definition point of the amount of information. Therefore, in the example shown in FIG. 3, the maximum value m + l of j is the sum of the plots shown by the black circles and the white circles. However, in reality, for example, the number m of the center point j determined by the position and time of the furnace outside thermometer 192 around the furnace core can be set to 30 when the sampling cycle is 300 seconds. Similarly, the number of center points j determined by the position and time of the furnace inside thermometer 193 around the furnace core can be set to 30 when the sampling period is 300 seconds.

φ(x-xj,t-tj)は、以下の(5)式および(6)式で定まる基底関数である。 φ (xx j , tt j ) is a basis function determined by the following equations (5) and (6).

Figure 0007016706000004
Figure 0007016706000004

(6)式において、H(t)は、ヘビサイド関数である。(6)式は、(1)式に示す1次元非定常熱伝導方程式を満たす基本解の形で表現された式である。尚、基本解とは、温度Tの初期条件がδ関数で表される場合の1次元非定常熱伝導方程式の解(温度T)である。(5)式において、Sは、1次元非定常熱伝導方程式の基本解の拡散プロフィールを調整するパラメータであり、予め設定される。Sは0を上回る値である。 In equation (6), H (t) is a Heaviside function. Equation (6) is an equation expressed in the form of a fundamental solution satisfying the one-dimensional unsteady heat conduction equation shown in equation (1). The fundamental solution is a solution (temperature T) of a one-dimensional unsteady heat conduction equation when the initial condition of the temperature T is expressed by a δ function. In equation (5), S is a parameter for adjusting the diffusion profile of the fundamental solution of the one-dimensional unsteady heat conduction equation, and is set in advance. S is a value exceeding 0.

以上のように、基底関数φ(x-xj,t-tj)は、中心点j(基準位置xjおよび基準時刻tj)を基準とした場合の、1次元非定常熱伝導方程式を満たす基本解の形で表現された関数である。 As described above, the basis function φ (x-x j , t-t j ) is a one-dimensional unsteady heat conduction equation when the center point j (reference position x j and reference time t j ) is used as a reference. It is a function expressed in the form of a satisfying basic solution.

ここで、基底関数φ(x-xj,t-tj)の内外挿温度関数T^(x,t)に対する重みを表す重みベクトルをαとし、その要素をαjとする。重みベクトルαは、基底関数φ(x-xj,t-tj)の内外挿温度関数T^(x,t)に対する影響と、当該基底関数φ(x-xj,t-tj)と異なる他の基底関数φ(x-xj,t-tj)の内外挿温度関数T^(x,t)に対する影響とのバランスで定まる。基底関数φ(x-xj,t-tj)は中心点jごとに存在し、重みベクトルαの要素αjも中心点jごとに存在する。 Here, let α be a weight vector representing the weight of the basis function φ (x−x j , t−t j ) with respect to the internal / external temperature function T ^ (x, t), and let α j be its element. The weight vector α has an effect on the internal / external temperature function T ^ (x, t) of the basis function φ (x-x j , t-t j ) and the basis function φ (x-x j , t-t j ). It is determined by the balance with the influence of other basis functions φ (x-x j , t-t j ) different from the above on the internal / external temperature function T ^ (x, t). The basis function φ (x−x j , t−t j ) exists at each center point j, and the element α j of the weight vector α also exists at each center point j.

以上のように、内外挿温度関数T^(x,t)は、基底関数φ(x-xj,t-tj)および重みベクトルαの要素αjの積の、中心点jのそれぞれにおける値の総和で表される。
重みベクトルαおよびその要素αjは、以下の(7)式~(10)式で表される。
As described above, the internal / external temperature function T ^ (x, t) is the product of the basis function φ (xx j , tt j ) and the element α j of the weight vector α at each of the center points j. It is expressed as the sum of the values.
The weight vector α and its element α j are represented by the following equations (7) to (10).

Figure 0007016706000005
Figure 0007016706000005

(8)式、(10)式において、kは、情報量の定義点を識別する変数であり、1からmまでの整数である(k=1,・・・,m)。sは、情報量の定義点を識別する変数であり、m+1からlまでの整数である(s=m+1,・・・,l)。jは、1からm+lまでの整数である(j=1,・・・,m+l)。
行列Aは、(m+l)×(m+l)行列である。bおよびαは、(m+l)次元列ベクトルである。前述したように、(m+l)は、中心点jの数である。
In Eqs. (8) and (10), k is a variable that identifies the definition point of the amount of information, and is an integer from 1 to m (k = 1, ..., M). s is a variable that identifies the definition point of the amount of information, and is an integer from m + 1 to l (s = m + 1, ... , L ). j is an integer from 1 to m + l (j = 1, ..., m + l).
The matrix A is a (m + l) × (m + l) matrix. b and α are (m + l) dimensional column vectors. As described above, (m + l) is the number of center points j.

(8)式において、A=[]の[]内の「φ(xs-xj,ts-tj)」は、行列Aのk行j列成分を表し、「φ(xs-xj,ts-tj)」は、行列Aのs行j列成分を表す。 In the equation (8), "φ (x s − x j , t s − t j )” in [] of A = [] represents the k-row j-column component of the matrix A, and “φ (x s −”. x j , t s −t j ) ”represents the s row j column component of the matrix A.

b=[]の[]内のobs1kには、(2)式に示すobs1(t)が与えられる。この[]内のobs1kは、行列bのk行成分を表す。また、b=[]の[]内のobs2s-mには、(3)式に示すobs2(t)が与えられる。この[]内のobs2s-mは、行列bのs行成分を表す。 Obs1 (t) represented by the equation (2) is given to obs1 k in [] of b = []. Obs1k in this [] represents the k -row component of the matrix b. Further, obs2 (t) represented by the equation (3) is given to obs2 sm in [] of b = []. The obs2 sm in this [] represents the s row component of the matrix b.

前述したように、kは、情報量の定義点を識別する変数であり、1からmまでの整数である(k=1,・・・,m)。mは、np1×ntで表される。np1は、炉芯周辺炉外側温度計192の位置における中心点jの数である。sは、情報量の定義点を識別する変数であり、m+1からlまでの整数である(s=m+1,・・・,l)。lは、np2×ntで表される。np2は、炉芯周辺炉内側温度計193の位置における中心点jの数である。 As described above, k is a variable that identifies the definition point of the amount of information, and is an integer from 1 to m (k = 1, ..., M). m is represented by n p1 × n t . n p1 is the number of center points j at the position of the furnace outside thermometer 192 around the furnace core. s is a variable that identifies the definition point of the amount of information, and is an integer from m + 1 to l (s = m + 1, ..., L). l is represented by n p2 × n t . n p2 is the number of center points j at the position of the furnace inside thermometer 193 around the furnace core.

(7)式~(10)式は、(1)式の1次元非定常熱伝導方程式、(2)式および(3)式の温度関数(境界条件)、および(4)式の内外挿温度関数を満足するよう、情報量の定義点の情報を、炉芯周辺炉外側温度計192による測定結果(温度、測温位置、および測温時刻)が与えられる(4)式と、炉芯周辺炉内側温度計193による測定結果(温度、測定位置、および測温時刻)が与えられる(4)式の連立方程式に代入して当該連立方程式を解くことにより、重みベクトルαを導出するための式である。連立方程式に代入する前記情報量の定義点の情報には、情報量の定義点の位置、炉芯周辺炉外側温度計192および炉芯周辺炉内側温度計193の温度、炉芯周辺炉外側温度計192および炉芯周辺炉内側温度計193の測温時刻、炉底耐火物(耐火キャスタブル111a)の熱伝導率λ、密度ρ、および比熱Cpが含まれる。炉底耐火物(耐火キャスタブル111a)の熱伝導率λ、密度ρ、および比熱Cpについては、情報量の定義点により異ならせてもよいし、同じにしてもよい。また、連立方程式を解く際には、中心点jの位置も当該連立方程式に代入する。 Equations (7) to (10) are the one-dimensional non-stationary heat conduction equation of equation (1), the temperature function (boundary condition) of equations (2) and (3), and the internal / external temperature of equation (4). In order to satisfy the function, the information of the definition point of the amount of information is given the measurement result (temperature, temperature measurement position, and temperature measurement time) by the furnace outside thermometer 192 around the core, and the equation (4) and the periphery of the core. An equation for deriving the weight vector α by substituting the simultaneous equations of equation (4) given the measurement results (temperature, measurement position, and temperature measurement time) by the furnace inside thermometer 193 and solving the simultaneous equations. Is. The information of the definition point of the information amount to be substituted into the simultaneous equation includes the position of the definition point of the information amount, the temperature of the core peripheral furnace outside thermometer 192 and the core peripheral furnace inside thermometer 193, and the core peripheral furnace outside temperature. The temperature measurement time of the total 192 and the thermometer 193 around the core, the thermal conductivity λ, the density ρ, and the specific heat C p of the refractory refractory (fireproof castable 111a) are included. The thermal conductivity λ, the density ρ, and the specific heat C p of the refractory material (fireproof castable 111a) may be different or the same depending on the definition point of the amount of information. Further, when solving the simultaneous equations, the position of the center point j is also substituted into the simultaneous equations.

第1の逆問題解析部202は、以上のようにして(7)式~(10)式により、重みベクトルα(の要素αj)を導出する。
第1の逆問題解析部202は、温度取得部201から、温度計192、193で測定された温度を取得する度に、以上の処理を行う。これにより、各時刻tにおいて重みベクトルα(の要素αj)が導出される。
The first inverse problem analysis unit 202 derives the weight vector α (element α j ) from the equations (7) to (10) as described above.
The first inverse problem analysis unit 202 performs the above processing every time the temperature measured by the thermometers 192 and 193 is acquired from the temperature acquisition unit 201. As a result, the weight vector α (element α j ) is derived at each time t.

<熱伝達係数導出部203>
熱伝達係数導出部203は、第1の逆問題解析部202により導出された時刻tにおける重みベクトルα(の要素αj)と、炉底耐火物(耐火キャスタブル111a)の熱伝導率λ、密度ρ、および比熱Cpと、基準時刻tjと、中心点jの数m+lと、炉底外壁面におけるx軸の座標x(=0)を(4)式に代入することにより、時刻tにおける炉底外壁面の温度の温度Tvであって、温度計192、193とy軸方向およびz軸方向の位置が同じ位置の温度Tvを導出する。以下の説明では、この温度を必要に応じて炉底外壁面の温度Tvと称する。
<Heat transfer coefficient derivation unit 203>
The heat transfer coefficient derivation unit 203 includes the weight vector α (element α j ) at time t derived by the first inverse problem analysis unit 202, the heat conductivity λ of the fire bottom fireproof material (fireproof castable 111a), and the density. By substituting ρ, the specific heat C p , the reference time t j , the number m + l of the center point j, and the x-axis coordinate x (= 0) on the outer wall surface of the furnace bottom into equation (4), at time t It is the temperature Tv of the temperature of the outer wall surface of the furnace bottom, and derives the temperature Tv at the same positions as the thermometers 192 and 193 in the y-axis direction and the z-axis direction. In the following description, this temperature will be referred to as the temperature Tv of the outer wall surface of the furnace bottom, if necessary.

また、熱伝達係数導出部203は、第1の逆問題解析部202により導出された時刻tにおける重みベクトルα(の要素αj)と、炉底耐火物(耐火キャスタブル111a)の熱伝導率λ、密度ρ、および比熱Cpと、基準時刻tjと、中心点jの数m+lと、炉底外壁面におけるx軸の座標x(=0)を以下の(11)式または(11)'式に代入することにより、時刻tにおける熱流束ベクトルのx軸方向(抜熱方向)成分の値qvであって、炉底外壁面の位置であって、温度計192、193とy軸方向およびz軸方向の位置が同じ位置での熱流束ベクトルのx軸方向(抜熱方向)成分の値qvを導出する。以下の説明では、この熱流束ベクトルのx軸方向(抜熱方向)成分の値を、必要に応じて炉芯周辺炉底外壁面側熱流束と称する。(11) '式において、xは炉底内壁面におけるx軸の座標、△xは炉底内壁面から炉底外壁面側(炉外側)へのx軸方向における微小距離を表し、たとえば、1mm程度の値を設定すればよい。 Further, the heat transfer coefficient derivation unit 203 includes the weight vector α (element α j ) at time t derived by the first inverse problem analysis unit 202 and the thermal conductivity λ of the fire bottom fireproof material (fireproof castable 111a). , Density ρ, and specific heat C p , reference time t j , number m + l of center point j, and x-axis coordinate x (= 0) on the outer wall surface of the furnace bottom by the following equation (11) or (11)' By substituting into the equation, it is the value q v of the x-axis direction (heat extraction direction) component of the heat flux vector at time t, the position of the outer wall surface of the furnace bottom, and the thermometers 192, 193 and the y-axis direction. And the value q v of the x-axis direction (heat extraction direction) component of the heat flux vector at the same position in the z-axis direction is derived. In the following description, the value of the x-axis direction (heat extraction direction) component of this heat flux vector is referred to as a heat flux on the outer wall surface side of the bottom of the furnace core around the furnace core, if necessary. (11)'In the equation, x represents the coordinates of the x-axis on the inner wall surface of the furnace bottom, Δx represents the minute distance in the x-axis direction from the inner wall surface of the furnace bottom to the outer wall surface side of the furnace bottom (outside the furnace), for example, 1 mm. You can set the value of the degree.

Figure 0007016706000006
Figure 0007016706000006

熱伝達係数導出部203は、第1の逆問題解析部202により重みベクトルα(の要素αj)が導出されるたびに、温度取得部201から取得された温度計192、193で測定された温度を用いて、以上の処理を行う。これにより、各時刻tにおける炉芯周辺炉底外壁面側熱流束qv(t)と、各時刻tにおける炉底外壁面の温度Tv(t)とが導出される。 The heat transfer coefficient derivation unit 203 was measured by the thermometers 192 and 193 acquired from the temperature acquisition unit 201 each time the weight vector α (element α j ) was derived by the first inverse problem analysis unit 202. The above processing is performed using the temperature. As a result, the heat flux q v (t) on the outer wall surface of the furnace bottom around the furnace core at each time t and the temperature T v (t) of the outer wall surface of the furnace bottom at each time t are derived.

そして、熱伝達係数導出部203は、時刻tにおける炉芯周辺炉底外壁面側熱流束qv(t)と、時刻tにおける炉底外壁面の温度Tv(t)と、時刻tにおける空冷温度Ta(t)とを以下の(12)式に代入することにより、時刻tにおける炉底耐火物(耐火キャスタブル111a)と流通経路171の内部を流れる空気との間の熱伝達係数であって、温度計192、193とy軸方向およびz軸方向の位置が同じ位置での熱伝達係数ha(t)[W/(m2・K)]を導出する。以下の説明では、この熱伝達係数を、必要に応じて炉底熱伝達係数と称する。 Then, the heat transfer coefficient derivation unit 203 includes the heat flux q v (t) on the outer wall surface of the furnace bottom around the core at time t, the temperature T v (t) of the outer wall surface of the furnace bottom at time t, and air cooling at time t. By substituting the temperature T a (t) into the following equation (12), it is the heat transfer coefficient between the fire bottom fire resistant material (fire resistant castable 111a) and the air flowing inside the flow path 171 at time t. Then, the heat transfer coefficient h a (t) [W / (m 2 · K)] at the same position in the y-axis direction and the z-axis direction as the thermometers 192 and 193 is derived. In the following description, this heat transfer coefficient will be referred to as a furnace bottom heat transfer coefficient, if necessary.

Figure 0007016706000007
Figure 0007016706000007

ここで、時刻tにおける空冷温度Ta(t)は、以下の(13)式で表される。 Here, the air cooling temperature T a (t) at time t is expressed by the following equation (13).

Figure 0007016706000008
Figure 0007016706000008

(13)式において、Tc(t)は、下流側温度計182で測定された時刻tにおける流通経路171の内部を流れる空気の温度である。Th(t)は、上流側温度計181で測定された時刻tにおける流通経路171の内部を流れる空気の温度である。このように本実施形態では、空冷温度Ta(t)が、炉本体111よりも上流側の所定の位置において流通経路171の内部を流れる空気の温度と、炉本体111よりも下流側の所定の位置において流通経路171の内部を流れる空気の温度との算術平均値で表される場合を例に挙げる。 In the equation (13), T c (t) is the temperature of the air flowing inside the distribution path 171 at the time t measured by the downstream thermometer 182. Th (t) is the temperature of the air flowing inside the distribution path 171 at time t measured by the upstream thermometer 181. As described above, in the present embodiment, the air cooling temperature T a (t) is the temperature of the air flowing inside the flow path 171 at a predetermined position on the upstream side of the furnace body 111 and the predetermined temperature on the downstream side of the furnace body 111. The case where it is expressed by the arithmetic mean value with the temperature of the air flowing inside the flow path 171 at the position of is taken as an example.

熱伝達係数導出部203は、炉芯周辺炉底外壁面側熱流束qvおよび炉底外壁面の温度Tvを導出する度に、温度取得部201により取得された温度計181、182における測定温度を用いて以上の処理を行う。これにより、各時刻tにおける炉底熱伝達係数haが導出される。 The heat transfer coefficient derivation unit 203 measures the thermometers 181 and 182 acquired by the temperature acquisition unit 201 each time the heat flux q v on the outer wall surface side of the furnace bottom around the core and the temperature T v of the outer wall surface of the furnace bottom are derived. Perform the above processing using temperature. As a result, the bottom heat transfer coefficient ha at each time t is derived.

<第2の逆問題解析部204>
(1)式の1次元非定常熱伝導方程式を解くためには、2つの境界条件が必要である。炉芯101に配置される温度計は炉芯温度計191だけである。従って、炉底内壁面の位置であって、炉芯温度計191とy軸方向およびz軸方向の位置が同じ位置における熱流束ベクトルのx軸方向(抜熱方向)成分の値を(1)式により解くために、(2)式および(3)式のような温度関数(温度についての境界条件)だけでは、境界条件が足りない。
<Second inverse problem analysis unit 204>
Two boundary conditions are required to solve the one-dimensional unsteady heat conduction equation in Eq. (1). The only thermometer arranged in the furnace core 101 is the furnace core thermometer 191. Therefore, the value of the x-axis direction (heat extraction direction) component of the heat flux vector at the position of the inner wall surface of the furnace bottom at the same position as the furnace core thermometer 191 in the y-axis direction and the z-axis direction is (1). In order to solve by the equation, the boundary condition is not enough only by the temperature function (boundary condition about temperature) as in the equations (2) and (3).

前述したように、本発明者らは、炉底耐火物(耐火キャスタブル111a)と流通経路171の内部を流れる空気との間の熱伝達係数は、y軸方向およびz軸方向の位置が温度計192、193と同じ位置においても、炉芯温度計191と同じ位置においてもそれほど変わらないという知見を得た。このことから、本発明者らは、各時刻tにおける炉底熱伝達係数haを用いて、炉底外壁面の位置であって、y軸方向およびz軸方向の位置が炉芯温度計191と同じ位置における境界条件を定めればよいと考えた。以下に、このことに基づく第2の逆問題解析部204における処理の一例を説明する。尚、以下の第2の逆問題解析部204の説明において、<第1の逆問題解析部202>の項で説明したのと同一の部分については、詳細な説明を省略する。 As described above, the present inventors have determined that the heat transfer coefficient between the fire bottom refractory (fireproof castable 111a) and the air flowing inside the flow path 171 is a thermometer at positions in the y-axis direction and the z-axis direction. It was found that there is not much difference between the same position as 192 and 193 and the same position as the furnace core thermometer 191. From this, the present inventors use the furnace bottom heat transfer coefficient ha at each time t, and the positions of the outer wall surface of the furnace bottom in the y-axis direction and the z-axis direction are the furnace core thermometers 191. I thought that it would be better to set the boundary condition at the same position as. Hereinafter, an example of processing in the second inverse problem analysis unit 204 based on this will be described. In the following description of the second inverse problem analysis unit 204, detailed description of the same parts as those described in the section <1st inverse problem analysis unit 202> will be omitted.

第2の逆問題解析部204では、内外挿温度関数T^(x,t)を、温度計191とy軸方向およびz軸方向の位置が同じ位置における炉底耐火物の抜熱方向(x軸方向)の1次元の領域の温度分布の時間変化を予測する数式として用いる。
第2の逆問題解析部204は、(1)式の1次元非定常熱伝導方程式を解くための境界条件として(2)式および(3)式に代えて、以下の(14)式および(15)式を用いる。
In the second inverse problem analysis unit 204, the internal / external temperature function T ^ (x, t) is set in the heat removal direction (x) of the fire bottom refractory material at the same positions in the y-axis direction and the z-axis direction as the thermometer 191. It is used as a formula for predicting the time change of the temperature distribution in the one-dimensional region (in the axial direction).
The second inverse problem analysis unit 204 replaces equations (2) and (3) with the following equations (14) and (as boundary conditions for solving the one-dimensional unsteady heat conduction equation of equation (1). 15) Equation is used.

Figure 0007016706000009
Figure 0007016706000009

(14)式は、炉底外壁面における熱流束のつり合いを示す式である。すなわち、(14)式は、以下の第1の熱流束と第2の熱流束とが等しいことを示す式である。第1の熱流束は、炉底外壁面における炉底耐火物の抜熱方向(x軸方向)の温度勾配と、炉底耐火物(耐火キャスタブル111a)の熱伝導率λとに基づく熱流束である。第2の熱流束は、炉底外壁面における温度T(1,t)と空冷温度Taとの差と、炉底耐火物(耐火キャスタブル111a)と流通経路171の内部を流れる空気との間の熱伝達係数haとに基づく熱流束である。 Equation (14) is an equation showing the balance of heat flux on the outer wall surface of the furnace bottom. That is, the equation (14) is an equation showing that the following first heat flux and the second heat flux are equal to each other. The first heat flux is a heat flux based on the temperature gradient of the refractory refractory in the heat removal direction (x-axis direction) on the outer wall surface of the refractory and the thermal conductivity λ of the refractory refractory (fireproof castable 111a). be. The second heat flux is between the difference between the temperature T (1, t) and the air cooling temperature Ta on the outer wall surface of the furnace bottom, and between the refractory material (refractory 111a) at the bottom and the air flowing inside the flow path 171. It is a heat flux based on the heat transfer coefficient h a of.

(15)式において、x3 *は、炉芯温度計191のx軸の座標である。obs3(t)は、時刻tにおいて炉芯温度計191で測定される温度である。T3(x3 *,t)は、炉芯温度計191で測定される温度を示す関数であって、炉芯温度計191のx軸の座標x3 *および時刻tの関数である。x3 *∈[0,1]は、炉芯温度計191のx軸の座標x3 *を、[0,1]で正規化していることを示す。すなわち、炉底耐火物の炉底内壁面におけるx軸の座標が「1」、炉底外壁面におけるx軸の座標が「0」になるように、炉芯温度計191のx軸の座標を定める。 In equation (15), x 3 * is the coordinates of the x-axis of the furnace core thermometer 191. obs3 (t) is the temperature measured by the furnace core thermometer 191 at time t. T 3 (x 3 * , t) is a function indicating the temperature measured by the core thermometer 191 and is a function of the x-axis coordinates x 3 * of the core thermometer 191 and the time t. x 3 * ∈ [0, 1] indicates that the x-axis coordinate x 3 * of the core thermometer 191 is normalized by [0, 1]. That is, the x-axis coordinates of the furnace core thermometer 191 are set so that the x-axis coordinates on the inner wall surface of the furnace bottom refractory are "1" and the x-axis coordinates on the outer wall surface of the furnace bottom are "0". stipulate.

第2の逆問題解析部204では、(14)式を境界条件として用いる。このため、第2の逆問題解析部204は、(7)式における行列Aとして以下の(16)式を、(m+l)次元列ベクトルbとして以下の(17)式をそれぞれ用いる。 In the second inverse problem analysis unit 204, the equation (14) is used as a boundary condition. Therefore, the second inverse problem analysis unit 204 uses the following equation (16) as the matrix A in the equation (7) and the following equation (17) as the (m + l) dimensional column vector b.

Figure 0007016706000010
Figure 0007016706000010

(16)式において、A=[]の[]内の「λ∂φ/∂x(xk-xj,tk-tj)+haφ(xk-xj,tk-tj)は、行列Aのk行j列成分を表し、「φ(xs-xj,ts-tj)」は、行列Aのs行j列成分を表す。 In equation (16), "λ ∂φ / ∂x (x k -x j , tk-t j ) + ha φ ( x k -x j , tk-t j ) in [] of A = []. ) Represents the k-row-j-column component of the matrix A, and "φ (x s -x j , t s -t j )" represents the s-row-j column component of the matrix A.

b=[]の[]内のgkには、以下の(18)式に示すg(t)が与えられる。この[]内のgkは、行列bのk行成分を表す。また、b=[]の[]内のobs3s-mには、(15)式に示すobs3(t)が与えられる。この[]内のobs3s-mは、行列bのs行成分を表す。 g (t) shown in the following equation (18) is given to g k in [] of b = []. G k in this [] represents the k-row component of the matrix b. Further, obs3 (t) represented by the equation (15) is given to obs3 sm in [] of b = []. The obs3 sm in this [] represents the s row component of the matrix b.

Figure 0007016706000011
Figure 0007016706000011

ここで、mは、np3×ntで表され、lは、np4×ntで表される。
p3は、炉底外壁面における中心点jの数である。炉底外壁面(炉底外壁面の位置であって、y軸方向およびz軸方向の位置が炉芯温度計191と同じ位置)における中心点jの数は、内外挿温度関数T^(x,t)が(14)式を満足するように設定される。np4は、炉芯温度計191の位置である。炉芯温度計191の位置は、内外挿温度関数T^(x,t)が(15)式を満足するように設定される。ntは、時刻の数である。この時刻は、内外挿温度関数T^(x,t)が(14)式および(15)式を満たすように設定される。以上のようにmは、炉底外壁面における位置と時刻とにより定まる中心点jの数である。また、lは、炉芯温度計191の位置と時刻とにより定まる中心点jの数である。
Here, m is represented by n p3 × n t , and l is represented by n p4 × n t .
n p3 is the number of center points j on the outer wall surface of the furnace bottom. The number of center points j on the outer wall surface of the furnace bottom (the position of the outer wall surface of the furnace bottom and the positions in the y-axis direction and the z-axis direction are the same as those of the furnace core thermometer 191) is the internal / external temperature function T ^ (x). , T) is set so as to satisfy the equation (14). n p4 is the position of the furnace core thermometer 191. The position of the furnace core thermometer 191 is set so that the internal / external temperature function T ^ (x, t) satisfies the equation (15). n t is the number of times. This time is set so that the internal / external temperature function T ^ (x, t) satisfies the equations (14) and (15). As described above, m is the number of center points j determined by the position and time on the outer wall surface of the furnace bottom. Further, l is the number of center points j determined by the position and time of the furnace core thermometer 191.

図4は、第2の逆問題解析部204における非定常伝熱逆問題の座標系の一例を示す図である。図4では、空間x-時刻tの2次元断面上の情報量の定義点を示す。図4は、2次元座標(空間x-時刻tの座標)の2次元断面を表したものである。 FIG. 4 is a diagram showing an example of the coordinate system of the unsteady heat transfer inverse problem in the second inverse problem analysis unit 204. FIG. 4 shows a definition point of an amount of information on a two-dimensional cross section of space x-time t. FIG. 4 shows a two-dimensional cross section of two-dimensional coordinates (coordinates of space x-time t).

図4において、x軸は、炉底内壁面をx=0とする軸であり、炉底耐火物の抜熱方向の位置を示す。t軸は、時間軸である。
図4において、白丸で示すプロットは、それぞれ、情報量の定義点である。この白丸で示す情報量の定義点は、炉底外壁面の位置であって、炉芯温度計191とy軸方向およびz軸方向の位置が同じ位置と、当該位置における熱流束を推定する時刻とを示す。本実施形態では、炉芯101に配置される温度計は炉芯温度計191だけである。そこで、この白丸で示す定義点の情報量を、炉底熱伝達係数haとする。
In FIG. 4, the x-axis is an axis in which the inner wall surface of the furnace bottom is x = 0, and indicates the position of the refractory material in the furnace bottom in the heat removal direction. The t-axis is a time axis.
In FIG. 4, the plots indicated by white circles are the definition points of the amount of information, respectively. The definition point of the amount of information indicated by this white circle is the position of the outer wall surface of the bottom of the furnace, the position where the position in the y-axis direction and the position in the z-axis direction is the same as that of the furnace core thermometer 191 and the time when the heat flux at that position is estimated. And. In the present embodiment, the only thermometer arranged in the furnace core 101 is the furnace core thermometer 191. Therefore, the amount of information at the definition point indicated by the white circle is defined as the furnace bottom heat transfer coefficient ha .

黒丸で示すプロットも、それぞれ、情報量の定義点である。この黒丸で示す情報量の定義点は、炉芯温度計191の位置と、炉芯温度計191で温度が測定された時刻とを示す。
白丸で示す定義点における情報量には、炉底熱伝達係数ha、炉底熱伝達係数haの推定時刻、炉底耐火物(耐火キャスタブル111a)の熱伝導率λ、密度ρ、および比熱Cpが含まれる。黒丸で示す定義点における情報量には、炉芯温度計191の温度、炉芯温度計191の測温時刻、炉底耐火物(耐火キャスタブル111a)の熱伝導率λ、密度ρ、および比熱Cpが含まれる。炉底耐火物(耐火キャスタブル111a)の熱伝導率λ、密度ρ、および比熱Cpについては、情報量の定義点により異ならせてもよいし、同じにしてもよい。
The plots shown by black circles are also the definition points of the amount of information. The definition points of the amount of information indicated by the black circles indicate the position of the core thermometer 191 and the time when the temperature was measured by the core thermometer 191.
The amount of information at the definition points indicated by white circles includes the bottom heat transfer coefficient h a , the estimated time of the bottom heat transfer coefficient h a , the thermal conductivity λ of the refractory refractory (fireproof castable 111a), the density ρ, and the specific heat. C p is included. The amount of information at the definition points indicated by black circles includes the temperature of the core thermometer 191, the temperature measurement time of the core thermometer 191, the thermal conductivity λ of the refractory refractory (fireproof castable 111a), the density ρ, and the specific heat C. p is included. The thermal conductivity λ, the density ρ, and the specific heat C p of the refractory material (fireproof castable 111a) may be different or the same depending on the definition point of the amount of information.

図4において、タイミングtNは、炉芯温度計191で最新の温度が測定されたタイミングである。図4では、炉芯温度計191で測定された温度が取得されるたびに、新しいものから順に8個の温度測定タイミング(タイミングtO~tNの8つのタイミング)を、情報量の定義点を定める時刻tとして採用する場合を例に挙げて説明する。すなわち、第2の逆問題解析部204は、新たに炉芯温度計191で測定された温度が取得されると、8個の温度測定タイミングのうち、最も古い温度測定タイミングを含む2この情報量の定義点を16(8×2)個の情報量の定義点から除外する。そして、第2の逆問題解析部204は、最新の温度測定タイミングを含む2個の情報量の定義点を16個の情報量の定義点に加える。尚、情報量の定義点を定める時刻tの数は、8つに限定されない。 In FIG. 4, the timing t N is the timing at which the latest temperature is measured by the furnace core thermometer 191. In FIG. 4, each time the temperature measured by the furnace core thermometer 191 is acquired, eight temperature measurement timings (eight timings from timing t O to t N ) are set in order from the newest to the definition point of the amount of information. This will be described by taking as an example the case where the time t is adopted. That is, when the temperature newly measured by the core thermometer 191 is newly acquired, the second inverse problem analysis unit 204 includes 2 of the 8 temperature measurement timings, which is the oldest temperature measurement timing. Is excluded from the definition points of 16 (8 × 2) information quantities. Then, the second inverse problem analysis unit 204 adds the definition points of the two information amounts including the latest temperature measurement timing to the definition points of the 16 information amounts. The number of time t that defines the definition point of the amount of information is not limited to eight.

第2の逆問題解析部204は、以上の情報量の定義点における情報量に基づいて、内外挿温度関数T^(x,t)に含まれる重みベクトル(の要素αj)を、(7)式、(9)式、(16)式、および(17)式により導出する。 The second inverse problem analysis unit 204 converts the weight vector (element α j ) included in the internal / external temperature function T ^ (x, t) into (7) based on the amount of information at the definition point of the above amount of information. ), (9), (16), and (17).

(7)式、(9)式、(16)式、および(17)式は、(1)式の1次元非定常熱伝導方程式、(14)式の境界条件、(15)式の温度関数(境界条件)、および(4)式の内外挿温度関数を満足するよう、情報量の定義点の情報を、炉芯温度計191による測定結果(温度、測温位置、および測温時刻)が与えられる(4)式と、(14)式の連立方程式に代入して当該連立方程式を解くことにより、重みベクトルαを導出するための式である。前述したように、連立方程式に代入する前記情報量の定義点の情報には、情報量の定義点の位置、炉底熱伝達係数ha、炉底熱伝達係数haの推定時刻、炉芯温度計191の温度、炉芯温度計191の測温時刻、炉底耐火物(耐火キャスタブル111a)の熱伝導率λ、密度ρ、および比熱Cpが含まれる。また、連立方程式を解く際には、中心点jの位置も当該連立方程式に代入する。
第2の逆問題解析部204は、温度取得部201から、炉芯温度計191で測定された温度を取得する度に、以上の処理を行う。これにより、各時刻tにおいて重みベクトルα(の要素αj)が導出される。
Equations (7), (9), (16), and (17) are the one-dimensional non-stationary heat conduction equation of equation (1), the boundary condition of equation (14), and the temperature function of equation (15). (Boundary condition) and the information of the definition point of the amount of information so as to satisfy the internal / external temperature function of the equation (4), the measurement result (temperature, temperature measurement position, and temperature measurement time) by the core thermometer 191 It is an equation for deriving the weight vector α by substituting the given equations (4) and (14) into the simultaneous equations and solving the simultaneous equations. As described above, the information of the definition point of the information amount to be substituted into the simultaneous equation includes the position of the definition point of the information amount, the bottom heat transfer coefficient h a , the estimated time of the bottom heat transfer coefficient h a , and the core. It includes the temperature of the thermometer 191 and the temperature measurement time of the core thermometer 191, the thermal conductivity λ of the fire bottom fireproof material (fireproof castable 111a), the density ρ, and the specific heat C p . Further, when solving the simultaneous equations, the position of the center point j is also substituted into the simultaneous equations.
The second inverse problem analysis unit 204 performs the above processing every time the temperature measured by the furnace core thermometer 191 is acquired from the temperature acquisition unit 201. As a result, the weight vector α (element α j ) is derived at each time t.

<熱流束・壁面位置導出部205>
サブマージドアーク炉100を使用すると、炉底耐火物の溶損等により、炉底内壁面のx軸の座標が変化する。そこで、本実施形態では、内外挿温度関数T^(x,t)が溶銑142の温度と等しくなるときの炉底耐火物のx軸の座標を炉底内壁面のx軸の座標とする。このことから、熱流束・壁面位置導出部205は、第1の逆問題解析部202により導出された時刻tにおける重みベクトルα(の要素αj)と、炉底耐火物(耐火キャスタブル111a)の熱伝導率λ、密度ρ、および比熱Cpと、基準時刻tjと、中心点jの数m+lと、温度取得部201により取得された溶銑温度計183における時刻tでの測定温度(溶銑142の温度)を(4)式に代入し、(4)式の内外挿温度関数T^(x,t)が溶銑142の温度と等しくなるときの炉底耐火物のx軸の座標を、炉底内壁面のx軸の座標として導出する。尚、本実施形態のように、溶銑142の温度を溶銑温度計183で測定される温度とすれば、溶銑142の温度の精度を高めることができるので好ましいが、必ずしもこのようにする必要はない。例えば、溶銑142の温度として想定される予め設定された温度を溶銑142の温度として用いてもよい。
<Heat flux / wall position derivation unit 205>
When the submerged arc furnace 100 is used, the coordinates of the x-axis of the inner wall surface of the furnace bottom change due to melting damage of the refractory material at the bottom of the furnace. Therefore, in the present embodiment, the x-axis coordinates of the fire bottom refractory when the internal / external temperature function T ^ (x, t) becomes equal to the temperature of the hot metal 142 are set as the x-axis coordinates of the inner wall surface of the furnace bottom. From this, the heat flow flux / wall surface position derivation unit 205 has the weight vector α (element α j ) at time t derived by the first inverse problem analysis unit 202 and the fire bottom fireproof material (fireproof castable 111a). Thermal conductivity λ, density ρ, specific heat C p , reference time t j , number m + l of center point j, and temperature measured at time t by the hot metal thermometer 183 acquired by the temperature acquisition unit 201 (hot metal 142). (Temperature) is substituted into Eq. (4), and the x-axis coordinates of the bottom fireproof material when the internal / external temperature function T ^ (x, t) in Eq. Derived as the x-axis coordinates of the bottom inner wall surface. If the temperature of the hot metal 142 is set to the temperature measured by the hot metal thermometer 183 as in the present embodiment, it is preferable because the accuracy of the temperature of the hot metal 142 can be improved, but it is not always necessary to do so. .. For example, a preset temperature assumed as the temperature of the hot metal 142 may be used as the temperature of the hot metal 142.

また、熱流束・壁面位置導出部205は、第2の逆問題解析部204により導出された時刻tにおける重みベクトルα(の要素αj)と、炉底耐火物(耐火キャスタブル111a)の熱伝導率λ、密度ρ、および比熱Cpと、基準時刻tjと、中心点jの数m+lと、内外挿温度関数T^(x,t)が溶銑142の温度と等しくなるときの炉底耐火物のx軸の座標を(11)式に代入することにより、炉底内壁面の位置であって、y軸方向およびz軸方向の位置が温度計191と同じ位置での熱流束ベクトルのx軸方向(抜熱方向)成分の値qvを導出する。このようにして、各時刻tにおいて、炉底内壁面の位置であって、y軸方向およびz軸方向の位置が温度計191と同じ位置での熱流束ベクトルのx軸方向(抜熱方向)成分の値qvが得られる。以下の説明では、この熱流束ベクトルのx軸方向(抜熱方向)成分の値qvを必要に応じて炉芯炉底内壁面側熱流束qvと称する。 Further, the heat flux / wall surface position derivation unit 205 has the weight vector α (element α j ) at time t derived by the second inverse problem analysis unit 204 and the heat conduction of the fire bottom fireproof material (fireproof castable 111a). Bottom fire resistance when rate λ, density ρ, specific heat C p , reference time t j , number m + l of center point j, and internal / external temperature function T ^ (x, t) become equal to the temperature of hot metal 142 By substituting the x-axis coordinates of the object into Eq. (11), the x of the heat flux vector at the position of the inner wall surface of the furnace bottom, where the positions in the y-axis direction and the z-axis direction are the same as those of the thermometer 191. The value q v of the axial (heat removal direction) component is derived. In this way, at each time t, the position of the inner wall surface of the furnace bottom in the y-axis direction and the z-axis direction is the same as that of the thermometer 191 in the x-axis direction (heat extraction direction) of the heat flux vector. The value q v of the component is obtained. In the following description, the value q v of the x-axis direction (heat extraction direction) component of this heat flux vector is referred to as the heat flux q v on the inner wall surface side of the furnace core, if necessary.

以上のように熱流束・壁面位置導出部205は、各時刻tにおいて、(4)式の内外挿温度関数T^(x,t)が溶銑142の温度と等しくなるときの炉底耐火物のx軸の座標を導出する。前述したように、本実施形態では、炉底耐火物が耐火キャスタブル111aのみから構成されるものとして1次元非定常熱伝導方程式を構築する。従って、(4)式の内外挿温度関数T^(x,t)が溶銑142の温度と等しくなるときの炉底耐火物のx軸の座標は、炉底耐火物が耐火キャスタブル111aのみから構成されるものと仮定した場合の、炉底内壁面のx軸の座標になる。 As described above, the heat flux / wall surface position derivation unit 205 is the bottom refractory material when the internal / external temperature function T ^ (x, t) in Eq. (4) becomes equal to the temperature of the hot metal 142 at each time t. Derive the x-axis coordinates. As described above, in the present embodiment, the one-dimensional unsteady heat conduction equation is constructed assuming that the refractory at the bottom of the fire is composed only of the refractory castable 111a. Therefore, the x-axis coordinates of the bottom refractory when the internal / external temperature function T ^ (x, t) in Eq. (4) becomes equal to the temperature of the hot metal 142 are such that the bottom refractory consists of only the fireproof castable 111a. It is the x-axis coordinate of the inner wall surface of the furnace bottom, assuming that the temperature is increased.

そこで、熱流束・壁面位置導出部205は、(4)式の内外挿温度関数T^(x,t)が溶銑142の温度と等しくなるときの炉底耐火物のx軸の座標の時系列的な変化を導出することにより、炉底内壁面のx軸の座標の相対的な変化を得ることができる。また、熱流束・壁面位置導出部205は、(4)式の内外挿温度関数T^(x,t)が溶銑142の温度と等しくなるときの炉底耐火物のx軸の座標と炉底内壁面のx軸の座標の基準値との比較を行うことによっても、炉底内壁面のx軸の座標の相対的な変化を得ることができる。尚、炉底内壁面のx軸の座標の基準値は、サブマージドアーク炉100の炉底内壁面が新品のときと変化がない場合であって、(4)式の内外挿温度関数T^(x,t)が溶銑142の温度と等しくなる場合の炉底耐火物のx軸の座標である。 Therefore, the heat flux / wall surface position derivation unit 205 is a time series of the x-axis coordinates of the fire bottom refractory when the internal / external temperature function T ^ (x, t) in Eq. (4) becomes equal to the temperature of the hot metal 142. By deriving the change, the relative change of the x-axis coordinates of the inner wall surface of the furnace bottom can be obtained. In addition, the heat flux / wall surface position derivation unit 205 has the x-axis coordinates of the fire bottom refractory and the bottom when the internal / external temperature function T ^ (x, t) in Eq. (4) becomes equal to the temperature of the hot metal 142. The relative change of the x-axis coordinates of the inner wall surface of the furnace bottom can also be obtained by comparing with the reference value of the x-axis coordinates of the inner wall surface. The reference value of the x-axis coordinates of the inner wall surface of the furnace bottom is the case where the inner wall surface of the furnace bottom of the submerged arc furnace 100 is the same as when it is new, and the internal / external temperature function T ^ of the equation (4). (X, t) is the x-axis coordinate of the fire bottom refractory when the temperature of the hot metal 142 becomes equal.

ただし、以上のようにすると、炉底内壁面の位置そのものの情報が得られない。
そこで、本実施形態では、熱流束・壁面位置導出部205は、以下のようにして、炉底耐火物を構成する耐火キャスタブル111a、パーマ煉瓦111b、ウェア煉瓦A111c、およびウェア煉瓦B111dの境界の位置(x軸の座標)と、抜熱方向(x軸方向)の長さ(厚み)と、炉底内壁面の位置(x軸の座標)とを導出する。尚、これらのx軸の座標は、炉芯101の位置でのx軸の座標であるものとし、抜熱方向(x軸方向)の長さは、炉芯101の位置での抜熱方向(x軸方向)の長さであるものとする。また、(1)式に示すようにx軸の座標は、[0,1]で正規化されるが、正規化されたx軸の座標に前述した相当長を乗算することにより、実際の座標に変換されているものとする。
However, if the above is done, the information on the position of the inner wall surface of the furnace bottom itself cannot be obtained.
Therefore, in the present embodiment, the heat flow flux / wall surface position derivation unit 205 is used to position the boundary between the fireproof castable 111a, the perm brick 111b, the wear brick A111c, and the wear brick B111d constituting the refractory fireproof material as follows. (X-axis coordinates), the length (thickness) in the heat removal direction (x-axis direction), and the position of the inner wall surface of the furnace bottom (x-axis coordinates) are derived. It should be noted that these x-axis coordinates are the x-axis coordinates at the position of the furnace core 101, and the length in the heat removal direction (x-axis direction) is the heat removal direction at the position of the furnace core 101 (the x-axis direction). It shall be the length in the x-axis direction). Further, as shown in the equation (1), the coordinates of the x-axis are normalized by [0,1], but the actual coordinates are obtained by multiplying the normalized x-axis coordinates by the above-mentioned equivalent length. It is assumed that it has been converted to.

まず、ウェア煉瓦B111dの炉底外壁面側の端(ウェア煉瓦B111dとウェア煉瓦A111cとの境界)の位置のx軸の座標x4_1は、以下の(19)式で表される。ウェア煉瓦A111cの炉底外壁面側の端(ウェア煉瓦A111cとパーマ煉瓦111bとの境界)の位置のx軸の座標x3_1は、以下の(20)式で表される。パーマ煉瓦111bの炉底外壁面側の端(パーマ煉瓦111bと耐火キャスタブル111aとの境界)の位置のx軸の座標x2_1は、以下の(21)式で表される。 First, the x-axis coordinates x 4_1 at the position of the end of the ware brick B111d on the outer wall surface side of the furnace bottom (the boundary between the ware brick B111d and the ware brick A111c) are expressed by the following equation (19). The x-axis coordinates x 3_1 at the position of the end of the ware brick A111c on the outer wall surface side of the furnace bottom (the boundary between the ware brick A111c and the perm brick 111b) are expressed by the following equation (20). The x-axis coordinates x 2_1 at the position of the end of the perm brick 111b on the outer wall surface side of the furnace bottom (the boundary between the perm brick 111b and the refractory castable 111a) are expressed by the following equation (21).

Figure 0007016706000012
Figure 0007016706000012

ここで、x4_nは、炉底内壁面のx軸の座標の基準値(サブマージドアーク炉100の炉底内壁面が新品のときと変化がないときに導出された、(4)式の内外挿温度関数T^(x,t)が溶銑142の温度と等しくなるときの炉底耐火物のx軸の座標)である。λ1は、耐火キャスタブル111aの熱伝導率であり、λ2は、パーマ煉瓦111bの熱伝導率であり、λ3は、ウェア煉瓦A111cの熱伝導率であり、λ4は、ウェア煉瓦B111dの熱伝導率である。L41は、新品のウェア煉瓦B111dの抜熱方向(x軸方向)の長さであり、L31は、新品のウェア煉瓦A111cの抜熱方向(x軸方向)の長さであり、L21は、新品のパーマ煉瓦111bの抜熱方向(x軸方向)の長さである。 Here, x 4_n is derived from the reference value of the x-axis coordinate of the inner wall surface of the furnace bottom (inside and outside of equation (4), which is derived when the inner wall surface of the bottom of the submerged arc furnace 100 is new and unchanged. It is the x-axis coordinate of the fire bottom refractory when the temperature insertion function T ^ (x, t) becomes equal to the temperature of the hot metal 142). λ 1 is the thermal conductivity of the fireproof castable 111a, λ 2 is the thermal conductivity of the perm brick 111b, λ 3 is the thermal conductivity of the wear brick A111c, and λ 4 is the thermal conductivity of the wear brick B111d. Thermal conductivity. L 41 is the length of the new wear brick B111d in the heat removal direction (x-axis direction), and L 31 is the length of the new wear brick A111c in the heat removal direction (x-axis direction). Is the length in the heat removal direction (x-axis direction) of the new perm brick 111b.

サブマージドアーク炉100の操業の合間の炉内への原料等の装入が行われていない状態で炉底の炉内側の表面のx軸の座標が測定される。炉底の炉内側の表面のx軸の座標の測定の方法は特に限定されないが、例えば、レーザ距離計等を用いることにより実現される。この他、先端からの距離を示す目盛が付されている測定棒を炉内に挿入し、測定棒の先端が炉底の炉内側の表面に到達したときの目盛を読み取ることによっても、炉底の炉内側の表面のx軸の座標を測定することができる。このようにして現在の時刻tまでに測定されている炉底内壁面のx軸の座標のうちの最低値をxminとする。そうすると、時刻tでのウェア煉瓦B111dの抜熱方向(x軸方向)の長さ(厚み)l4、時刻tでのウェア煉瓦A111cの抜熱方向(x軸方向)の長さ(厚み)l3、時刻tでのパーマ煉瓦111bの抜熱方向(x軸方向)の長さ(厚み)l2は、以下の(22)式~(24)式で表される。尚、ここでは、耐火キャスタブル111aの抜熱方向(x軸方向)の長さ(厚み)は新品の状態から変化しないものとする。 The x-axis coordinates of the surface inside the furnace bottom are measured in a state where raw materials and the like are not charged into the furnace during the operation of the submerged arc furnace 100. The method of measuring the x-axis coordinates of the surface inside the furnace bottom is not particularly limited, but it is realized by using, for example, a laser range finder or the like. In addition, a measuring rod with a scale indicating the distance from the tip is inserted into the furnace, and the scale when the tip of the measuring rod reaches the inner surface of the furnace bottom can be read. The x-axis coordinates of the surface inside the furnace can be measured. Let x min be the lowest value among the x-axis coordinates of the inner wall surface of the furnace bottom measured by the current time t in this way. Then, the length (thickness) l 4 of the wear brick B111d in the heat removal direction (x-axis direction) at time t, and the length (thickness) l of the wear brick A111c in the heat removal direction (x-axis direction) at time t. 3. The length (thickness) l 2 in the heat removal direction (x-axis direction) of the perm brick 111b at time t is represented by the following equations (22) to (24). Here, it is assumed that the length (thickness) of the refractory castable 111a in the heat removal direction (x-axis direction) does not change from the new state.

Figure 0007016706000013
Figure 0007016706000013

(22)式は、炉底内壁面のx軸の座標の最低値xminが、ウェア煉瓦B111dの炉底外壁面側の端の位置のx軸の座標x4_1以上である場合の各長さl4、l3、l2を表す。(23)式は、炉底内壁面のx軸の座標の最低値xminが、ウェア煉瓦A111cの炉底外壁面側の端の位置のx軸の座標x3_1以上、ウェア煉瓦B111dの炉底外壁面側の端の位置のx軸の座標x4_1未満である場合の各長さl4、l3、l2を表す。(24)式は、炉底内壁面のx軸の座標の最低値xminが、パーマ煉瓦111bの炉底外壁面側の端の位置のx軸の座標x2_1以上、ウェア煉瓦A111cの炉底外壁面側の端の位置のx軸の座標x3_1未満である場合の各長さl4、l3、l2を表す。 In the equation (22), the minimum value x min of the x-axis coordinate of the inner wall surface of the furnace bottom is equal to or more than the x-axis coordinate x 4_1 of the position of the end of the ware brick B111d on the outer wall surface side of the furnace bottom. Represents l 4 , l 3 , and l 2 . In equation (23), the minimum value x min of the x-axis coordinates of the inner wall surface of the ware brick A111c is greater than or equal to the x-axis coordinates x 3_1 of the position of the end of the ware brick A111c on the outer wall surface side of the outer wall surface of the ware brick B111d. Represents each length l 4 , l 3 , l 2 when the coordinates of the x-axis of the position of the edge on the outer wall surface side are less than x 4_1 . In equation (24), the minimum value x min of the x-axis coordinates of the inner wall surface of the furnace bottom is the x-axis coordinates x 2_1 or more of the position of the end of the perm brick 111b on the outer wall surface side of the furnace bottom, and the bottom of the wear brick A111c. Represents each length l 4 , l 3 , l 2 when the coordinates of the x-axis of the position of the edge on the outer wall surface side are less than x 3_1 .

時刻tでのウェア煉瓦B111dの抜熱方向(x軸方向)の長さ(厚み)の残存量Δl4、時刻tでのウェア煉瓦A111cの抜熱方向(x軸方向)の長さ(厚み)の残存量Δl3、時刻tでのパーマ煉瓦111bの抜熱方向(x軸方向)の長さ(厚み)の残存量Δl2は、(22)式~(24)式の何れかで導出される長さl4、l3、l2から新品のときの長さL41、L31、L21を減算することにより導出され、以下の(25)式で表される。 Residual amount Δl 4 of the length (thickness) of the wear brick B111d in the heat removal direction (x-axis direction) at time t, the length (thickness) of the wear brick A111c in the heat removal direction (x-axis direction) at time t The residual amount Δl 3 and the residual amount Δl 2 of the length (thickness) of the perm brick 111b in the heat removal direction (x-axis direction) at time t are derived by any of the equations (22) to (24). It is derived by subtracting the new lengths L 41 , L 31 , and L 21 from the lengths l 4 , l 3 , and l 2 , and is expressed by the following equation (25).

Figure 0007016706000014
Figure 0007016706000014

また、各時刻tにおいて導出された、(4)式の内外挿温度関数T^(x,t)が溶銑142の温度と等しくなるときの炉底耐火物のx軸の座標x4_2と、炉底内壁面のx軸の座標の最低値xminとの差を、付着物の抜熱方向(x軸方向)の長さdと定義すると、付着物の抜熱方向(x軸方向)の長さ(付着物の厚み)dは、以下の(26)式~(31)式で表される。 Further, the x-axis coordinates x 4_2 of the bottom refractory when the internal / external temperature function T ^ (x, t) of Eq. (4) derived at each time t becomes equal to the temperature of the hot metal 142, and the furnace. If the difference from the minimum value x min of the x-axis coordinates of the inner wall surface of the bottom is defined as the length d in the heat removal direction (x-axis direction) of the deposit, the length in the heat removal direction (x-axis direction) of the deposit is defined. The (thickness of the deposit) d is expressed by the following equations (26) to (31).

Figure 0007016706000015
Figure 0007016706000015

(26)式は、炉底内壁面のx軸の座標の最低値xminが、ウェア煉瓦B111dの炉底外壁面側の端の位置のx軸の座標x4_1以上である場合の付着物の抜熱方向(x軸方向)の長さdである。
(27)式は、炉底内壁面のx軸の座標の最低値xminが、ウェア煉瓦A111cの炉底外壁面側の端の位置のx軸の座標x3_1以上、ウェア煉瓦B111dの炉底外壁面側の端の位置のx軸の座標x4_1未満であり、且つ、(4)式の内外挿温度関数T^(x,t)が溶銑142の温度と等しくなるときの炉底耐火物のx軸の座標x4_2がウェア煉瓦B111dの炉底外壁面側の端の位置のx軸の座標x4_1を上回る場合の付着物の抜熱方向(x軸方向)の長さdである。
In the equation (26), the minimum value x min of the x-axis coordinate of the inner wall surface of the furnace bottom is equal to or more than the x-axis coordinate x 4_1 of the position of the end of the ware brick B111d on the outer wall surface side of the furnace bottom. The length d in the heat removal direction (x-axis direction).
In the equation (27), the minimum value x min of the x-axis coordinate of the inner wall surface of the furnace bottom is the x-axis coordinate x 3_1 or more of the position of the end of the outer wall surface side of the outer wall surface of the ware brick A111c, and the bottom of the ware brick B111d. Fire bottom fire resistant material when the x-axis coordinate x 4_1 of the position of the end on the outer wall surface side and the internal / external temperature function T ^ (x, t) in Eq. (4) becomes equal to the temperature of the hot metal 142. This is the length d in the heat removal direction (x-axis direction) of the deposit when the x-axis coordinate x 4_2 of the ware brick B111d exceeds the x-axis coordinate x 4_1 at the position of the end of the ware brick B111d on the outer wall surface side of the furnace bottom.

(28)式は、炉底内壁面のx軸の座標の最低値xminが、ウェア煉瓦A111cの炉底外壁面側の端の位置のx軸の座標x3_1以上、ウェア煉瓦B111dの炉底外壁面側の端の位置のx軸の座標x4_1未満であり、且つ、(4)式の内外挿温度関数T^(x,t)が溶銑142の温度と等しくなるときの炉底耐火物のx軸の座標x4_2がウェア煉瓦B111dの炉底外壁面側の端の位置のx軸の座標x4_1以下である場合の付着物の抜熱方向(x軸方向)の長さdである。 In equation (28), the minimum value x min of the x-axis coordinates of the inner wall surface of the ware brick A111c is greater than or equal to the x-axis coordinates x 3_1 of the position of the end of the ware brick A111c on the outer wall surface side of the outer wall surface of the ware brick B111d. A fireproof material at the bottom of the furnace when the coordinates of the x-axis of the end position on the outer wall surface side are less than x 4_1 and the internal / external temperature function T ^ (x, t) in Eq. (4) becomes equal to the temperature of the hot metal 142. The x-axis coordinate x 4_2 is the length d in the heat removal direction (x-axis direction) of the deposit when the x-axis coordinate x 4_1 or less of the position of the end of the wear brick B111d on the outer wall surface side of the furnace bottom. ..

(29)式は、炉底内壁面のx軸の座標の最低値xminが、パーマ煉瓦111bの炉底外壁面側の端の位置のx軸の座標x2_1以上、ウェア煉瓦A111cの炉底外壁面側の端の位置のx軸の座標x3_1未満であり、且つ、(4)式の内外挿温度関数T^(x,t)が溶銑142の温度と等しくなるときの炉底耐火物のx軸の座標x4_2がウェア煉瓦B111dの炉底外壁面側の端の位置のx軸の座標x4_1を上回る場合の付着物の抜熱方向(x軸方向)の長さdである。 In equation (29), the minimum value x min of the x-axis coordinates of the inner wall surface of the furnace bottom is equal to or more than the x-axis coordinates x 2_1 of the position of the end of the perma brick 111b on the outer wall surface side of the outer wall surface of the furnace bottom, and the bottom of the ware brick A111c. Fire bottom fire resistant material when the x-axis coordinate x 3_1 of the position of the end on the outer wall surface side and the internal / external temperature function T ^ (x, t) in Eq. (4) becomes equal to the temperature of the hot metal 142. This is the length d in the heat removal direction (x-axis direction) of the deposit when the x-axis coordinate x 4_2 of the ware brick B111d exceeds the x-axis coordinate x 4_1 at the position of the end of the ware brick B111d on the outer wall surface side of the furnace bottom.

(30)式は、炉底内壁面のx軸の座標の最低値xminが、パーマ煉瓦111bの炉底外壁面側の端の位置のx軸の座標x2_1以上、ウェア煉瓦A111cの炉底外壁面側の端の位置のx軸の座標x3_1未満であり、且つ、(4)式の内外挿温度関数T^(x,t)が溶銑142の温度と等しくなるときの炉底耐火物のx軸の座標x4_2がウェア煉瓦A111cの炉底外壁面側の端の位置のx軸の座標x3_1超、ウェア煉瓦B111dの炉底外壁面側の端の位置のx軸の座標x4_1以下である場合の付着物の抜熱方向(x軸方向)の長さdである。 In equation (30), the minimum value x min of the x-axis coordinates of the inner wall surface of the furnace bottom is the x-axis coordinates x 2_1 or more of the position of the end of the perm brick 111b on the outer wall surface side of the furnace bottom, and the bottom of the wear brick A111c. A fireproof material at the bottom of the furnace when the coordinates of the x-axis of the end position on the outer wall surface side are less than x 3_1 and the internal / external temperature function T ^ (x, t) in Eq. (4) becomes equal to the temperature of the hot metal 142. The x-axis coordinates x 4_2 are the x-axis coordinates x 3_1 of the position of the end of the ware brick A111c on the outer wall surface side of the furnace bottom, and the x-axis coordinates x 4_1 of the position of the end of the ware brick B111d on the outer wall surface side of the furnace bottom. It is the length d in the heat removal direction (x-axis direction) of the deposit in the following cases.

(31)式は、炉底内壁面のx軸の座標の最低値xminが、パーマ煉瓦111bの炉底外壁面側の端の位置のx軸の座標x2_1以上、ウェア煉瓦A111cの炉底外壁面側の端の位置のx軸の座標x3_1未満であり、且つ、(4)式の内外挿温度関数T^(x,t)が溶銑142の温度と等しくなるときの炉底耐火物のx軸の座標x4_2がウェア煉瓦A111cの炉底外壁面側の端の位置のx軸の座標x3_1以下である場合の付着物の抜熱方向(x軸方向)の長さdである。 In equation (31), the minimum value x min of the x-axis coordinates of the inner wall surface of the furnace bottom is greater than or equal to the x-axis coordinates x 2_1 of the position of the end of the perm brick 111b on the outer wall surface side of the furnace bottom, and the bottom of the wear brick A111c. A fireproof material at the bottom of the furnace when the coordinates of the x-axis of the end position on the outer wall surface side are less than x 3_1 and the internal / external temperature function T ^ (x, t) in Eq. (4) becomes equal to the temperature of the hot metal 142. The x-axis coordinate x 4_2 is the length d in the heat removal direction (x-axis direction) of the deposit when the x-axis coordinate x 3_1 or less of the position of the end of the wear brick A111c on the outer wall surface side of the furnace bottom. ..

以上のように熱流束・壁面位置導出部205は、(22)式~(24)式により、時刻tでのウェア煉瓦B111d、ウェア煉瓦A111c、パーマ煉瓦111bの抜熱方向(x軸方向)の長さ(厚み)l4、l3、l2を導出する。また、熱流束・壁面位置導出部205は、(25)式により、時刻tでのウェア煉瓦B111d、ウェア煉瓦A111c、パーマ煉瓦111bの抜熱方向(x軸方向)の長さ(厚み)残存量Δl4、Δl3、Δl2を導出する。また、熱流束・壁面位置導出部205は、(26)式~(31)式により、付着物の抜熱方向(x軸方向)の長さ(付着物の厚み)dを導出する。 As described above, the heat flux / wall surface position deriving unit 205 is in the heat extraction direction (x-axis direction) of the wear brick B111d, the wear brick A111c, and the perm brick 111b at time t according to the equations (22) to (24). The lengths (thickness) l 4 , l 3 , and l 2 are derived. Further, the heat flux / wall surface position derivation unit 205 has a residual amount of length (thickness) in the heat removal direction (x-axis direction) of the wear brick B111d, the wear brick A111c, and the perm brick 111b at time t according to the equation (25). Derivation of Δl 4 , Δl 3 , and Δl 2 . Further, the heat flux / wall surface position derivation unit 205 derives the length (thickness of the deposit) d in the heat removal direction (x-axis direction) of the deposit by the formulas (26) to (31).

ここで、付着物の抜熱方向(x軸方向)の長さ(付着物の厚み)dは負の値にならない(d≧0)。従って、熱流束・壁面位置導出部205は、(4)式の内外挿温度関数T^(x,t)が溶銑142の温度と等しくなるときの炉底耐火物のx軸の座標x4_2が、炉底内壁面のx軸の座標の最低値xminを上回る場合に、付着物の抜熱方向(x軸方向)の長さ(付着物の厚み)dを導出する。 Here, the length (thickness of the deposit) d in the heat removal direction (x-axis direction) of the deposit does not become a negative value (d ≧ 0). Therefore, the heat flux / wall surface position derivation unit 205 has the x-axis coordinates x 4_2 of the fire bottom fireproof material when the internal / external temperature function T ^ (x, t) in Eq. (4) becomes equal to the temperature of the hot metal 142. When the minimum value x min of the x-axis coordinates of the inner wall surface of the furnace bottom is exceeded, the length (thickness of the deposit) d in the heat removal direction (x-axis direction) of the deposit is derived.

熱流束・壁面位置導出部205は、時刻tでのウェア煉瓦B111d、ウェア煉瓦A111c、パーマ煉瓦111bの抜熱方向(x軸方向)の長さ(厚み)l4、l3、l2と、耐火キャスタブル111aの抜熱方向(x軸方向)の長さ(厚み)と、時刻tでの付着物の抜熱方向(x軸方向)の長さ(付着物の厚み)dとを、炉底外壁面のx軸の座標に加算した値を、時刻tでの炉底内壁面のx軸の座標として導出する。 The heat flow flux / wall surface position derivation unit 205 has lengths (thicknesses) l 4 , l 3 , l 2 in the heat removal direction (x-axis direction) of the wear brick B111d, the wear brick A111c, and the perm brick 111b at time t. The length (thickness) of the fireproof castable 111a in the heat removal direction (x-axis direction) and the length (thickness) d of the heat removal direction (x-axis direction) of the deposit at time t are determined. The value added to the x-axis coordinates of the outer wall surface is derived as the x-axis coordinates of the inner wall surface of the furnace bottom at time t.

<出力部206>
出力部206は、熱流束・壁面位置導出部205により導出された各時刻tにおける炉芯炉底内壁面側熱流束qvおよび炉底内壁面のx軸の座標を出力する。出力の形態としては、例えば、コンピュータディスプレイへの表示、設備監視装置200の内部または外部の記憶媒体への記憶、および外部装置への送信の少なくとも何れか1つを採用することができる。また、出力部206は、これらの情報に代えてまたは加えて、ウェア煉瓦B111d、ウェア煉瓦A111c、パーマ煉瓦111bの抜熱方向(x軸方向)の長さ(厚み)l4、l3、l2と、ウェア煉瓦B111d、ウェア煉瓦A111c、パーマ煉瓦111bの抜熱方向(x軸方向)の長さ(厚み)残存量Δl4、Δl3、Δl2と、付着物の抜熱方向(x軸方向)の長さ(付着物の厚み)dとの少なくとも何れか1つを出力してもよい。
<Output unit 206>
The output unit 206 outputs the heat flux q v on the inner wall surface side of the furnace core and the x-axis coordinates of the inner wall surface of the furnace bottom at each time t derived by the heat flux / wall surface position derivation unit 205. As the form of output, for example, at least one of display on a computer display, storage in an internal or external storage medium of the equipment monitoring device 200, and transmission to an external device can be adopted. Further, in place of or in addition to these information, the output unit 206 has lengths (thicknesses) l 4 , l 3 , l in the heat removal direction (x-axis direction) of the wear brick B111d, the wear brick A111c, and the perm brick 111b. 2 , the length (thickness) residual amount of the wear brick B111d, the wear brick A111c, and the perm brick 111b in the heat removal direction (x-axis direction) residual amounts Δl 4 , Δl 3 , Δl 2 , and the heat removal direction (x-axis) of the deposit. At least one of the length (thickness of the deposit) d in the direction) may be output.

(計算例)
図5は、設備監視装置200による計算の結果の一例を示す図である。図5(a)は、炉底内壁面位置と時間との関係を示し、図5(b)は、熱流束と時間との関係を示し、図5(c)は、熱伝達係数と時間との関係を示し、図5(d)は、熱電対で計測された温度(熱電対温度)と時間との関係を示す。
(Calculation example)
FIG. 5 is a diagram showing an example of the calculation result by the equipment monitoring device 200. FIG. 5A shows the relationship between the position of the inner wall surface of the furnace bottom and time, FIG. 5B shows the relationship between heat flux and time, and FIG. 5C shows the heat transfer coefficient and time. 5 (d) shows the relationship between the temperature measured by the thermocouple (thermocouple temperature) and time.

図5(a)において、炉底内壁面位置とは、炉底内壁面のx軸の座標を示す。ここでは、炉底外壁面の位置のx軸の値を「0(ゼロ)」とする。炉底内壁面位置(計算)は、熱流束・壁面位置導出部205により導出される炉底内壁面のx軸の座標を示す。炉底内壁面位置(実測)は、サブマージドアーク炉100の操業の合間に測定される炉底内壁面のx軸の座標である。炉底内壁面位置(実測の最低値)は、炉底内壁面のx軸の座標の最低値xmin(炉底内壁面位置(実測)の最低値)である(炉底内壁面位置(実測)の最低値は、図5(a)に示す期間よりも前の期間に得られている)。 In FIG. 5A, the position of the inner wall surface of the furnace bottom indicates the coordinates of the x-axis of the inner wall surface of the furnace bottom. Here, the value on the x-axis at the position of the outer wall surface of the furnace bottom is set to "0 (zero)". The furnace bottom inner wall surface position (calculation) indicates the x-axis coordinates of the furnace bottom inner wall surface derived by the heat flux / wall surface position deriving unit 205. The position of the inner wall surface of the furnace bottom (actual measurement) is the x-axis coordinate of the inner wall surface of the furnace bottom measured between the operations of the submerged arc furnace 100. The position of the inner wall surface of the furnace bottom (minimum value of actual measurement) is the minimum value of the x-axis coordinates of the inner wall surface of the furnace bottom x min (the lowest value of the position of the inner wall surface of the furnace bottom (actual measurement)) (the position of the inner wall surface of the furnace bottom (actual measurement). ) Is obtained in the period before the period shown in FIG. 5 (a)).

図5(b)において、熱流束は、熱流束・壁面位置導出部205により導出される炉芯炉底内壁面側熱流束qvである。
図5(c)において、熱伝達係数は、熱伝達係数導出部203により導出される炉底熱伝達係数ha(t)である。
図5(d)において、炉芯温度は、炉芯温度計191で測定される温度であり、炉芯周辺温度(内壁面側)は、炉芯周辺炉内側温度計193で測定される温度であり、炉芯周辺温度(外壁面側)は、炉芯周辺炉外側温度計192で測定される温度であり、空冷温度は、空冷温度Ta(t)である。
In FIG. 5B, the heat flux is the heat flux q v on the inner wall surface side of the furnace core, which is derived by the heat flux / wall surface position lead-out unit 205.
In FIG. 5 (c), the heat transfer coefficient is the furnace bottom heat transfer coefficient h a (t) derived by the heat transfer coefficient derivation unit 203.
In FIG. 5D, the core temperature is the temperature measured by the core thermometer 191 and the core peripheral temperature (inner wall surface side) is the temperature measured by the core peripheral furnace inner thermometer 193. Yes, the core peripheral temperature (outer wall surface side) is the temperature measured by the furnace core peripheral thermometer 192, and the air cooling temperature is the air cooling temperature Ta (t).

図5(a)において、すべての時間帯で、炉底内壁面位置(計算)が炉底内壁面位置(実測の最低値)よりも大きいので炉底耐火物に付着物が付着していることを示している。炉底内壁面位置(計算)が炉底内壁面位置(実測の最低値)よりも小さい時間帯が出現する場合は、炉底耐火物が溶損している時間帯であることを示す。また、図5(b)および図5(c)に示すように、炉底内壁面の熱流束および炉底熱伝達係数は、時々刻々と変化することが分かる。 In FIG. 5A, since the position of the inner wall surface of the furnace bottom (calculation) is larger than the position of the inner wall surface of the furnace bottom (minimum value of actual measurement) at all time zones, the deposits are attached to the refractory material of the bottom of the furnace. Is shown. When a time zone in which the position of the inner wall surface of the furnace bottom (calculation) is smaller than the position of the inner wall surface of the furnace bottom (minimum value of actual measurement) appears, it indicates that the time zone is the time zone in which the refractory in the bottom of the furnace is melted. Further, as shown in FIGS. 5 (b) and 5 (c), it can be seen that the heat flux and the heat transfer coefficient of the bottom of the furnace change from moment to moment.

(フローチャート)
次に、図6のフローチャートを参照しながら、設備監視装置200を用いた設備監視方法の一例を説明する。
ステップS601において、設備監視装置200は、時刻tを初期値tiniに設定する。ステップS602~S609は、時刻tについての処理として実行される。
次に、ステップS602において、温度取得部201は、上流側温度計181、下流側温度計182、溶銑温度計183、炉芯温度計191、炉芯周辺炉外側温度計192、および炉芯周辺炉内側温度計193で測定された温度を取得する。
(flowchart)
Next, an example of the equipment monitoring method using the equipment monitoring device 200 will be described with reference to the flowchart of FIG.
In step S601, the equipment monitoring device 200 sets the time t to the initial value t ini . Steps S602 to S609 are executed as processing for the time t.
Next, in step S602, the temperature acquisition unit 201 includes an upstream thermometer 181, a downstream thermometer 182, a hot metal thermometer 183, a core thermometer 191 and a core peripheral furnace outside thermometer 192, and a core peripheral furnace. The temperature measured by the inner thermometer 193 is acquired.

次に、ステップS603において、第1の逆問題解析部202は、重みベクトルα(の要素αj)を導出する((7)式~(10)式を参照)。
次に、ステップS604において、熱伝達係数導出部203は、炉底外壁面の温度Tv(t)と、炉芯周辺炉底外壁面側熱流束qv(t)とを導出する((4)式および(11)式を参照)。
Next, in step S603, the first inverse problem analysis unit 202 derives the weight vector α (element α j ) (see equations (7) to (10)).
Next, in step S604, the heat transfer coefficient derivation unit 203 derives the temperature T v (t) of the outer wall surface of the furnace bottom and the heat flux q v (t) on the outer wall surface of the outer wall surface around the furnace core ((4). ) And equation (11)).

次に、ステップS605において、熱伝達係数導出部203は、炉底熱伝達係数ha(t)を導出する((12)式を参照)。
次に、ステップS606において、第2の逆問題解析部204は、重みベクトルα(の要素αj)を導出する((7)式、(9)式、(16)式、および(17)式を参照)。
Next, in step S605, the heat transfer coefficient deriving unit 203 derives the heat transfer coefficient h a (t) from the bottom (see Eq. (12)).
Next, in step S606, the second inverse problem analysis unit 204 derives the weight vector α (element α j ) (Equation (7), Eq. (9), Eq. (16), and Eq. (17)). See).

次に、ステップS607において、熱流束・壁面位置導出部205は、内外挿温度関数T^(x,t)が溶銑142の温度と等しくなるときの炉底耐火物のx軸の座標と、炉芯炉底内壁面側熱流束qvとを導出する((4)式、(11)式、(11)'式を参照)。
次に、ステップS608において、熱流束・壁面位置導出部205は、実際の炉底内壁面のx軸の座標を導出する((22)式~(31)式を参照)。
次に、ステップS609において、出力部206は、炉芯炉底内壁面側熱流束qvと炉底内壁面のx軸の座標とを出力する。
Next, in step S607, the heat flux / wall surface position derivation unit 205 includes the x-axis coordinates of the bottom refractory material when the internal / external temperature function T ^ (x, t) becomes equal to the temperature of the hot metal 142, and the furnace. Derivation of the heat flux q v on the inner wall surface side of the core furnace bottom (see equations (4), (11), and (11)').
Next, in step S608, the heat flux / wall surface position deriving unit 205 derives the x-axis coordinates of the actual inner wall surface of the furnace bottom (see equations (22) to (31)).
Next, in step S609, the output unit 206 outputs the heat flux q v on the inner wall surface side of the furnace core and the x-axis coordinates of the inner wall surface of the furnace bottom.

次に、ステップS610において、設備監視装置200は、サブマージドアーク炉100の監視を終了するか否かを判定する。この判定は、例えば、時刻tmaxが経過したか否かによって行うことができる。また、この判定は、設備監視装置200に対するオペレータからの指示によっても行うことができる。また、この判定は、サブマージドアーク炉100の操業を管理する上位のコンピュータからの指示によっても行うことができる。 Next, in step S610, the equipment monitoring device 200 determines whether or not to end the monitoring of the submerged arc furnace 100. This determination can be made, for example, by whether or not the time t max has elapsed. Further, this determination can also be made by an instruction from the operator to the equipment monitoring device 200. Further, this determination can also be made by an instruction from a higher-level computer that manages the operation of the submerged arc furnace 100.

この判定の結果、サブマージドアーク炉100の監視を終了する場合、図6のフローチャートによる処理を終了する。一方、サブマージドアーク炉100の監視を終了しない場合、処理は、ステップS611に進む。ステップS611において、設備監視装置200は、時刻tにΔtを加算して時刻tを更新する。そして、更新後の時刻tについてステップS602~S609の処理が実行される。
尚、ステップS609の処理を、ステップS610において、サブマージドアーク炉100の監視を終了すると判定された後に行ってもよい。
As a result of this determination, when the monitoring of the submerged arc furnace 100 is terminated, the process according to the flowchart of FIG. 6 is terminated. On the other hand, if the monitoring of the submerged arc furnace 100 is not completed, the process proceeds to step S611. In step S611, the equipment monitoring device 200 adds Δt to the time t to update the time t. Then, the processes of steps S602 to S609 are executed at the updated time t.
The process of step S609 may be performed after it is determined in step S610 that the monitoring of the submerged arc furnace 100 is completed.

(まとめ)
以上のように本実施形態では、設備監視装置200は、炉芯周辺炉外側温度計192および炉芯周辺炉内側温度計193で測定された温度に基づいて1次元非定常伝熱逆問題を解くことにより、炉芯周辺炉底外壁面側熱流束qv(t)と炉底外壁面の温度Tv(t)とを導出し、これらと空冷温度Ta(t)とを用いて炉底熱伝達係数ha(t)を導出する。そして、設備監視装置200は、炉芯温度計191で測定された温度と、炉底熱伝達係数ha(t)とに基づいて1次元非定常伝熱逆問題を解くことにより、1次元非定常伝熱逆問題を解くことにより、炉芯炉底内壁面側熱流束qvと、内外挿温度関数T^(x,t)が溶銑142の温度と等しくなるときの炉底耐火物のx軸の座標とを導出する。従って、炉芯101に温度計が1つしかなくても、1次元非定常伝熱逆問題を精度よく解くことができ、炉底内壁面の炉芯101の位置における熱流束や当該位置の座標をリアルタイムで導出することができる。よって、溶融金属が内部に存在する設備の内周面を構成する耐火物の状態をリアルタイムで正確に監視することができる。
(summary)
As described above, in the present embodiment, the equipment monitoring device 200 solves the one-dimensional unsteady heat transfer reverse problem based on the temperature measured by the core peripheral furnace outside thermometer 192 and the core peripheral furnace inside thermometer 193. As a result, the heat transfer flux q v (t) on the outer wall surface side of the furnace bottom around the furnace core and the temperature T v (t) on the outer wall surface of the furnace bottom are derived, and these and the air cooling temperature T a (t) are used to derive the temperature T v (t). The heat transfer coefficient h a (t) is derived. Then, the equipment monitoring device 200 solves the one-dimensional unsteady heat transfer inverse problem based on the temperature measured by the core thermometer 191 and the bottom heat transfer coefficient ha (t), thereby causing the one-dimensional unsteady heat transfer. By solving the steady heat transfer reverse problem, the heat flux q v on the inner wall surface side of the core furnace bottom and the x of the fire bottom fire resistant material when the internal / external temperature function T ^ (x, t) becomes equal to the temperature of the hot metal 142. Derive the coordinates of the axis. Therefore, even if the furnace core 101 has only one thermometer, the one-dimensional unsteady heat transfer inverse problem can be solved accurately, and the heat flux at the position of the furnace core 101 on the inner wall surface of the furnace bottom and the coordinates of the position. Can be derived in real time. Therefore, it is possible to accurately monitor the state of the refractory material constituting the inner peripheral surface of the equipment in which the molten metal is present in real time.

また、本実施形態では、炉底耐火物が耐火キャスタブル111aのみから構成されるものとして1次元非定常熱伝導方程式を構築する。従って、異なる耐火物の接触による熱抵抗を考慮せずに1次元非定常熱伝導方程式を解くことができる。よって、モデル誤差を低減することができる。
また、本実施形態では、設備監視装置200は、耐火キャスタブル111a、パーマ煉瓦111b、ウェア煉瓦A111c、およびウェア煉瓦B111dの熱伝導率λ1~λ4と、炉底内壁面のx軸の座標の最低値xminと、(4)式の内外挿温度関数T^(x,t)が溶銑142の温度と等しくなるときの炉底耐火物のx軸の座標x4_n、x4_2と、用いて、ウェア煉瓦B111d、ウェア煉瓦A111c、パーマ煉瓦111bの抜熱方向(x軸方向)の長さ(厚み)l4、l3、l2と、ウェア煉瓦B111d、ウェア煉瓦A111c、パーマ煉瓦111bの抜熱方向(x軸方向)の長さ(厚み)残存量Δl4、Δl3、Δl2と、付着物の抜熱方向(x軸方向)の長さ(付着物の厚み)dとを導出する。従って、炉底耐火物のより詳細な状態を監視することができる。
Further, in the present embodiment, a one-dimensional unsteady heat conduction equation is constructed assuming that the refractory at the bottom of the fire is composed only of the refractory castable 111a. Therefore, the one-dimensional unsteady heat conduction equation can be solved without considering the thermal resistance due to the contact of different refractories. Therefore, the model error can be reduced.
Further, in the present embodiment, the equipment monitoring device 200 has the thermal conductivity λ 1 to λ 4 of the fireproof castable 111a, the perm brick 111b, the ware brick A111c, and the ware brick B111d, and the coordinates of the x-axis of the inner wall surface of the furnace bottom. Using the minimum value x min and the x-axis coordinates x 4_n , x 4_2 of the bottom fire resistant material when the internal / external temperature function T ^ (x, t) in Eq. (4) becomes equal to the temperature of the hot metal 142. , Wear brick B111d, wear brick A111c, length (thickness) l 4 , l 3 , l 2 in the heat removal direction (x-axis direction) of wear brick B111d, wear brick A111c, and perma brick 111b. Derivation of the length (thickness) residual amount Δl 4 , Δl 3 , Δl 2 in the thermal direction (x-axis direction) and the length (thickness) d in the heat removal direction (x-axis direction) of the deposit. .. Therefore, it is possible to monitor the more detailed state of the refractory at the bottom of the fire.

本実施形態では、サブマージドアーク炉を例に挙げて説明した。しかしながら、溶融金属が内部に存在する設備であって、当該設備の内周面を構成する耐火物を有し、当該耐火物の内側が当該溶融金属と接する状態または他の物質が間に存在する状態で配置され、当該耐火物の外側が冷却媒体と接する状態または他の物質が間に存在する状態で配置される構成を有する設備であれば、本実施形態の手法は、サブマージドアーク炉以外の設備にも適用することができる。設備は、溶融金属を製造する設備であっても、溶融金属を処理する設備であっても溶融金属を収容する設備であってもよい。また、冷却媒体は、本実施形態のように気体(例えば空気)であっても、液体(例えば水)であってもよい。 In this embodiment, the submerged arc furnace has been described as an example. However, the equipment in which the molten metal is present has a refractory material constituting the inner peripheral surface of the equipment, and the inside of the refractory material is in contact with the molten metal or other substances are present in between. If the equipment is arranged in a state where the outside of the refractory is in contact with the cooling medium or in a state where other substances are present in between, the method of the present embodiment is other than the submerged arc furnace. It can also be applied to the equipment of. The equipment may be equipment for producing molten metal, equipment for processing molten metal, or equipment for accommodating molten metal. Further, the cooling medium may be a gas (for example, air) or a liquid (for example, water) as in the present embodiment.

尚、以上説明した本発明の実施形態は、コンピュータがプログラムを実行することによって実現することができる。また、前記プログラムを記録したコンピュータ読み取り可能な記録媒体及び前記プログラム等のコンピュータプログラムプロダクトも本発明の実施形態として適用することができる。記録媒体としては、例えば、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。
また、以上説明した本発明の実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
The embodiment of the present invention described above can be realized by executing a program by a computer. Further, a computer-readable recording medium on which the program is recorded and a computer program product such as the program can also be applied as an embodiment of the present invention. As the recording medium, for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a non-volatile memory card, a ROM, or the like can be used.
In addition, the embodiments of the present invention described above are merely examples of embodiment of the present invention, and the technical scope of the present invention should not be construed in a limited manner by these. It is a thing. That is, the present invention can be implemented in various forms without departing from the technical idea or its main features.

100:サブマージドアーク炉、101:炉芯、111:炉本体、111a:耐火キャスタブル、111b:パーマ煉瓦、111c:ウェア煉瓦A、111d:ウェア煉瓦B、112:炉蓋、121~122:原料装入シュート、131~132:排気部、141:スラグ、142:溶銑、151~153:電極、161:出滓口、162:出銑口、171:流通経路、181~183:温度計、191~193:温度計(熱電対) 100: Submerged arc furnace, 101: furnace core, 111: furnace body, 111a: refractory castable, 111b: perma brick, 111c: ware brick A, 111d: ware brick B, 112: furnace lid, 121-122: raw material packaging Enter chute, 131-132: Exhaust part, 141: Slag, 142: Hot metal, 151-153: Electrode, 161: Outlet port, 162: Outlet port, 171: Distribution channel, 181-183: Thermometer, 191- 193: Thermometer (thermocouple)

Claims (14)

溶融金属が内部に存在する設備であって、当該設備の内周面を構成する耐火物を有し、当該耐火物の内側が当該溶融金属と接する状態または他の物質が間に存在する状態で配置され、当該耐火物の外側が冷却媒体と接する状態または他の物質が間に存在する状態で配置される構成を有する設備を監視する設備監視装置であって、
それぞれ前記耐火物の内部の異なる位置に配置された第1の温度測定手段、第2の温度測定手段、および第3の温度測定手段により測定された温度と、前記冷却媒体の温度を測定する第4の温度測定手段により測定された温度と、を取得する温度取得手段と、
前記第1の温度測定手段により測定された温度と、前記第2の温度測定手段により測定された温度とを用いて、前記設備の部位のうち、前記耐火物の外側が冷却媒体と接する部位または冷却媒体との間に存在する物質と接する部位である外側部位の表面における温度と、前記設備の前記外側部位の表面における熱流束ベクトルの、前記耐火物の抜熱方向の成分の値とを、1次元非定常伝熱逆問題解析を行った結果に基づいて導出する第1の導出手段と、
前記設備の前記外側部位の表面における温度と、前記設備の前記外側部位の表面における熱流束ベクトルの、前記耐火物の抜熱方向の成分の値と、前記冷却媒体の温度を測定する第4の温度測定手段により測定された温度とを用いて、前記耐火物を構成する材料と前記冷却媒体との間の熱伝達係数を導出する第2の導出手段と、
前記第3の温度測定手段により測定された温度と、前記第2の導出手段により導出された熱伝達係数とを用いて、前記溶融金属の温度と温度が等しくなる前記耐火物の抜熱方向における位置である温度一致位置と、前記設備の溶融金属と接する部位の表面における熱流束ベクトルの、前記耐火物の抜熱方向の成分の値とを、1次元非定常伝熱逆問題解析を行った結果に基づいて導出する第3の導出手段と、を有し、
前記第1の温度測定手段の前記耐火物の抜熱方向に垂直な方向における位置と前記第2の温度測定手段の前記耐火物の抜熱方向に垂直な方向における位置は略同じであり、前記第3の温度測定手段の前記耐火物の抜熱方向に垂直な方向における位置と、前記第1の温度測定手段および前記第2の温度測定手段の前記耐火物の抜熱方向に垂直な方向における位置は異なることを特徴とする設備監視装置。
Equipment in which molten metal is present, with refractory material constituting the inner peripheral surface of the equipment, and in a state where the inside of the refractory material is in contact with the molten metal or in a state where other substances are present in between. An equipment monitoring device that monitors equipment that is arranged and is arranged so that the outside of the refractory is in contact with the cooling medium or has other substances in between.
The temperature measured by the first temperature measuring means, the second temperature measuring means, and the third temperature measuring means, which are arranged at different positions inside the fireproof material, and the temperature of the cooling medium are measured. The temperature acquisition means for acquiring the temperature measured by the temperature measuring means of No. 4, and the temperature acquisition means for acquiring the temperature.
Using the temperature measured by the first temperature measuring means and the temperature measured by the second temperature measuring means, the part of the equipment where the outside of the fireproof material comes into contact with the cooling medium or The temperature on the surface of the outer part , which is the part in contact with the substance existing between the cooling medium, and the value of the component of the heat transfer vector on the surface of the outer part of the equipment in the heat removal direction of the fireproof material. The first derivation means to derive based on the result of one-dimensional unsteady heat transfer reverse problem analysis,
A fourth measure of the temperature on the surface of the outer portion of the equipment, the value of the component of the heat flux vector on the surface of the outer portion of the equipment in the heat removal direction of the fireproof material, and the temperature of the cooling medium. A second derivation means for deriving the heat transfer coefficient between the material constituting the refractory material and the cooling medium using the temperature measured by the temperature measuring means, and
Using the temperature measured by the third temperature measuring means and the heat transfer coefficient derived by the second derivation means, the temperature and the temperature of the molten metal become equal to each other in the heat removal direction of the refractory material. A one-dimensional non-stationary heat transfer reverse problem analysis was performed on the temperature matching position, which is the position, and the value of the component of the heat flux vector on the surface of the part in contact with the molten metal of the equipment in the heat removal direction of the fireproof material. It has a third derivation means, which derives based on the result.
The position of the first temperature measuring means in the direction perpendicular to the heat removal direction of the fireproof material and the position of the second temperature measuring means in the direction perpendicular to the heat removal direction of the fireproof material are substantially the same. The position of the third temperature measuring means in the direction perpendicular to the heat removal direction of the fireproof material, and the position of the first temperature measuring means and the second temperature measuring means in the direction perpendicular to the heat removal direction of the fireproof material. Equipment monitoring equipment characterized by different positions.
前記温度取得手段は、前記溶融金属の温度を測定する第5の温度測定手段により測定された温度を更に取得し、
前記第3の導出手段は、前記第5の温度測定手段により測定された温度を前記溶融金属の温度として前記温度一致位置を導出することを特徴とする請求項1に記載の設備監視装置。
The temperature acquisition means further acquires the temperature measured by the fifth temperature measuring means for measuring the temperature of the molten metal.
The equipment monitoring device according to claim 1, wherein the third derivation means derives the temperature matching position by using the temperature measured by the fifth temperature measuring means as the temperature of the molten metal.
前記耐火物は、前記耐火物の抜熱方向に並べられた複数種類の耐火物であって、熱伝導率が異なる複数種類の耐火物を有し、
前記第1の温度測定手段、前記第2の温度測定手段、および前記第3の温度測定手段は、前記複数種類の耐火物のうち、同一の種類の耐火物の内部に配置され、
前記1次元非定常伝熱逆問題解析では、前記複数種類の耐火物の物性値のうち、前記第1の温度測定手段、前記第2の温度測定手段、および前記第3の温度測定手段が配置された耐火物の物性値のみが用いられることを特徴とする請求項1または2に記載の設備監視装置。
The refractory is a plurality of types of refractories arranged in the heat removal direction of the refractory, and has a plurality of types of refractories having different thermal conductivitys.
The first temperature measuring means, the second temperature measuring means, and the third temperature measuring means are arranged inside the same type of refractory among the plurality of types of refractories.
In the one-dimensional unsteady heat transfer reverse problem analysis, the first temperature measuring means, the second temperature measuring means, and the third temperature measuring means are arranged among the physical property values of the plurality of types of fireproof materials. The equipment monitoring device according to claim 1 or 2, wherein only the physical property values of the fireproof material are used.
前記第3の温度測定手段が測定する温度の位置であって、前記耐火物の抜熱方向に垂直な方向における位置と同じ位置の温度を測定する温度測定手段が前記第3の温度測定手段以外にないことを特徴とする請求項1~3の何れか1項に記載の設備監視装置。 Other than the third temperature measuring means, the temperature measuring means for measuring the temperature at the same position as the position in the direction perpendicular to the heat removal direction of the fireproof material, which is the position of the temperature measured by the third temperature measuring means. The equipment monitoring device according to any one of claims 1 to 3, wherein the equipment monitoring device is not provided. 前記設備の溶融金属と接する部位の表面の、前記耐火物の抜熱方向における現在の位置を導出する第4の導出手段を更に有し、
前記耐火物は、前記耐火物の抜熱方向に並べられた複数種類の耐火物であって、熱伝導率が異なる複数種類の耐火物を有し、
前記第1の温度測定手段、前記第2の温度測定手段、および前記第3の温度測定手段は、前記複数種類の耐火物のうち、同一の種類の耐火物の内部に配置され、
前記1次元非定常伝熱逆問題解析では、前記複数種類の耐火物の物性値のうち、前記第1の温度測定手段、前記第2の温度測定手段、および前記第3の温度測定手段が配置された耐火物の物性値のみが用いられ、
前記第4の導出手段は、前記複数種類の耐火物の熱伝導率と、前記第3の導出手段により導出された前記温度一致位置と、前記設備の溶融金属と接する部位の表面の、前記耐火物の抜熱方向における位置の測定値のうち前記設備の前記外側部位の表面にも近い位置を示す測定値とを用いて、前記設備の溶融金属と接する部位の表面の、前記耐火物の抜熱方向における現在の位置を導出することを特徴とする請求項1~4の何れか1項に記載の設備監視装置。
Further having a fourth derivation means for deriving the current position of the surface of the portion of the equipment in contact with the molten metal in the heat removal direction of the refractory.
The refractory is a plurality of types of refractories arranged in the heat removal direction of the refractory, and has a plurality of types of refractories having different thermal conductivitys.
The first temperature measuring means, the second temperature measuring means, and the third temperature measuring means are arranged inside the same type of refractory among the plurality of types of refractories.
In the one-dimensional unsteady heat transfer reverse problem analysis, the first temperature measuring means, the second temperature measuring means, and the third temperature measuring means are arranged among the physical property values of the plurality of types of fireproof materials. Only the physical properties of the fireproof material are used,
The fourth derivation means is the fire resistance of the thermal conductivity of the plurality of types of refractories, the temperature matching position derived by the third derivation means, and the surface of the portion of the facility in contact with the molten metal. The refractory material on the surface of the part of the equipment in contact with the molten metal , using the measured value of the position of the object in the heat removal direction, which indicates the position closest to the surface of the outer part of the equipment. The equipment monitoring device according to any one of claims 1 to 4, wherein the current position in the heat removal direction is derived.
前記1次元非定常伝熱逆問題解析は、1次元非定常熱伝導方程式を満たす内外挿温度関数を用いた非定常伝熱逆問題解析であり、
前記内外挿温度関数は、前記耐火物の抜熱方向であるx軸方向の位置xおよび時刻tにおける、前記耐火物の内部の温度を示す関数T^(x,t)であることを特徴とする請求項1~5の何れか1項に記載の設備監視装置。
The one-dimensional unsteady heat transfer inverse problem analysis is a non-stationary heat transfer inverse problem analysis using an internal / external temperature function that satisfies the one-dimensional unsteady heat transfer equation.
The internal / external temperature function is characterized by being a function T ^ (x, t) indicating the temperature inside the refractory at a position x in the x-axis direction, which is the heat removal direction of the refractory, and a time t. The equipment monitoring device according to any one of claims 1 to 5.
前記内外挿温度関数T^(x,t)は、中心点jごとに定まる基底関数φjと、中心点jごとに定まる重みベクトルαjとの積の、前記中心点jのそれぞれにおける値の総和で表され、
前記中心点jは、前記耐火物のx軸方向の基準位置xjと、基準時刻tjとから定まる点であって、前記耐火物のx軸方向の位置と時刻とにより定まる2次元座標上の点であり、
前記基底関数φjは、前記中心点jを基準とした場合の、前記1次元非定常熱伝導方程式を満たす基本解の形で表現された関数であることを特徴とする請求項6に記載の設備監視装置。
The extrapolation temperature function T ^ (x, t) is the value of the product of the basis function φ j determined for each center point j and the weight vector α j determined for each center point j at each of the center points j. Expressed as sum
The center point j is a point determined from the reference position x j in the x-axis direction of the fireproof object and the reference time t j , and is on two-dimensional coordinates determined by the position and time in the x-axis direction of the fireproof object. Is the point,
The sixth aspect of claim 6, wherein the basis function φ j is a function expressed in the form of a fundamental solution satisfying the one-dimensional unsteady heat conduction equation when the center point j is used as a reference. Equipment monitoring device.
前記第1の導出手段は、前記1次元非定常熱伝導方程式と、第1の温度関数T1(x1 *,t)と、第2の温度関数T1(x2 *,t)と、前記内外挿温度関数T^(x,t)とを満足するように、前記第1の温度測定手段による測定結果が与えられる前記内外挿温度関数T^(x,t)と、前記第2の温度測定手段による測定結果が与えられる前記内外挿温度関数T^(x,t)との連立方程式に第1の情報量の定義点の情報を代入して当該連立方程式を解くことにより、前記重みベクトルαjを導出し、
前記第1の情報量の定義点は、前記第1の温度測定手段により測定される温度の位置と時刻により定まる点であって、前記耐火物のx軸方向の位置と時刻とにより定まる2次元座標上の点と、前記第2の温度測定手段により測定される温度の位置と時刻により定まる点であって、前記耐火物のx軸方向の位置と時刻とにより定まる2次元座標上の点とを含み、
前記第1の温度関数T1(x1 *,t)は、前記耐火物のx軸方向における前記第1の温度測定手段で測定される温度の位置x1 *および時刻tにおいて前記第1の温度測定手段により測定される温度を表す関数であり、
前記第2の温度関数T2(x2 *,t)は、前記耐火物のx軸方向における前記第2の温度測定手段で測定される温度の位置x1 *および時刻tにおいて前記第2の温度測定手段により測定される温度を表す関数であることを特徴とする請求項7に記載の設備監視装置。
The first derivation means includes the one-dimensional non-stationary heat conduction equation, the first temperature function T 1 (x 1 * , t), and the second temperature function T 1 (x 2 * , t). The internal / external temperature function T ^ (x, t) and the second The weight is solved by substituting the information of the definition point of the first information amount into the simultaneous equation with the internal / external temperature function T ^ (x, t) to which the measurement result by the temperature measuring means is given. Derivation of the vector α j ,
The definition point of the first information amount is a point determined by the position and time of the temperature measured by the first temperature measuring means, and is two-dimensional determined by the position and time of the fireproof object in the x-axis direction. A point on the coordinates, a point determined by the position and time of the temperature measured by the second temperature measuring means, and a point on the two-dimensional coordinates determined by the position and time in the x-axis direction of the fireproof object. Including
The first temperature function T 1 (x 1 * , t) is the first temperature position x 1 * and time t measured by the first temperature measuring means in the x-axis direction of the fireproof object. It is a function that expresses the temperature measured by the temperature measuring means.
The second temperature function T 2 (x 2 * , t) is the second temperature at the temperature position x 1 * and time t measured by the second temperature measuring means in the x-axis direction of the refractory material. The equipment monitoring device according to claim 7, wherein the equipment is a function representing a temperature measured by a temperature measuring means.
前記重みベクトルαjは、以下の(A)式~(D)式で計算され、
以下のmは、前記第1の温度計測手段により測定される温度の位置と時刻とにより定まる前記中心点jの数であり、
以下のlは、前記第2の温度測定手段により測定される温度の位置と時刻とにより定まる前記中心点jの数であり
以下のkは、前記第1の情報量の定義点を識別するための1からmまでの整数であり、
以下のsは、前記第1の情報量の定義点を識別するためのm+1からlまでの整数であり、
以下のjは、前記中心点jを識別するための1からm+lまでの整数であり、
以下のAは、(m+l)×(m+l)行列であり、
以下のAの[]内のφ(xk-xj,tk-tj)は、行列Aのk行j列成分の値であり、
以下のAの[]内のφ(xs-xj,ts-tj)は、行列Aのs行j列成分の値であり、
以下のxは、x軸の座標であり、
以下のtは、時刻であり、
以下のbは、(m+l)次元列ベクトルであり、
以下のbの[]内のobs1kは、行列bのk行成分の値であって、前記第1の温度測定手段により測定される温度であり、
以下のbの[]内のobs2kは、行列bのs行成分の値であって、前記第2の温度測定手段により測定される温度であり、
以下のαは、(m+l)次元列ベクトルであることを特徴とする請求項8に記載の設備監視装置。
Figure 0007016706000016
The weight vector α j is calculated by the following equations (A) to (D).
The following m is the number of the center points j determined by the position and time of the temperature measured by the first temperature measuring means.
The following l is the number of the center points j determined by the position and time of the temperature measured by the second temperature measuring means, and the following k is for identifying the definition point of the first information amount. It is an integer from 1 to m of
The following s is an integer from m + 1 to l for identifying the definition point of the first information amount.
The following j is an integer from 1 to m + l for identifying the center point j, and is an integer.
The following A is a (m + l) × (m + l) matrix.
The φ (x k − x j , tk −t j ) in [] of A below is the value of the k-by- j -column component of the matrix A.
The φ (x s − x j , t s − t j ) in [] of A below is the value of the s row j column component of the matrix A.
The following x are the coordinates of the x-axis.
The following t is the time,
The following b is a (m + l) dimensional column vector.
Obs1 k in [] of b below is the value of the k-row component of the matrix b, and is the temperature measured by the first temperature measuring means.
Obs2k in [] of b below is the value of the s row component of the matrix b, and is the temperature measured by the second temperature measuring means.
The equipment monitoring device according to claim 8, wherein α below is a (m + l) dimensional column vector.
Figure 0007016706000016
前記第3の導出手段は、前記1次元非定常熱伝導方程式と、前記1次元非定常熱伝導方程式における境界条件と、第3の温度関数T3(x3 *,t)と、前記内外挿温度関数T^(x,t)とを満足するように、前記1次元非定常熱伝導方程式における境界条件と、前記第3の温度測定手段による測定結果が与えられる前記内外挿温度関数T^(x,t)との連立方程式に第2の情報量の定義点の情報を代入して当該連立方程式を解くことにより、前記重みベクトルαjを導出し、
前記第2の情報量の定義点は、前記設備の前記外側部位の表面の位置であって、前記第3の温度測定手段の前記抜熱方向に垂直な方向における位置と時刻とにより定まる点であって、前記耐火物のx軸方向の位置と時刻とにより定まる2次元座標上の点と、前記第3の温度測定手段により測定される温度の位置と時刻により定まる点であって、前記耐火物のx軸方向の位置と時刻とにより定まる2次元座標上の点とを含み、
前記1次元非定常熱伝導方程式における境界条件は、前記設備の前記外側部位の表面における前記x軸方向の温度勾配と、前記耐火物を構成する材料の熱伝導率とに基づく熱流束と、前記設備の前記外側部位の表面における温度と前記冷却媒体との温度の差と、前記第2の導出手段により導出される前記耐火物を構成する材料と前記冷却媒体との間の熱伝達係数とに基づく熱流束と、が等しいことを示す式であり、
前記第3の温度関数T1(x3 *,t)は、前記耐火物のx軸方向における前記第3の温度測定手段で測定される温度の位置x3 *および時刻tにおいて前記第3の温度測定手段により測定される温度を表す関数であることを特徴とする請求項7~9の何れか1項に記載の設備監視装置。
The third derivation means includes the one-dimensional non-stationary heat conduction equation, the boundary conditions in the one-dimensional non-stationary heat conduction equation, the third temperature function T 3 (x 3 * , t), and the internal / extrapolation. The internal / external temperature function T ^ (the boundary condition in the one-dimensional non-stationary heat conduction equation and the measurement result by the third temperature measuring means are given so as to satisfy the temperature function T ^ (x, t). By substituting the information of the definition point of the second information amount into the simultaneous equations with x, t) and solving the simultaneous equations, the weight vector α j is derived.
The definition point of the second amount of information is the position of the surface of the outer portion of the equipment, which is determined by the position and time of the third temperature measuring means in the direction perpendicular to the heat removal direction. A point on two-dimensional coordinates determined by the position and time of the fireproof object in the x-axis direction, and a point determined by the position and time of the temperature measured by the third temperature measuring means, which is the fire resistance. Includes points on two-dimensional coordinates determined by the position of the object in the x-axis direction and the time.
The boundary conditions in the one-dimensional non-stationary heat conduction equation are a heat flux based on the temperature gradient in the x-axis direction on the surface of the outer portion of the equipment and the thermal conductivity of the material constituting the refractory material, and the heat flux. The difference between the temperature on the surface of the outer portion of the equipment and the temperature of the cooling medium, and the thermal transfer coefficient between the material constituting the fireproof material derived by the second derivation means and the cooling medium. It is an equation showing that the heat flux based on is equal to each other.
The third temperature function T 1 (x 3 * , t) is the third temperature function T 1 (x 3 *, t) at the temperature position x 3 * measured by the third temperature measuring means in the x-axis direction of the fireproof object and at time t. The equipment monitoring device according to any one of claims 7 to 9, wherein the equipment is a function representing a temperature measured by a temperature measuring means.
前記重みベクトルαjは、以下の(E)式~(H)式で計算され、
以下のmは、前記設備の前記外側部位の表面の位置と時刻とにより定まる前記中心点jの数であり、
以下のlは、前記第3の温度測定手段により測定される温度の位置と時刻とにより定まる前記中心点jの数であり
以下のkは、前記第2の情報量の定義点を識別するための1からmまでの整数であり、
以下のsは、前記第2の情報量の定義点を識別するためのm+1からlまでの整数であり、
以下のjは、前記中心点jを識別するための1からm+lまでの整数であり、
以下のAは、(m+l)×(m+l)行列であり、
以下のAの[]内のλ∂φ/∂x(xk-xj,tk-tj)+ha(xk-xj,tk-tj)φ(xk-xj,tk-tj)は、行列Aのk行j列成分の値であり、
以下のAの[]内のφ(xs-xj,ys-yj,ts-tj)は、行列Aのs行j列成分の値であり、
以下のλは、前記耐火物を構成する材料の熱伝導率であり、
以下のhaは、前記第2の導出手段により導出される前記耐火物を構成する材料と前記冷却媒体との間の熱伝達係数であり、
以下のxは、x軸の座標であり、
以下のtは、時刻であり、
以下のbは、(m+l)次元列ベクトルであり、
以下のgkは、行列bのk行成分の値であって、前記冷却媒体の温度と、前記第2の導出手段により導出される前記耐火物を構成する材料と前記冷却媒体との間の熱伝達係数haとの積であり、
以下のobs3s-mは、行列bのs行成分の値であって、前記第3の温度測定手段により測定される温度であり、
以下のαは、(m+l)次元列ベクトルであることを特徴とする請求項10に記載の設備監視装置。
Figure 0007016706000017
The weight vector α j is calculated by the following equations (E) to (H).
The following m is the number of the center points j determined by the position and time of the surface of the outer portion of the equipment.
The following l is the number of the center points j determined by the position and time of the temperature measured by the third temperature measuring means, and the following k is for identifying the definition point of the second information amount. It is an integer from 1 to m of
The following s is an integer from m + 1 to l for identifying the definition point of the second information amount.
The following j is an integer from 1 to m + l for identifying the center point j, and is an integer.
The following A is a (m + l) × (m + l) matrix.
Λ ∂φ / ∂x (x k - x j , tk-t j ) + ha (x k -x j , tk -t j ) φ ( x k-x j , in [ ] of A below tk −t j ) is the value of the k-by- j -column component of the matrix A.
The φ (x s − x j , y s − y j , t s −t j ) in [] of A below is the value of the s row j column component of the matrix A.
The following λ is the thermal conductivity of the material constituting the refractory.
The following ha is a heat transfer coefficient between the material constituting the refractory and the cooling medium derived by the second derivation means.
The following x are the coordinates of the x-axis.
The following t is the time,
The following b is a (m + l) dimensional column vector.
The following g k is the value of the k-row component of the matrix b, and is between the temperature of the cooling medium and the material constituting the refractory derived by the second derivation means and the cooling medium. It is the product of the heat transfer coefficient h a and
The following obs3 sm is the value of the s row component of the matrix b, and is the temperature measured by the third temperature measuring means.
The equipment monitoring device according to claim 10, wherein α below is a (m + l) dimensional column vector.
Figure 0007016706000017
前記設備は、所定の形状に成型された原料を電極により通電加熱するサブマージドアーク炉であることを特徴とする請求項1~11の何れか1項に記載の設備監視装置。 The equipment monitoring device according to any one of claims 1 to 11, wherein the equipment is a submerged arc furnace in which a raw material molded into a predetermined shape is energized and heated by an electrode. 溶融金属が内部に存在する設備であって、当該設備の内周面を構成する耐火物を有し、当該耐火物の内側が当該溶融金属と接する状態または他の物質が間に存在する状態で配置され、当該耐火物の外側が冷却媒体と接する状態または他の物質が間に存在する状態で配置される構成を有する設備を監視する設備監視方法であって、
それぞれ前記耐火物の内部の異なる位置に配置された第1の温度測定手段、第2の温度測定手段、および第3の温度測定手段により測定された温度と、前記冷却媒体の温度を測定する第4の温度測定手段により測定された温度と、を取得する温度取得工程と、
前記第1の温度測定手段により測定された温度と、前記第2の温度測定手段により測定された温度とを用いて、前記設備の部位のうち、前記耐火物の外側が冷却媒体と接する部位または冷却媒体との間に存在する物質と接する部位である外側部位の表面における温度と、前記設備の前記外側部位の表面における熱流束ベクトルの、前記耐火物の抜熱方向の成分の値とを、1次元非定常伝熱逆問題解析を行った結果に基づいて導出する第1の導出工程と、
前記設備の前記外側部位の表面における温度と、前記設備の前記外側部位の表面における熱流束ベクトルの、前記耐火物の抜熱方向の成分の値と、前記冷却媒体の温度を測定する第4の温度測定手段により測定された温度とを用いて、前記耐火物を構成する材料と前記冷却媒体との間の熱伝達係数を導出する第2の導出工程と、
前記第3の温度測定手段により測定された温度と、前記第2の導出工程により導出された熱伝達係数とを用いて、前記溶融金属の温度と温度が等しくなる前記耐火物の抜熱方向における位置である温度一致位置と、前記設備の溶融金属と接する部位の表面における熱流束ベクトルの、前記耐火物の抜熱方向の成分の値とを、1次元非定常伝熱逆問題解析を行った結果に基づいて導出する第3の導出工程と、を有し、
前記第1の温度測定手段の前記耐火物の抜熱方向に垂直な方向における位置と前記第2の温度測定手段の前記耐火物の抜熱方向に垂直な方向における位置は略同じであり、前記第3の温度測定手段の前記耐火物の抜熱方向に垂直な方向における位置と、前記第1の温度測定手段および前記第2の温度測定手段の前記耐火物の抜熱方向に垂直な方向における位置は異なることを特徴とする設備監視方法。
Equipment in which molten metal is present, with refractory material constituting the inner peripheral surface of the equipment, and in a state where the inside of the refractory material is in contact with the molten metal or in a state where other substances are present in between. An equipment monitoring method for monitoring equipment that is arranged and is arranged so that the outside of the refractory is in contact with the cooling medium or has other substances in between.
The temperature measured by the first temperature measuring means, the second temperature measuring means, and the third temperature measuring means, which are arranged at different positions inside the fireproof material, and the temperature of the cooling medium are measured. The temperature acquisition step of acquiring the temperature measured by the temperature measuring means of No. 4 and
Using the temperature measured by the first temperature measuring means and the temperature measured by the second temperature measuring means, the part of the equipment where the outside of the fireproof material comes into contact with the cooling medium or The temperature on the surface of the outer part , which is the part in contact with the substance existing between the cooling medium, and the value of the component of the heat transfer vector on the surface of the outer part of the equipment in the heat removal direction of the fireproof material. The first derivation step, which is derived based on the result of one-dimensional unsteady heat transfer reverse problem analysis,
A fourth measure of the temperature on the surface of the outer portion of the equipment, the value of the component of the heat flux vector on the surface of the outer portion of the equipment in the heat removal direction of the fireproof material, and the temperature of the cooling medium. A second derivation step of deriving the heat transfer coefficient between the material constituting the refractory material and the cooling medium using the temperature measured by the temperature measuring means, and
Using the temperature measured by the third temperature measuring means and the heat transfer coefficient derived by the second derivation step, the temperature of the molten metal becomes equal to the temperature in the heat removal direction of the refractory material. A one-dimensional non-stationary heat transfer reverse problem analysis was performed on the temperature matching position, which is the position, and the value of the component of the heat flux vector on the surface of the part in contact with the molten metal of the equipment in the heat removal direction of the fireproof material. It has a third derivation step, which is derived based on the result.
The position of the first temperature measuring means in the direction perpendicular to the heat removal direction of the fireproof material and the position of the second temperature measuring means in the direction perpendicular to the heat removal direction of the fireproof material are substantially the same. The position of the third temperature measuring means in the direction perpendicular to the heat removal direction of the fireproof material, and the position of the first temperature measuring means and the second temperature measuring means in the direction perpendicular to the heat removal direction of the fireproof material. Equipment monitoring method characterized by different locations.
請求項1~12の何れか1項に記載の設備監視装置の各手段としてコンピュータを機能させるためのプログラム。 A program for operating a computer as each means of the equipment monitoring device according to any one of claims 1 to 12.
JP2018011550A 2018-01-26 2018-01-26 Equipment monitoring equipment, equipment monitoring methods, and programs Active JP7016706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018011550A JP7016706B2 (en) 2018-01-26 2018-01-26 Equipment monitoring equipment, equipment monitoring methods, and programs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018011550A JP7016706B2 (en) 2018-01-26 2018-01-26 Equipment monitoring equipment, equipment monitoring methods, and programs

Publications (2)

Publication Number Publication Date
JP2019126834A JP2019126834A (en) 2019-08-01
JP7016706B2 true JP7016706B2 (en) 2022-02-07

Family

ID=67472679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018011550A Active JP7016706B2 (en) 2018-01-26 2018-01-26 Equipment monitoring equipment, equipment monitoring methods, and programs

Country Status (1)

Country Link
JP (1) JP7016706B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112170817B (en) * 2020-10-15 2022-03-08 长春理工大学 Casting mold cooling device and cooling method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005082862A (en) 2003-09-09 2005-03-31 Nippon Steel Corp Method and device for estimating inner surface position in reaction vessel, and computer program
JP2005134383A (en) 2003-10-10 2005-05-26 Nippon Steel Corp Evaluation method and apparatus for heating and cooling characteristics, operational management method and apparatus for reactor vessel, computer program, and computer-readable recording medium
JP2007075789A (en) 2005-09-16 2007-03-29 Nippon Steel Corp Method, apparatus, and computer program for estimating temperature or heat flux of reaction container and computer-readable recording medium
JP2016221537A (en) 2015-05-28 2016-12-28 株式会社神戸製鋼所 Method for controlling temperature of molten metal holding vessel, method for controlling refractory layer thickness of molten metal holding vessel, method for controlling molten metal temperature inside molten metal holding vessel, device for controlling temperature of molten metal holding vessel, and program for controlling temperature of molten metal holding vessel
JP2017227350A (en) 2016-06-20 2017-12-28 新日鐵住金株式会社 Refractory wear management device of electric furnace, refractory wear management system of electric furnace, refractory wear management method of electric furnace, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005082862A (en) 2003-09-09 2005-03-31 Nippon Steel Corp Method and device for estimating inner surface position in reaction vessel, and computer program
JP2005134383A (en) 2003-10-10 2005-05-26 Nippon Steel Corp Evaluation method and apparatus for heating and cooling characteristics, operational management method and apparatus for reactor vessel, computer program, and computer-readable recording medium
JP2007075789A (en) 2005-09-16 2007-03-29 Nippon Steel Corp Method, apparatus, and computer program for estimating temperature or heat flux of reaction container and computer-readable recording medium
JP2016221537A (en) 2015-05-28 2016-12-28 株式会社神戸製鋼所 Method for controlling temperature of molten metal holding vessel, method for controlling refractory layer thickness of molten metal holding vessel, method for controlling molten metal temperature inside molten metal holding vessel, device for controlling temperature of molten metal holding vessel, and program for controlling temperature of molten metal holding vessel
JP2017227350A (en) 2016-06-20 2017-12-28 新日鐵住金株式会社 Refractory wear management device of electric furnace, refractory wear management system of electric furnace, refractory wear management method of electric furnace, and program

Also Published As

Publication number Publication date
JP2019126834A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
JP5505086B2 (en) Method, apparatus and program for estimating state in mold in continuous casting
JP2007071686A (en) Method and device for estimating temperature of container wall or heat flux, computer program, computer-readable recording medium, and method of estimating container wall thickness
JP3769164B2 (en) Blast furnace bottom condition estimation and prediction method
JP6724587B2 (en) Electric furnace refractory wear management device, electric furnace refractory wear management system, electric furnace refractory wear management method, and program
JP7016706B2 (en) Equipment monitoring equipment, equipment monitoring methods, and programs
JP4753374B2 (en) Container wall thickness estimation method, apparatus, and computer program
KR102531803B1 (en) Method for monitoring wear of refractory linings of blast furnaces
JP5064433B2 (en) Method, apparatus and program for estimating heat flux on inner surface of container
JP4681127B2 (en) Hot water surface height detection apparatus, method, and computer-readable storage medium
Miłkowska-Piszczek et al. A comparison of models describing heat transfer in the primary cooling zone of a continuous casting machine
WO2014030118A2 (en) A method and a system for determination of refractory wear profile in a blast furnace
JP2016221537A (en) Method for controlling temperature of molten metal holding vessel, method for controlling refractory layer thickness of molten metal holding vessel, method for controlling molten metal temperature inside molten metal holding vessel, device for controlling temperature of molten metal holding vessel, and program for controlling temperature of molten metal holding vessel
JP4119620B2 (en) In-furnace situation estimation method for blast furnace
JP4695376B2 (en) Heating or cooling characteristic evaluation method and apparatus, reaction vessel operation management method and apparatus, computer program, and computer-readable recording medium
JP4743781B2 (en) Method, apparatus, and computer program for estimating temperature and heat flux of inner wall surface of container
JP2019217510A (en) Device for visualizing the inside of continuous casting mold, method, and program
JP4964720B2 (en) Method, apparatus, and computer program for estimating future temperature of measured object
Miłkowska-Piszczek et al. Applying a numerical model of the continuous steel casting process to control the length of the liquid core in the strand
JP3728050B2 (en) Blast furnace bottom condition estimation method
JP6702014B2 (en) Scrap burn-through determination method in electric furnace, furnace wall wear amount estimation method, program and system in electric furnace
WO2019123574A1 (en) Device for managing loss of refractory material in electric furnaces, system for managing loss of refractory material in electric furnaces, method for managing loss of refractory material in electric furnaces, and computer-readable storage medium
JP2021041453A (en) Continuous casting mold interior visualization device, method, and program
JP5418411B2 (en) Continuous casting method, continuous casting control device and program
TWI670460B (en) Refractory loss management device for electric furnace, refractory loss management system for electric furnace, refractory loss management method for electric furnace, and computer readable memory medium
Vicario et al. A novel procedure for the evaluation of new refractories for aluminium furnaces

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220126