JP7414044B2 - Metal strip temperature measuring method, metal strip temperature measuring device, metal strip manufacturing method, metal strip manufacturing equipment, and metal strip quality control method - Google Patents

Metal strip temperature measuring method, metal strip temperature measuring device, metal strip manufacturing method, metal strip manufacturing equipment, and metal strip quality control method Download PDF

Info

Publication number
JP7414044B2
JP7414044B2 JP2021130195A JP2021130195A JP7414044B2 JP 7414044 B2 JP7414044 B2 JP 7414044B2 JP 2021130195 A JP2021130195 A JP 2021130195A JP 2021130195 A JP2021130195 A JP 2021130195A JP 7414044 B2 JP7414044 B2 JP 7414044B2
Authority
JP
Japan
Prior art keywords
temperature
metal strip
radiation thermometer
metal
metal band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021130195A
Other languages
Japanese (ja)
Other versions
JP2022068097A (en
Inventor
紘明 大野
章紀 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2022068097A publication Critical patent/JP2022068097A/en
Application granted granted Critical
Publication of JP7414044B2 publication Critical patent/JP7414044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

本発明は、金属帯の温度測定方法、金属帯の温度測定装置、金属帯の製造方法、金属帯の製造設備、及び、金属帯の品質管理方法に関する。 The present invention relates to a metal strip temperature measuring method, a metal strip temperature measuring device, a metal strip manufacturing method, metal strip manufacturing equipment, and a metal strip quality control method.

従来、薄鋼板などの鋼帯の製造工程においては、材質の造りこみの観点から、鋼帯の温度管理が非常に重要である。特に、焼鈍工程では、鋼帯が各工程で目標温度となるように制御するために、搬送中の鋼帯の温度を測定するニーズがある。代表的な温度測定方法としては、鋼帯の放射輝度を測定し、測定した放射輝度を温度に換算する放射測温が挙げられる。しかしながら、鋼帯の放射率が既知でないと正しく測温することができず、製造工程で表面性状が大きく変化する鋼帯には、放射率の設定において課題が存在している。 BACKGROUND ART Conventionally, in the manufacturing process of steel strips such as thin steel sheets, temperature control of the steel strip is very important from the viewpoint of building up the material. In particular, in the annealing process, there is a need to measure the temperature of the steel strip during transportation in order to control the temperature of the steel strip to a target temperature in each process. A typical temperature measurement method includes radiation thermometry, which measures the radiance of a steel strip and converts the measured radiance into temperature. However, if the emissivity of the steel strip is not known, it is not possible to accurately measure the temperature, and there are problems in setting the emissivity of steel strips whose surface properties change significantly during the manufacturing process.

金属帯、特に鋼帯の放射率に関わらず測温できる手法としては、例えば、特許文献1に開示されているような多重反射式放射温度方式の測温装置を用いた手法、非特許文献1に開示されているような測温ロール方式の測温装置を用いた手法、及び、特許文献2に開示されているような分光主成分放射温度計を備えた測温装置を用いた手法などが挙げられる。多重反射式放射温度方式の測温装置を用いた手法では、例えば、図6に示すように、鋼帯110が巻き付いているロール120と鋼帯表面とのわずかな隙間を放射温度計140の視野とすることによって、疑似的に多重反射条件とし、放射率1.0に近づいた状態で鋼帯110の測温がなされる。また、測温ロール方式の測温装置を用いた手法では、例えば、図7に示すように、ロール130の内部に周方向にわたって複数の熱電対131を埋め込み、鋼帯110のロール130に巻き付いた部分で、ロール130の温度と鋼帯温度とが同一となる条件を作り出すことによって、熱電対131により鋼帯110の測温がなされる。また、分光主成分放射温度計を備えた測温装置を用いた手法では、鋼帯の分光放射と、主成分分析による学習とを用いて鋼帯の測温がなされる。 Methods that can measure temperature regardless of the emissivity of a metal strip, especially a steel strip include, for example, a method using a temperature measurement device using a multiple reflection type radiation temperature method as disclosed in Patent Document 1, Non-Patent Document 1 There are a method using a temperature measuring device of the temperature measuring roll type as disclosed in Japanese Patent Application Publication No. 2003-20002, and a method using a temperature measuring device equipped with a spectroscopic principal component radiation thermometer as disclosed in Patent Document 2. Can be mentioned. In a method using a multiple reflection radiation temperature measurement device, for example, as shown in FIG. By doing so, the temperature of the steel strip 110 is measured under a pseudo multiple reflection condition and the emissivity approaches 1.0. Furthermore, in a method using a temperature measuring roll type temperature measuring device, for example, as shown in FIG. The temperature of the steel strip 110 is measured by the thermocouple 131 by creating a condition in which the temperature of the roll 130 and the steel strip temperature are the same at a certain portion. Further, in a method using a temperature measuring device equipped with a spectral principal component radiation thermometer, the temperature of the steel strip is measured using the spectral radiation of the steel strip and learning by principal component analysis.

特公平4-58568号公報Special Publication No. 4-58568 特許第5979065号公報Patent No. 5979065

鉄と鋼、1993年、vol.79、No.7、p.765-771Tetsu to Hagane, 1993, vol. 79, No. 7, p. 765-771 計測自動制御学会論文集、1982年、vol.18、No.7、p.704-709Proceedings of the Society of Instrument and Control Engineers, 1982, vol. 18, No. 7, p. 704-709 JIS C 1612、放射温度計の性能試験方法通則JIS C 1612, General rules for performance testing of radiation thermometers

特許文献1及び非特許文献1に開示された手法は、鋼帯の温度を正しく測定する上で非常に有力な方法である。しかしながら、ロールと鋼帯との温度が同一でないと使用できず、十分に鋼帯がロールに巻き付いている必要があり、ロールに鋼帯が巻き付いていない、鋼帯の搬送方向に間隔をあけて配置された2つのロール間の直線パスでは、特許文献1及び非特許文献1に開示された手法は使用できない。また、特許文献2に開示された手法も、鋼帯温度の真値を取るために接触式熱電対が必要であり、装置が大掛かりになることや、学習のために大量のデータが必要になるなどの課題が存在する。 The methods disclosed in Patent Document 1 and Non-Patent Document 1 are very effective methods for accurately measuring the temperature of a steel strip. However, it cannot be used unless the temperature of the roll and the steel strip are the same, and the steel strip must be sufficiently wrapped around the roll. The methods disclosed in Patent Document 1 and Non-Patent Document 1 cannot be used in a straight path between two arranged rolls. Furthermore, the method disclosed in Patent Document 2 also requires a contact thermocouple to obtain the true value of the steel strip temperature, making the device large-scale and requiring a large amount of data for learning. There are issues such as:

一方、ロール間の直線パスにおいても、水焼き入れなどの鋼帯温度が急変する直前など、温度管理上、非常に重要な工程もあり、強い測温のニーズが存在する。特に、水焼き入れ直前の鋼帯温度は、材質上、きわめて重要であるが、設備制約上、水焼き入れ直前に鋼帯を巻き付けるためのロールを配置することは困難であり、ロールを用いた測温が適用できない。 On the other hand, even in the straight path between rolls, there are processes that are extremely important for temperature control, such as immediately before the steel strip temperature changes suddenly, such as during water quenching, and there is a strong need for temperature measurement. In particular, the temperature of the steel strip immediately before water quenching is extremely important for the quality of the material, but due to equipment constraints, it is difficult to arrange rolls to wrap the steel strip immediately before water quenching. Temperature measurement cannot be applied.

本発明は、上記課題に鑑みてなされたものであって、その目的は、2つのロール間で金属帯の温度を簡易に精度よく測定することができる金属帯の温度測定方法、金属帯の温度測定装置、金属帯の製造方法、金属帯の製造設備、及び、金属帯の品質管理方法を提供することである。 The present invention has been made in view of the above-mentioned problems, and the object thereof is to provide a method for measuring the temperature of a metal band that can easily and accurately measure the temperature of the metal band between two rolls, and a method for measuring the temperature of a metal band between two rolls. An object of the present invention is to provide a measuring device, a method for manufacturing a metal strip, a manufacturing facility for the metal strip, and a quality control method for the metal strip.

上述した課題を解決し、目的を達成するために、本発明に係る金属帯の温度測定方法は、金属帯の搬送方向に間隔をあけて配置された、前記金属帯が巻き付く2つのロールの間で、前記金属帯の温度を測定する金属帯の温度測定方法であって、前記2つのロールのうち、前記金属帯の搬送方向で上流側に位置する上流側ロールに埋設された熱電対によって前記上流側ロールの温度を測定するステップと、前記金属帯の前記上流側ロールに巻き付いた部分を第1放射温度計で測定し、放射輝度を求めるステップと、前記熱電対によって測定された温度と前記放射輝度とから、前記金属帯の放射率を算出するステップと、前記放射率を用いて第2放射温度計により、前記2つのロールの間に設定された測定位置で前記金属帯の表面温度を測定するステップと、を有することを特徴とするものである。 In order to solve the above-mentioned problems and achieve the objects, a method for measuring the temperature of a metal strip according to the present invention is provided by measuring the temperature of two rolls around which the metal strip is wound, which are spaced apart from each other in the conveying direction of the metal strip. A method for measuring the temperature of the metal band between the two rolls, the method comprising: measuring the temperature of the metal band between the two rolls, using a thermocouple embedded in an upstream roll located upstream in the conveyance direction of the metal band; measuring the temperature of the upstream roll; measuring the portion of the metal band wrapped around the upstream roll with a first radiation thermometer to obtain radiance; and determining the temperature measured by the thermocouple. calculating the emissivity of the metal strip from the radiance; and calculating the surface temperature of the metal strip at a measurement position set between the two rolls using the emissivity using a second radiation thermometer. The method is characterized by comprising a step of measuring.

また、本発明に係る金属帯の温度測定方法は、上記の発明において、前記金属帯の搬送方向における、前記第1放射温度計による金属帯表面の測定位置と、前記第2放射温度計による金属帯表面の測定位置との距離と、前記金属帯の搬送速度または前記上流側ロールの回転数と、を用いて、金属帯表面の同一個所を前記第1放射温度計及び前記第2放射温度計によって測定することを特徴とするものである。 Moreover, in the above-mentioned invention, the method for measuring the temperature of a metal band according to the present invention is characterized in that the measurement position of the metal band surface by the first radiation thermometer and the metal band surface measurement position by the second radiation thermometer in the conveyance direction of the metal band are provided. The first radiation thermometer and the second radiation thermometer measure the same location on the metal strip surface using the distance from the measurement position on the strip surface and the conveyance speed of the metal strip or the rotation speed of the upstream roll. It is characterized by being measured by.

また、本発明に係る金属帯の温度測定装置は、金属帯の搬送方向に間隔をあけて配置された、前記金属帯が巻き付く2つのロールの間で、前記金属帯の表面温度を測定する金属帯の温度測定装置であって、前記2つのロールのうち、前記金属帯の搬送方向で上流側に位置する上流側ロールに埋設され、前記上流側ロールの温度を測定する熱電対と、前記金属帯の前記上流側ロールに巻き付いた部分を測定する第1放射温度計と、前記熱電対によって測定された温度と、前記第1放射温度計の測定結果から得られた放射輝度とから、前記金属帯の放射率を算出する手段と、前記放射率を用いて、前記2つのロールの間に設定された測定位置で前記金属帯の表面温度を測定する第2放射温度計と、を備えることを特徴とするものである。 Furthermore, the metal strip temperature measuring device according to the present invention measures the surface temperature of the metal strip between two rolls around which the metal strip is wound, which are spaced apart from each other in the conveyance direction of the metal strip. A temperature measuring device for a metal strip, the thermocouple being embedded in an upstream roll located upstream of the two rolls in the conveying direction of the metal strip to measure the temperature of the upstream roll; From the first radiation thermometer that measures the portion of the metal band wrapped around the upstream roll, the temperature measured by the thermocouple, and the radiance obtained from the measurement results of the first radiation thermometer, the The method includes: means for calculating the emissivity of the metal strip; and a second radiation thermometer that uses the emissivity to measure the surface temperature of the metal strip at a measurement position set between the two rolls. It is characterized by:

また、本発明に係る金属帯の温度測定装置は、上記の発明において、前記金属帯の搬送方向における、前記第1放射温度計による金属帯表面の測定位置と、前記第2放射温度計による金属帯表面の測定位置との距離と、前記金属帯の搬送速度または前記上流側ロールの回転数と、を用いて、金属帯表面の同一個所を前記第1放射温度計及び前記第2放射温度計によって測定することを特徴とするものである。 Further, in the above-described invention, the metal band temperature measuring device according to the present invention is characterized in that the measurement position of the metal band surface by the first radiation thermometer and the metal band surface measurement position by the second radiation thermometer in the conveyance direction of the metal band are provided. The first radiation thermometer and the second radiation thermometer measure the same location on the metal strip surface using the distance from the measurement position on the strip surface and the conveyance speed of the metal strip or the rotation speed of the upstream roll. It is characterized by being measured by.

また、本発明に係る金属帯の製造方法は、金属帯の製造ステップと、上記の発明の金属帯の温度測定方法によって、前記製造ステップにおいて製造された金属帯の温度を測定する温度測定ステップと、を含むことを特徴とするものである。 Further, the method for producing a metal strip according to the present invention includes a step for producing a metal strip, and a temperature measurement step for measuring the temperature of the metal strip produced in the production step by the method for measuring the temperature of a metal strip according to the above-described invention. It is characterized by including the following.

また、本発明に係る金属帯の製造方法は、上記の発明において、前記温度測定ステップは、前記金属帯の搬送中の温度を測定するものであり、前記温度測定ステップで測定した温度を用いて、前記製造ステップに含まれる工程のうち、前記温度測定ステップより後にある1つまたは複数の工程の条件を制御することを特徴とするものである。 Further, in the method for manufacturing a metal strip according to the present invention, in the above invention, the temperature measuring step measures the temperature of the metal strip during transportation, and the temperature measured in the temperature measuring step is used. The method is characterized in that, among the steps included in the manufacturing step, conditions of one or more steps subsequent to the temperature measurement step are controlled.

また、本発明に係る金属帯の製造設備は、金属帯を製造するための製造設備と、前記製造設備により製造される金属帯の温度を測定する上記の発明の金属帯の温度測定装置と、を備え、前記製造設備は、前記金属帯を搬送するロールを有する搬送設備を備え、前記温度測定装置は、前記搬送設備内に設けられることを特徴とするものである。 Further, the metal strip manufacturing equipment according to the present invention includes a manufacturing equipment for manufacturing a metal belt, a temperature measuring device for a metal belt according to the above invention that measures the temperature of the metal belt manufactured by the manufacturing equipment, The manufacturing equipment is characterized in that it includes a conveyance facility having rolls for conveying the metal strip, and the temperature measuring device is provided within the conveyance facility.

また、本発明に係る金属帯の品質管理方法は、上記の発明の金属帯の温度測定方法によって、金属帯の温度を測定する温度測定ステップと、前記温度測定ステップにより得られた温度測定結果から、前記金属帯の品質管理を行う品質管理ステップと、を含むことを特徴とするものである。 Further, the quality control method for a metal strip according to the present invention includes a temperature measurement step of measuring the temperature of the metal strip using the temperature measurement method for a metal strip according to the above-mentioned invention, and a temperature measurement result obtained by the temperature measurement step. , a quality control step of controlling the quality of the metal strip.

本発明に係る金属帯の温度測定方法、金属帯の温度測定装置、金属帯の製造方法、金属帯の製造設備、及び、金属帯の品質管理方法は、2つのロール間で金属帯の温度を簡易に精度よく測定することができるという効果を奏する。 A metal strip temperature measuring method, a metal strip temperature measuring device, a metal strip manufacturing method, a metal strip manufacturing equipment, and a metal strip quality control method according to the present invention measure the temperature of a metal strip between two rolls. This has the effect that measurement can be performed easily and accurately.

図1は、実施形態に係る金属帯(一例として鋼帯)の製造設備に設けられた金属帯測温装置(一例として鋼帯測温装置)の概略構成を示した図である。FIG. 1 is a diagram showing a schematic configuration of a metal strip temperature measuring device (as an example, a steel strip temperature measuring device) provided in a manufacturing facility for a metal strip (as an example, a steel strip) according to an embodiment. 図2は、第1放射温度計の校正結果の一例を示したグラフである。FIG. 2 is a graph showing an example of the calibration results of the first radiation thermometer. 図3は、従来のフィードバック制御についての説明図である。FIG. 3 is an explanatory diagram of conventional feedback control. 図4は、実施形態に係る鋼帯の製造設備で実施可能なフィードフォワード制御についての説明図である。FIG. 4 is an explanatory diagram of feedforward control that can be performed in the steel strip manufacturing equipment according to the embodiment. 図5は、実施例の測温結果を示したグラフである。FIG. 5 is a graph showing the temperature measurement results of the example. 図6は、多重反射式放射温度方式の測温装置の概略構成を示した図である。FIG. 6 is a diagram showing a schematic configuration of a temperature measurement device using a multiple reflection type radiation temperature method. 図7は、測温ロール方式の測温装置の概略構成を示した図である。FIG. 7 is a diagram showing a schematic configuration of a temperature measuring roll type temperature measuring device.

以下に、本発明に係る金属帯の温度測定方法、金属帯の温度測定装置、金属帯の製造方法、金属帯の製造設備、及び、金属帯の品質管理方法の実施形態について説明する。なお、本実施形態においては、金属帯の一例として鋼帯を用いて説明する。すなわち、金属帯の製造設備については一例として鋼帯の製造設備で、金属帯の測温装置については一例として鋼帯の測温装置で説明する。もちろん、発明の効果を損ねない限り、本実施形態により本発明が限定されるものではない。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a metal strip temperature measuring method, a metal strip temperature measuring device, a metal strip manufacturing method, a metal strip manufacturing facility, and a metal strip quality control method according to the present invention will be described below. Note that this embodiment will be described using a steel strip as an example of the metal strip. That is, the metal strip manufacturing equipment will be explained using a steel strip manufacturing facility as an example, and the temperature measuring device for a metal strip will be explained using a steel strip temperature measuring device as an example. Of course, the present invention is not limited to this embodiment unless the effects of the invention are impaired.

図1は、実施形態に係る鋼帯の製造設備に設けられた鋼帯測温装置1の概略構成を示した図である。 FIG. 1 is a diagram showing a schematic configuration of a steel strip temperature measuring device 1 provided in a steel strip manufacturing facility according to an embodiment.

当該鋼帯の製造設備は、以下に説明する鋼帯の搬送設備を備えている。図1に示すように、実施形態に係る鋼帯10の搬送設備には、鋼帯10の搬送方向を上下に変更するための下部搬送ロール20と上部搬送ロール30と搬送ロール80とが設けられている。下部搬送ロール20は、図1中で反時計回り方向に回転しており、下部搬送ロール20に巻き付いた鋼帯10の搬送方向を横向きから上向きに変更しつつ搬送する。上部搬送ロール30は、図1中で時計回り方向に回転しており、下部搬送ロール20から上向きに搬送され、上部搬送ロール30に巻き付いた鋼帯10の搬送方向を下向きに変更しつつ搬送する。上部搬送ロール30よりも鋼帯10の搬送方向で下流側には、例えば、焼鈍炉による焼鈍後の鋼帯10を冷却水によって急冷するための急冷装置60が設けられている。なお、実施形態に係る鋼帯10の製造設備においては、製造する鋼帯10の種類などに応じて、上部搬送ロール30よりも鋼帯10の搬送方向で下流側に、急冷装置60に替えて鋼帯10を加熱する加熱装置を設けても良い。また、急冷装置60よりも鋼帯10の搬送方向の下流側には、鋼帯10が巻き付いて搬送される搬送ロール80が設けられている。なお、本実施形態においては、上部搬送ロール30と搬送ロール80とが、本発明の2つのロールであって、上部搬送ロール30が上流側ロールに、搬送ロール80が下流側ロールに相当する。 The steel strip manufacturing facility is equipped with steel strip conveyance equipment described below. As shown in FIG. 1, the conveyance equipment for the steel strip 10 according to the embodiment is provided with a lower conveyance roll 20, an upper conveyance roll 30, and a conveyance roll 80 for changing the conveyance direction of the steel strip 10 up and down. ing. The lower conveyance roll 20 is rotating counterclockwise in FIG. 1, and conveys the steel strip 10 wound around the lower conveyance roll 20 while changing the conveyance direction from sideways to upward. The upper conveyance roll 30 is rotating clockwise in FIG. 1, and is conveyed upward from the lower conveyance roll 20, while changing the conveyance direction of the steel strip 10 wound around the upper conveyance roll 30 downward. . On the downstream side of the upper conveyance roll 30 in the conveyance direction of the steel strip 10, for example, a quenching device 60 for rapidly cooling the steel strip 10 after annealing in an annealing furnace with cooling water is provided. In addition, in the manufacturing equipment for the steel strip 10 according to the embodiment, depending on the type of the steel strip 10 to be manufactured, etc., the quenching device 60 is installed downstream of the upper conveyance roll 30 in the conveyance direction of the steel strip 10. A heating device for heating the steel strip 10 may be provided. Further, on the downstream side of the quenching device 60 in the conveyance direction of the steel strip 10, a conveyance roll 80 around which the steel strip 10 is wound and conveyed is provided. In addition, in this embodiment, the upper conveyance roll 30 and the conveyance roll 80 are two rolls of this invention, Comprising: The upper conveyance roll 30 corresponds to an upstream roll, and the conveyance roll 80 corresponds to a downstream roll.

ここで、図1からわかるように、急冷装置60の直前には、上部搬送ロール30によって搬送された後の鋼帯10が、搬送ロールに巻き付いていない上下方向の直線パス50しか存在せず、なおかつ、この直線パス50において鋼帯10が搬送中に空冷などによって温度変化する要因が存在する。そのため、実施形態に係る鋼帯10の製造設備は、鋼帯10の搬送設備内に急冷装置60の直前の鋼帯10の温度を測定するための温度測定装置である鋼帯測温装置1を備えている。鋼帯測温装置1は、複数の熱電対31が埋設された上部搬送ロール30、第1放射温度計41、第2放射温度計42、及び、制御装置70などによって構成されている。 Here, as can be seen from FIG. 1, immediately before the quenching device 60, there is only a straight path 50 in the vertical direction in which the steel strip 10 after being transported by the upper transport roll 30 is not wrapped around the transport roll. In addition, there is a factor in which the temperature of the steel strip 10 changes due to air cooling or the like during transportation in this straight path 50. Therefore, the manufacturing equipment for the steel strip 10 according to the embodiment includes a steel strip temperature measuring device 1, which is a temperature measuring device for measuring the temperature of the steel strip 10 immediately before the quenching device 60, in the steel strip 10 conveyance facility. We are prepared. The steel strip temperature measuring device 1 includes an upper conveying roll 30 in which a plurality of thermocouples 31 are embedded, a first radiation thermometer 41, a second radiation thermometer 42, a control device 70, and the like.

上部搬送ロール30の内部には、周方向にわたって複数の熱電対31が埋設されており、上部搬送ロール30が測温ロールとしての機能を有している。なお、実施形態に係る鋼帯測温装置1においては、上部搬送ロール30の内部に1つ以上の熱電対31を埋設すればよい。また、上部搬送ロール30の性質上、鋼帯10からの熱伝達によって加熱される上部搬送ロール30の温度と、鋼帯温度とが同一になる必要があるため、上部搬送ロール30に対して鋼帯10が半周以上、巻き付いていることが望ましい。 A plurality of thermocouples 31 are embedded inside the upper conveyance roll 30 along the circumferential direction, and the upper conveyance roll 30 has a function as a temperature measuring roll. In addition, in the steel strip temperature measuring device 1 according to the embodiment, one or more thermocouples 31 may be embedded inside the upper conveyance roll 30. Further, due to the nature of the upper conveying roll 30, the temperature of the upper conveying roll 30, which is heated by heat transfer from the steel strip 10, and the steel strip temperature need to be the same. It is desirable that the band 10 is wrapped around half the circumference or more.

第1放射温度計41は、鋼帯10の上部搬送ロール30に巻き付いた部分における表面温度を測定可能なように配置されている。なお、第1放射温度計41の測定位置Pは、鋼帯10の上部搬送ロール30に巻き付いた部分であれば特に限定されるものではない。また、実施形態に係る鋼帯測温装置1においては、鋼帯10の上部搬送ロール30に巻き付いた部分を測定する第1放射温度計41を1つ以上設ければよい。 The first radiation thermometer 41 is arranged so as to be able to measure the surface temperature of the portion of the steel strip 10 wound around the upper conveyance roll 30. Note that the measurement position PA of the first radiation thermometer 41 is not particularly limited as long as it is a portion of the steel strip 10 wrapped around the upper conveyance roll 30. Moreover, in the steel strip temperature measurement device 1 according to the embodiment, one or more first radiation thermometers 41 may be provided to measure the portion of the steel strip 10 wound around the upper conveyance roll 30.

第2放射温度計42は、鋼帯10の搬送方向で急冷装置60の直前の位置における鋼帯10の表面温度を測定可能なように配置されている。なお、第2放射温度計42の測定位置Pは、できるだけ急冷装置60に近いほうが好ましい。また、実施形態に係る鋼帯測温装置1においては、急冷装置60の直前の位置で鋼帯10の表面温度を測定する第2放射温度計42を1つ以上設ければよい。 The second radiation thermometer 42 is arranged so as to be able to measure the surface temperature of the steel strip 10 at a position immediately before the quenching device 60 in the conveyance direction of the steel strip 10. Note that the measurement position PB of the second radiation thermometer 42 is preferably as close to the quenching device 60 as possible. Moreover, in the steel strip temperature measuring device 1 according to the embodiment, one or more second radiation thermometers 42 that measure the surface temperature of the steel strip 10 may be provided at a position immediately before the quenching device 60.

第1放射温度計41及び第2放射温度計42は、搬送中の鋼帯10と接触しない程度に、鋼帯表面から所定間隔をあけて配置されている。この際、第1放射温度計41及び第2放射温度計42と鋼帯表面との間隔は、第1放射温度計41及び第2放射温度計42のそれぞれの円形のスポット径内に、鋼帯表面上の狙いの個所がおさまっていれば、特定に限定されない。また、第1放射温度計41及び第2放射温度計42は、図1に示すように、鋼帯表面に対して垂直な位置で測定可能に配置することに限定されず、例えば、鋼帯表面に対して垂直な位置から鋼帯10の搬送方向の上流側または下流側に60[°]以下の範囲で傾いた位置で測定可能に配置してもよい。 The first radiation thermometer 41 and the second radiation thermometer 42 are arranged at a predetermined distance from the surface of the steel strip so as not to come into contact with the steel strip 10 being transported. At this time, the distance between the first radiation thermometer 41 and the second radiation thermometer 42 and the surface of the steel strip is such that the distance between the first radiation thermometer 41 and the second radiation thermometer 42 is such that the steel strip As long as the target location on the surface is fixed, it is not limited to a specific location. Further, the first radiation thermometer 41 and the second radiation thermometer 42 are not limited to being arranged so as to be able to measure at a position perpendicular to the steel strip surface, as shown in FIG. It may be arranged such that it can be measured at a position inclined within a range of 60[°] or less from a position perpendicular to the upstream side or downstream side in the conveyance direction of the steel strip 10.

制御装置70は、第1放射温度計41及び上部搬送ロール30の測定結果を用いて放射率εを算出し、その算出した放射率εを、第2放射温度計42の測定時に適用して、急冷装置60の直前の鋼帯温度を算出する。なお、放射率εは、波長依存性を持つため、第1放射温度計41と第2放射温度計42とは同一波長特性であることが望ましい。 The control device 70 calculates the emissivity ε using the measurement results of the first radiation thermometer 41 and the upper conveyance roll 30, applies the calculated emissivity ε when measuring the second radiation thermometer 42, The temperature of the steel strip immediately before the quenching device 60 is calculated. Note that since the emissivity ε has wavelength dependence, it is desirable that the first radiation thermometer 41 and the second radiation thermometer 42 have the same wavelength characteristics.

また、実施形態に係る鋼帯10の製造設備では、第1放射温度計41の測定位置Pと、第2放射温度計42の測定位置Pとで、なるべく鋼帯10の表面性状が変化しないことが好ましい。 In addition, in the manufacturing equipment for the steel strip 10 according to the embodiment, the surface properties of the steel strip 10 change as much as possible between the measurement position PA of the first radiation thermometer 41 and the measurement position P B of the second radiation thermometer 42. It is preferable not to do so.

ここで、実施形態に係る鋼帯測温装置1において、第1放射温度計41としては、放射温度を測定結果として出力する仕様のものと、放射輝度を測定結果として出力する仕様のものとの、いずれも適用可能である。そのため、まずは、第1放射温度計41が放射温度を測定結果として出力する仕様の場合について説明する。 Here, in the steel strip temperature measuring device 1 according to the embodiment, the first radiation thermometer 41 has two specifications: one that outputs radiant temperature as a measurement result, and the other that outputs radiance as a measurement result. , both are applicable. Therefore, first, a case will be described in which the first radiation thermometer 41 is designed to output radiation temperature as a measurement result.

放射温度を出力する仕様の第1放射温度計41では、ある一定の放射率εに設定して、鋼帯10の測温を実施する。この際、設定する放射率εは既知であればなんでも良いが、便宜上、1.0としておく。そして、このように放射率εを設定した第1放射温度計41によって鋼帯10の上部搬送ロール30に巻き付いた部分を測定し、鋼帯10の放射温度Tを第1放射温度計41の測定結果として出力する。このとき、上部搬送ロール30の熱電対31によって測定された測温値をTとする。鋼帯10の放射率εを算出するためには、放射率εが1.0(黒体条件)のときの放射輝度と、実際の放射輝度とを比較する必要があるため、得られた温度値を輝度値に換算する必要がある。なお、この際に用いる換算式は、第1放射温度計41を設置する前に校正により予め算出しておく。校正に用いる式は、一般的な多項式などでも良いが、精度を求めるのであればプランクの式をよく近似している下記数式(1)で表される佐久間服部の式(非特許文献2を参照)などが望ましく、本実施形態においても佐久間服部の式を用いる。第1放射温度計41の校正方法は、例えば、非特許文献3に開示された校正方法を適用でき、第1放射温度計41の校正結果の一例を図2に示す。図2に示すように、第1放射温度計41の校正を行うことによって、温度Tと、第1放射温度計41が出力する出力信号電圧Vとの間に、相関性が得られていることがわかる。このとき、第1放射温度計41の固有のパラメータA,B,Cが得られ、本パラメータを用いて鋼帯10の放射率εを算出する。なお、下記数式(1)中、cは放射の第二定数である。 The first radiation thermometer 41, which is designed to output radiation temperature, measures the temperature of the steel strip 10 by setting a certain emissivity ε. At this time, any emissivity ε may be set as long as it is known, but for convenience, it is set to 1.0. Then, the portion of the steel strip 10 wrapped around the upper conveyor roll 30 is measured by the first radiation thermometer 41 with the emissivity ε set in this manner, and the radiation temperature T A of the steel strip 10 is determined by the first radiation thermometer 41. Output as measurement results. At this time, the temperature value measured by the thermocouple 31 of the upper conveyance roll 30 is set as T r . In order to calculate the emissivity ε of the steel strip 10, it is necessary to compare the radiance when the emissivity ε is 1.0 (blackbody condition) and the actual radiance, so the obtained temperature It is necessary to convert the value into a brightness value. Note that the conversion formula used at this time is calculated in advance by calibration before installing the first radiation thermometer 41. The equation used for calibration may be a general polynomial, but if you are looking for accuracy, use Sakuma Hattori's equation (see Non-Patent Document 2), which is expressed by the following equation (1), which closely approximates Planck's equation. ), etc., and the Sakuma Hattori equation is also used in this embodiment. As a method for calibrating the first radiation thermometer 41, for example, the calibration method disclosed in Non-Patent Document 3 can be applied, and an example of the calibration result of the first radiation thermometer 41 is shown in FIG. As shown in FIG. 2, by calibrating the first radiation thermometer 41, a correlation is obtained between the temperature T and the output signal voltage V output from the first radiation thermometer 41. I understand. At this time, parameters A, B, and C specific to the first radiation thermometer 41 are obtained, and the emissivity ε of the steel strip 10 is calculated using these parameters. In addition, in the following mathematical formula (1), c2 is the second constant of radiation.

Figure 0007414044000001
Figure 0007414044000001

上記数式(1)を用いて、測温値Tを放射輝度S(T)に換算した結果を下記数式(2)に示し、放射温度Tを放射輝度S(T)に換算した結果を下記数式(3)に示す。なお、第1放射温度計41によって放射温度Tを測定するときに、放射率εを1.0に設定していない場合は、放射温度Tを測定するときに設定した放射率εで放射輝度S(T)を割ることによって、放射輝度S(T)を補正する。 Using the above formula (1), the measured temperature value T r is converted into the radiance S r (T r ), and the result is shown in the following formula (2), and the radiant temperature T A is converted into the radiance S A (T A ). The converted result is shown in the following formula (3). Note that when measuring the radiation temperature TA with the first radiation thermometer 41, if the emissivity ε is not set to 1.0, the radiation is measured at the emissivity ε set when measuring the radiation temperature TA. The radiance S A (T A ) is corrected by dividing the brightness S A (T A ).

Figure 0007414044000002
Figure 0007414044000002

Figure 0007414044000003
Figure 0007414044000003

そして、放射率εは、黒体条件(測温値Tを換算した結果)の放射輝度S(T)と実際の放射輝度S(T)との比であるため、下記数式(4)で算出することができる。

Figure 0007414044000004
Since the emissivity ε is the ratio of the radiance S r (T r ) under the blackbody condition (the result of converting the temperature measurement value T r ) to the actual radiance S A (T A ), the following formula is used. It can be calculated using (4).
Figure 0007414044000004

今回は、佐久間服部の式を用いて、測温値T及び放射温度Tと、放射輝度S(T),S(T)との換算を実施したが、換算に用いる式としては佐久間服部の式に限定されるものではなく、他の式を用いて、測温値T及び放射温度Tと、放射輝度S(T),S(T)との換算を実施も同様の結果が得られる。測温値T及び放射温度Tと、放射輝度S(T),S(T)との換算に、どの式を選定するのかは、計算量、精度、及び、放射温度計の波長特性などを鑑みて、適切な式を選定すればよい。 This time, we used Sakuma Hattori's formula to convert the measured temperature value T r and radiant temperature T A to the radiance S r (T r ), S A (T A ), but the formula used for conversion is The equation is not limited to Sakuma Hattori's equation, but other equations can be used to calculate the relationship between the measured temperature value T r and the radiant temperature T A and the radiance S r (T r ) and S A (T A ). Similar results can be obtained by performing conversion. Which formula to select for converting the measured temperature value T r and radiation temperature T A to the radiance S r (T r ), S A (T A ) depends on the amount of calculation, accuracy, and radiation thermometer. An appropriate formula may be selected in consideration of the wavelength characteristics of .

次に、第1放射温度計41が放射輝度を測定結果として出力する仕様の場合について説明する。放射輝度を測定結果として出力する仕様の第1放射温度計41では、上記数式(3)によって放射温度Tを放射輝度S(T)に換算する必要がない。そのため、上記数式(4)に、第1放射温度計41の出力結果である放射輝度S(T)を直接代入し、測温値Tを上記数式(2)によって換算した放射輝度S(T)を代入して、放射率εを算出することができる。 Next, a case will be described in which the first radiation thermometer 41 is designed to output radiance as a measurement result. In the first radiation thermometer 41 that is designed to output radiance as a measurement result, there is no need to convert the radiant temperature TA into the radiance S A ( TA ) using the above equation (3). Therefore, the radiance S A (T A ) which is the output result of the first radiation thermometer 41 is directly substituted into the above formula (4), and the radiance S The emissivity ε can be calculated by substituting r (T r ).

そして、算出した放射率εを用いて、第2放射温度計42によって鋼帯10の測温を実施することにより、第2放射温度計42の測定位置Pにおける鋼帯表面の放射温度Tを得ることができる。 Then, by measuring the temperature of the steel strip 10 with the second radiation thermometer 42 using the calculated emissivity ε, the radiation temperature T B of the steel strip surface at the measurement position P B of the second radiation thermometer 42 is determined. can be obtained.

また、第2放射温度計42はスポット計測である必要はなく、鋼帯表面の幅方向あるいは2次元の視野を持つ光学素子を用いて算出した放射率εを適用して鋼帯表面の幅方向温度分布を計測しても良い。また、鋼帯表面の幅方向に視野を持つ光学素子の代わりに、スポット温度計を走査させて鋼帯表面の幅方向温度分布を計測しても良い。このとき、鋼帯表面の幅方向の操業条件のばらつきにより、表面性状や放射率εが鋼帯表面の幅方向で異なる可能性がある。放射率εが鋼帯表面の幅方向で異なるときに、特定の一つの放射率εを適用した場合には、放射率εを正しく補正できない領域が発生し、測定する温度の誤差に繋がる。したがって、第1放射温度計41を2次元の視野を持つ光学素子あるいはスポット温度計とし、この第1放射温度計41を走査させることにより、鋼帯表面の幅方向の温度分布を計測可能としても良い。さらには、熱電対をロール幅方向に複数埋め込むことにより、対応する位置の放射輝度と熱電対温度値とから鋼帯表面の幅方向の放射率分布を算出しても良い。鋼帯表面の幅方向の放射率分布を用いて鋼帯表面の幅方向温度分布を算出することにより、鋼帯表面の幅方向に放射率εのばらつきがあったとしても、全測定位置に関わらず精度よく測温することが可能となる。 In addition, the second radiation thermometer 42 does not need to be a spot measurement, but can be measured in the width direction of the steel strip surface by applying the emissivity ε calculated using an optical element having a two-dimensional field of view or in the width direction of the steel strip surface. Temperature distribution may also be measured. Further, instead of using an optical element having a field of view in the width direction of the steel strip surface, a spot thermometer may be scanned to measure the width direction temperature distribution of the steel strip surface. At this time, the surface texture and emissivity ε may vary in the width direction of the steel strip surface due to variations in operating conditions in the width direction of the steel strip surface. If one specific emissivity ε is applied when the emissivity ε differs in the width direction of the steel strip surface, there will be a region where the emissivity ε cannot be corrected correctly, leading to an error in the measured temperature. Therefore, it is possible to measure the temperature distribution in the width direction of the steel strip surface by using the first radiation thermometer 41 as an optical element or spot thermometer with a two-dimensional field of view and scanning the first radiation thermometer 41. good. Furthermore, by embedding a plurality of thermocouples in the width direction of the roll, the emissivity distribution in the width direction of the steel strip surface may be calculated from the radiance and thermocouple temperature values at corresponding positions. By calculating the temperature distribution in the width direction of the steel strip surface using the emissivity distribution in the width direction of the steel strip surface, it is possible to calculate the temperature distribution in the width direction of the steel strip surface regardless of all measurement positions, even if there is variation in emissivity ε in the width direction of the steel strip surface. It becomes possible to measure temperature with high accuracy.

なお、鋼帯10の搬送方向において、第1放射温度計41の測定位置Pと第2放射温度計42の測定位置Pとは離れている。このとき、2つの鋼帯10を搬送方向で溶接して繋げた溶接点の前後など、表面性状及び放射率εが鋼帯10の搬送方向で大きく異なる鋼帯表面が通過する場合には、第1放射温度計41の測定位置Pと第2放射温度計42の測定位置Pとで放射率εが異なる条件が存在する。そのような条件で第1放射温度計41により算出した放射率εを用いて、同時に第2放射温度計42により測温した場合には、鋼帯10の表面性状の変化に伴う放射率εそのものが異なるため、測温誤差の要因となる可能性がある。そのため、第1放射温度計41の測定位置Pで測温した鋼帯表面上の位置と、第2放射温度計42の測定位置Pで測温する鋼帯表面上の位置とが、略同じになるように位置合わせを実施するのが好ましい。そして、例えば、鋼帯10の搬送速度をv[m/s]とし、鋼帯10の搬送方向における、第1放射温度計41の測定位置Pと第2放射温度計42の測定位置Pとの間の距離をL[m]とする。この場合、鋼帯表面上の同一個所が、第1放射温度計41の測定位置Pと第2放射温度計42の測定位置Pとを通過するタイミングには、第1放射温度計41の測定位置Pに対して第2放射温度計42の測定位置PでL/v[s]の遅延が存在する。したがって、第2放射温度計42が測定した放射温度Tの算出に用いる放射率εは、L/v[s]前に、第1放射温度計41が測定した放射温度Tまたは放射輝度S(T)と、上部搬送ロール30の熱電対31が測定した測温値Tと、を用いて算出した放射率εを用いればよい。 Note that in the conveyance direction of the steel strip 10, the measurement position PA of the first radiation thermometer 41 and the measurement position PB of the second radiation thermometer 42 are apart. At this time, if a steel strip surface whose surface texture and emissivity ε are significantly different in the conveying direction of the steel strip 10 passes, such as before and after a weld point where two steel strips 10 are welded and connected in the conveying direction, There is a condition in which the emissivity ε is different between the measurement position PA of the first radiation thermometer 41 and the measurement position PB of the second radiation thermometer 42. If the emissivity ε calculated by the first radiation thermometer 41 is used under such conditions and the temperature is measured by the second radiation thermometer 42 at the same time, the emissivity ε itself due to the change in the surface properties of the steel strip 10 Since the values are different, this may cause temperature measurement errors. Therefore, the position on the steel strip surface where the temperature is measured at the measurement position PA of the first radiation thermometer 41 and the position on the steel strip surface where the temperature is measured at the measurement position P B of the second radiation thermometer 42 are approximately the same. It is preferable to perform alignment so that they are the same. For example, assuming that the conveyance speed of the steel strip 10 is v [m/s], the measurement position P A of the first radiation thermometer 41 and the measurement position P B of the second radiation thermometer 42 in the conveyance direction of the steel strip 10 are Let the distance between the two be L [m]. In this case, at the timing when the same point on the steel strip surface passes the measurement position PA of the first radiation thermometer 41 and the measurement position P B of the second radiation thermometer 42, the measurement position P B of the first radiation thermometer 41 is There is a delay of L/v [ s] at the measurement position P B of the second radiation thermometer 42 with respect to the measurement position PA. Therefore, the emissivity ε used to calculate the radiation temperature T B measured by the second radiation thermometer 42 is equal to the radiation temperature T A or the radiance S measured by the first radiation thermometer 41 L/v [s] before. The emissivity ε calculated using A (T A ) and the temperature value T r measured by the thermocouple 31 of the upper conveyance roll 30 may be used.

一方で、鋼帯10の搬送速度を用いて鋼帯表面上の同一個所が移動した距離を算出し、位置合わせを行う場合には、第1放射温度計41の測定位置Pで測温した鋼帯表面上の位置と、第2放射温度計42の測定位置Pで測温する鋼帯表面上の位置との間に位置ズレが発生する可能性がある。その理由は、鋼帯10の搬送速度が等速の場合には精度よく位置合わせできるが、鋼帯表面上の同一個所が第1放射温度計41の測定位置Pから第2放射温度計42の測定位置Pに到達するまでの間に、鋼帯10の搬送速度が変化した場合であっても、鋼帯10の搬送速度が等速であると仮定して鋼帯10の搬送速度と時間との積により、鋼帯表面上の同一個所が移動した距離を算出するためである。そのため、より厳密に制御したい場合には、鋼帯10の搬送速度の変化を考慮して、鋼帯10の搬送速度を時間で積分して鋼帯表面上の同一個所が移動した距離を算出し、第1放射温度計41の測定位置Pで測温した鋼帯表面上の位置と、第2放射温度計42の測定位置Pで測温する鋼帯表面上の位置とが、略同じになるように位置合わせすることがより好ましい。さらに、上部搬送ロール30の回転数によって鋼帯表面上の位置をトラッキングしている場合には、鋼帯表面上の同一個所が、第1放射温度計41と第2放射温度計42とによって測定されるように、トラッキング情報から、第1放射温度計41の測定位置Pで測定した鋼帯表面上の位置と、第2放射温度計42の測定位置Pで測定する鋼帯表面上の位置との位置合わせを実施し、直接、鋼帯表面上の同一個所が移動した距離を算出してもよい。このように、第1放射温度計41の測定位置Pで測定した鋼帯表面上の位置と、第2放射温度計42の測定位置Pで測定する鋼帯表面上の位置との位置合わせを実施することによって、鋼帯表面上の同一個所に対して放射率εの補正を実施することができ、鋼帯10の搬送方向で生じ得る鋼帯表面の放射率変動の影響を受けずに、精度よく測温することが可能となる。 On the other hand, when the distance traveled by the same point on the surface of the steel strip is calculated using the conveyance speed of the steel strip 10 and alignment is performed, the temperature is measured at the measurement position P A of the first radiation thermometer 41. There is a possibility that a positional shift occurs between the position on the steel strip surface and the position on the steel strip surface where the temperature is measured at the measurement position PB of the second radiation thermometer 42. The reason for this is that when the conveyance speed of the steel strip 10 is constant, accurate positioning is possible, but the same point on the surface of the steel strip is different from the measurement position P A of the first radiation thermometer 41 to the measurement position P A of the second radiation thermometer 42. Even if the conveying speed of the steel strip 10 changes before reaching the measurement position PB , the conveying speed of the steel strip 10 and This is to calculate the distance traveled by the same point on the steel strip surface by multiplying by time. Therefore, if you want to control it more precisely, consider changes in the conveyance speed of the steel strip 10 and integrate the conveyance speed of the steel strip 10 over time to calculate the distance traveled by the same point on the surface of the steel strip. , the position on the steel strip surface where the temperature is measured at the measurement position PA of the first radiation thermometer 41 and the position on the steel strip surface where the temperature is measured at the measurement position P B of the second radiation thermometer 42 are approximately the same. It is more preferable to align so that Furthermore, when the position on the steel strip surface is tracked by the rotation speed of the upper conveyance roll 30, the same location on the steel strip surface is measured by the first radiation thermometer 41 and the second radiation thermometer 42. As shown in FIG . It is also possible to perform alignment with the position and directly calculate the distance traveled by the same point on the surface of the steel strip. In this way, the position on the steel strip surface measured at the measurement position PA of the first radiation thermometer 41 and the position on the steel strip surface measured at the measurement position P B of the second radiation thermometer 42 are aligned. By performing this, it is possible to correct the emissivity ε for the same location on the steel strip surface, without being affected by emissivity fluctuations on the steel strip surface that may occur in the conveying direction of the steel strip 10. , it becomes possible to measure temperature with high accuracy.

また、本実施形態においては、第1放射温度計41及び上部搬送ロール30に対して第2放射温度計42を鋼帯10の搬送方向で下流側に配置しているが、第1放射温度計41及び上部搬送ロール30に対して第2放射温度計42を鋼帯10の搬送方向で上流側に配置しても、同様の測温が可能となる。ただし、この場合、第2放射温度計42で用いる放射率εが得られるのは、第2放射温度計42によって測温された鋼帯10の表面上の同一個所が、鋼帯表面に対する第1放射温度計41の測定位置Pを通過した後となる。そのため、例えば、第2放射温度計42では、仮の放射率εを用いて測温しておくか、放射輝度を取得しておき、後から得られる放射率εを用いて正しい測温結果に換算する。 Further, in this embodiment, the second radiation thermometer 42 is arranged downstream in the conveyance direction of the steel strip 10 with respect to the first radiation thermometer 41 and the upper conveyance roll 30, but the first radiation thermometer Even if the second radiation thermometer 42 is placed upstream of the steel strip 10 and the upper conveyance roll 30 in the conveyance direction of the steel strip 10, similar temperature measurement is possible. However, in this case, the emissivity ε used by the second radiation thermometer 42 is obtained when the same point on the surface of the steel strip 10 whose temperature is measured by the second radiation thermometer 42 is the first This is after passing the measurement position PA of the radiation thermometer 41. Therefore, for example, in the second radiation thermometer 42, the temperature is measured using a temporary emissivity ε, or the radiance is acquired, and the emissivity ε obtained later is used to obtain the correct temperature measurement result. Convert.

また、第1放射温度計41及び上部搬送ロール30に対して第2放射温度計42を鋼帯10の搬送方向で上流側に配置した場合においても、上述したのと同様に、鋼帯表面に対する第1放射温度計41の測定位置Pと、鋼帯表面に対する第2放射温度計42の測定位置Pとの位置合わせを実施することが望ましい。 Furthermore, even when the second radiation thermometer 42 is placed upstream of the first radiation thermometer 41 and the upper conveyance roll 30 in the conveyance direction of the steel strip 10, the same effect can be applied to the surface of the steel strip as described above. It is desirable to align the measurement position PA of the first radiation thermometer 41 and the measurement position PB of the second radiation thermometer 42 with respect to the steel strip surface.

ここで、従来、鋼帯の製造設備では、図3に示すように、急冷装置160によって急冷された後の鋼帯110を放射温度計142によって測温し、その測温結果と、急冷後の鋼帯10の目標温度との差異を、急冷装置160の出力(例えば、単位時間当たりに鋼帯10に向けて噴射する液量など)にフィードバックするフィードバック制御を制御装置170が行うことによって、鋼帯10の温度制御が行われている。しかしながら、フィードバック制御では、実際に急冷後の鋼帯10を測温してから制御装置170によって急冷装置160の出力を調整するため、フィードフォワード制御と比較して、どうしても応答性が低下する。そのため、温度や厚みなどの製造条件が異なる鋼帯を連続して製造する場合には、製造条件が変わる前後で応答性の低下が、急冷後の鋼帯における温度不良領域の増加につながり、歩留まりを低下させる。 Here, in conventional steel strip manufacturing equipment, as shown in FIG. The control device 170 performs feedback control to feed back the difference from the target temperature of the steel strip 10 to the output of the quenching device 160 (for example, the amount of liquid injected toward the steel strip 10 per unit time). The temperature of the band 10 is controlled. However, in feedback control, the output of the quenching device 160 is adjusted by the control device 170 after actually measuring the temperature of the steel strip 10 after quenching, so the responsiveness inevitably decreases compared to feedforward control. Therefore, when manufacturing steel strips with different manufacturing conditions such as temperature and thickness, the responsiveness decreases before and after the manufacturing conditions change, which leads to an increase in temperature failure areas in the steel strip after quenching, resulting in a reduction in yield. decrease.

そこで、実施形態に係る鋼帯10の製造設備においては、図4に示すように、上記数式(4)を用いて算出された放射率εと、鋼帯10の搬送速度をv[m/s]とを用いて、第1放射温度計41によって測温された鋼帯表面の同一個所が急冷装置60に到達するまでの温度変化を、制御装置70が伝熱計算によって予測する。そして、その予測した温度変化に基づいて、制御装置70によって急冷装置60の出力(例えば、単位時間当たりに鋼帯10に向けて噴射する液量など)を調整するフィードフォワード制御を行い、鋼帯10の温度制御を実施する。 Therefore, in the manufacturing equipment for the steel strip 10 according to the embodiment, as shown in FIG. ], the control device 70 uses heat transfer calculation to predict the temperature change at the same point on the surface of the steel strip whose temperature was measured by the first radiation thermometer 41 until it reaches the quenching device 60. Then, based on the predicted temperature change, the control device 70 performs feedforward control to adjust the output of the quenching device 60 (for example, the amount of liquid injected toward the steel strip 10 per unit time), and 10 temperature controls are carried out.

なお、鋼帯10の温度制御の応答性を向上させるためには、温度予測によるフィードフォワード制御が有効であるが、鋼帯の製造工程のような高温域では、伝熱は下記数式(5)で表されるように輻射が支配的であり、放射率εが特に重要であった。 In order to improve the responsiveness of temperature control of the steel strip 10, feedforward control based on temperature prediction is effective, but in high temperature ranges such as those in the steel strip manufacturing process, heat transfer is calculated using the following formula (5). Radiation was dominant, as expressed by , and emissivity ε was particularly important.

Figure 0007414044000005
Figure 0007414044000005

そのため、実施形態に係る鋼帯測温装置1のように、放射率εを精度良く推定することによって、伝熱モデルの精度が向上し、フィードフォワード制御を導入することによって、高い応答性で鋼帯10の温度制御が可能となる。また、鋼帯10の温度制御に、上記フィードフォワード制御と上記フィードバック制御とを組み合わせて、より高精度な温度制御を実現しても良い。 Therefore, as in the steel strip temperature measuring device 1 according to the embodiment, by estimating the emissivity ε with high accuracy, the accuracy of the heat transfer model is improved, and by introducing feedforward control, the steel strip temperature measurement device 1 can be The temperature of the band 10 can be controlled. Further, the feedforward control and the feedback control may be combined to control the temperature of the steel strip 10 to achieve more accurate temperature control.

次に、発明の効果を示す実施例について説明する。本実施例では、第1放射温度計41、第2放射温度計42、及び、上部搬送ロール30などの鋼帯測温装置1を構成する各構成要素の配置は、図1と同様である。また、本実施例では、第1放射温度計41及び第2放射温度計42として、InGaAs素子を備えるものを用いた。本実施例では、第2放射温度計42の測定位置Pの直後には、急冷装置60によって鋼帯10に水焼き入れを行う水焼き入れ工程があり、焼き入れ直前の鋼帯10の温度管理が極めて重要である。 Next, examples showing the effects of the invention will be described. In this embodiment, the arrangement of each component constituting the steel strip temperature measuring device 1, such as the first radiation thermometer 41, the second radiation thermometer 42, and the upper conveyance roll 30, is the same as that in FIG. 1. Furthermore, in this embodiment, the first radiation thermometer 41 and the second radiation thermometer 42 are equipped with InGaAs elements. In this embodiment, immediately after the measurement position PB of the second radiation thermometer 42, there is a water quenching step in which the steel strip 10 is water quenched by a quenching device 60, and the temperature of the steel strip 10 immediately before quenching is Management is extremely important.

本実施例では、まず、事前に第1放射温度計41の校正を実施した。次に、第1放射温度計41と上部搬送ロール30との測定結果から鋼帯10の放射率εを算出した。なお、放射率εの算出の際に用いた換算式は、佐久間服部の式を用いた。また、本実施例では、第1放射温度計41の測定位置Pと第2放射温度計42の測定位置Pとが、鋼帯10の搬送方向で30[m]離れている。そのため、本実施例では、鋼帯10の搬送速度v[m/s]を上部搬送ロール30の回転数などから取得して、30/v[s]前に、第1放射温度計41が測定した放射温度Tまたは放射輝度S(T)と、上部搬送ロール30の熱電対31が測定した測温値Tとを用いて算出した放射率εを、第2放射温度計42の放射温度Tの算出時に適用した。図5に、本実施例の鋼帯10の測温結果を示す。 In this example, first, the first radiation thermometer 41 was calibrated in advance. Next, the emissivity ε of the steel strip 10 was calculated from the measurement results of the first radiation thermometer 41 and the upper conveyance roll 30. Note that the conversion formula used in calculating the emissivity ε was the formula of Hattori Sakuma. Further, in this embodiment, the measurement position PA of the first radiation thermometer 41 and the measurement position PB of the second radiation thermometer 42 are separated by 30 [m] in the conveyance direction of the steel strip 10. Therefore, in this embodiment, the conveyance speed v [m/s] of the steel strip 10 is acquired from the rotation speed of the upper conveyance roll 30, etc., and the first radiation thermometer 41 measures the conveyance speed v [m/s] before 30/v [s]. The emissivity ε calculated using the radiant temperature T A or the radiant brightness S A (T A ) and the temperature value T r measured by the thermocouple 31 of the upper conveyance roll 30 is calculated using the emissivity ε of the second radiation thermometer 42. This was applied when calculating the radiant temperature TB . FIG. 5 shows the temperature measurement results of the steel strip 10 of this example.

ここで、放射率εを一定にした場合には、第2放射温度計42による鋼帯10の測温結果が大きくばらついていた。これに対して、本実施例では、時々刻々と放射率εを算出し、放射率εの変動を常時補正して、第2放射温度計42による鋼帯10の測温が行われるため、図5に示すように、鋼帯10の測温結果のばらつきが低減していることがわかる。このように、本実施例では、急冷装置60の直前の直線パス50にて、正しい放射率εを用いて第2放射温度計42により鋼帯10の温度を簡易に精度よく測定することができる。 Here, when the emissivity ε was kept constant, the temperature measurement results of the steel strip 10 by the second radiation thermometer 42 varied widely. On the other hand, in this embodiment, the temperature of the steel strip 10 is measured by the second radiation thermometer 42 by calculating the emissivity ε every moment and constantly correcting the fluctuations in the emissivity ε. 5, it can be seen that the variation in temperature measurement results of the steel strip 10 is reduced. In this way, in this embodiment, the temperature of the steel strip 10 can be easily and accurately measured by the second radiation thermometer 42 using the correct emissivity ε on the straight path 50 immediately before the quenching device 60. .

また、本発明を金属帯の製造設備を構成する温度測定装置として適用し、本発明に係る温度測定装置によって、公知または既存の製造設備によって製造された金属帯の温度を測定するようにしてもよい。この場合、既に説明した通り、金属帯を製造するための製造設備は、前記金属帯を搬送するロールを有する搬送設備を備える。そして、本発明に係る温度測定装置は、この搬送設備内に設けられることになる。さらに、本発明に係る温度測定装置は、この搬送設備内の金属帯を搬送する2つのロール間に設けられるのが最も望ましい。 Furthermore, the present invention may be applied as a temperature measuring device constituting metal strip manufacturing equipment, and the temperature of a metal strip manufactured by known or existing manufacturing equipment may be measured using the temperature measuring device according to the present invention. good. In this case, as already explained, the manufacturing equipment for manufacturing the metal strip includes a conveyance facility having rolls for conveying the metal strip. The temperature measuring device according to the present invention will be installed within this transport facility. Furthermore, the temperature measuring device according to the present invention is most preferably installed between two rolls that transport the metal strip within this transport facility.

また、本発明を金属帯の製造方法に含まれる温度測定ステップとして適用し、公知または既存の製造ステップにおいて、金属帯の温度を測定するようにしてもよい。この場合、既に説明した通り、公知または既存の製造ステップの途中に、本発明に係る温度測定方法を用いて製造途中の金属帯の温度を測定する温度測定ステップを設けることが望ましい。 Further, the present invention may be applied as a temperature measurement step included in a method for manufacturing a metal strip, and the temperature of the metal strip may be measured in a known or existing manufacturing step. In this case, as already explained, it is desirable to provide a temperature measurement step in the middle of a known or existing manufacturing step in which the temperature of the metal strip being manufactured is measured using the temperature measurement method according to the present invention.

具体的には、金属帯の製造工程における温度が急激に変化する前後に温度測定ステップを設けることが望ましい。金属帯の製造工程において目的の材質を造りこむための手段として水冷や空冷による急冷や、誘導加熱炉(Induction Heatingを略してIH加熱炉と呼ぶ)や直火炉による急加熱は、非常に重要であり、温度変化前後の正確な測温が製品材質に大きく寄与する。しかしながら、このような急冷設備の直前もしくは直後、または急加熱設備の直前もしくは直後は、ロール間であることが多く、多重反射式や測温ロールなどによる精度の良い測温手法を適用することが困難である。本発明により温度測定することで、急冷・急加熱前後の温度を精度良く測定することで、精度良く目的とする材質の金属帯を製造できるようになる。 Specifically, it is desirable to provide a temperature measurement step before and after a sudden change in temperature during the manufacturing process of the metal strip. In the manufacturing process of metal strips, rapid cooling using water cooling or air cooling, rapid heating using induction heating furnaces (abbreviated as IH heating furnaces), and direct-fired furnaces are extremely important methods for building the desired material. Accurate temperature measurement before and after temperature changes greatly contributes to the quality of the product material. However, immediately before or after such rapid cooling equipment, or immediately before or after rapid heating equipment, it is often between rolls, and it is difficult to apply highly accurate temperature measurement methods such as multiple reflection type or temperature measuring roll. Have difficulty. By measuring the temperature according to the present invention, it is possible to precisely measure the temperature before and after rapid cooling and rapid heating, thereby making it possible to manufacture a metal strip of the desired material with high precision.

また、温度制御の応答性を高めて過渡応答期間を減少させ、温度非定常領域をなるべく少なくするためにフィードフォワード制御を用いる場合は、上記金属帯の製造方法に追加して、前記温度測定ステップは、前記金属帯の搬送中の温度を測定するものとし、前記温度測定ステップで測定した温度を用いて、前記製造ステップに含まれる工程のうち、前記温度測定ステップより後にある1つまたは複数の工程の条件を制御する。 In addition, when feedforward control is used to increase the responsiveness of temperature control, reduce the transient response period, and minimize the temperature unsteady region, the temperature measurement step may be performed in addition to the above metal strip manufacturing method. shall measure the temperature of the metal strip during transportation, and use the temperature measured in the temperature measurement step to perform one or more steps subsequent to the temperature measurement step among the steps included in the manufacturing step. Control process conditions.

フィードフォワード制御の具体例を、鋼帯の製造技術を例にしていくつか述べる。鋼帯の入側温度から目標温度にラジエントヒーターを用いて加熱制御する加熱帯において、定常状態から何らかの操業条件の変化により、入側温度や鋼帯の放射率が変化して加熱後の温度が目標温度から変化することを考える。このとき、放射率は吸収率と等しいため、ラジエントヒーターからの吸熱量は放射率に依存する。加熱後の計測温度値を用いたフィードバック制御の場合、加熱後に到達するまでラジエントヒーターの出力は変化せず、加熱後に到達して初めて制御が始まるため、その間に搬送された鋼帯は目標温度からの誤差が大きくなる。本発明により算出した放射率を用いて、ラジエントヒーターからの吸熱量を入側の時点でシミュレーションし、加熱後の温度を予測してラジエントヒーターの出力を予めフィードフォワード制御することで、加熱後の鋼帯温度を目標温度に近づけることができ、結果として不良となる材の領域を減少させることが可能となる。 Some specific examples of feedforward control will be described using steel strip manufacturing technology as an example. In a heating zone where heating is controlled from the entrance temperature of the steel strip to the target temperature using a radiant heater, due to some change in operating conditions from a steady state, the entrance temperature and the emissivity of the steel strip change, causing the temperature after heating to change. Consider changing from the target temperature. At this time, since the emissivity is equal to the absorption rate, the amount of heat absorbed from the radiant heater depends on the emissivity. In the case of feedback control using the measured temperature value after heating, the output of the radiant heater does not change until it reaches the temperature after heating, and control starts only after it reaches the temperature after heating. The error becomes larger. Using the emissivity calculated by the present invention, the amount of heat absorbed from the radiant heater is simulated at the input side, the temperature after heating is predicted, and the output of the radiant heater is controlled in advance by feedforward. The steel strip temperature can be brought close to the target temperature, and as a result, the area of defective materials can be reduced.

次に、鋼帯の入側温度から目標温度にIH加熱炉等を用いて加熱制御する加熱帯において、定常状態から何らかの操業条件の変化により、入側温度や鋼帯の放射率が変化して加熱後の温度が目標温度から変化することを考える。このとき、鋼帯からは輻射抜熱が存在するが、抜熱量は放射率に依存する。加熱後の計測温度値を用いたフィードバック制御の場合、加熱後に到達するまでIH加熱炉等の出力は変化せず、加熱後に到達して初めて制御が始まるため、その間に搬送された鋼帯は目標温度からの誤差が大きくなる。本発明により算出した放射率を用いて、鋼帯からの輻射抜熱量を入側の時点でシミュレーションし、加熱後の温度を予測してIH加熱炉の出力を予めフォードフォワード制御することで、加熱後の鋼帯温度を目標温度に近づけることができ、結果として不良となる材の領域を減少させることが可能となる。本具体例は、IHによる加熱時の放射率変動による抜熱量変動を予測したが、空冷時や保熱時による抜熱も同様にフィードフォワード制御することが可能となる。 Next, in the heating zone where heating is controlled from the entrance temperature of the steel strip to the target temperature using an IH heating furnace, etc., the entrance temperature and the emissivity of the steel strip change due to some change in operating conditions from the steady state. Consider that the temperature after heating changes from the target temperature. At this time, there is radiant heat removed from the steel strip, but the amount of heat removed depends on the emissivity. In the case of feedback control using the measured temperature value after heating, the output of the IH heating furnace, etc. does not change until the temperature value is reached after heating, and control starts only after reaching the temperature value after heating. The error from temperature increases. Using the emissivity calculated by the present invention, the amount of radiation heat extracted from the steel strip is simulated at the time of entry, the temperature after heating is predicted, and the output of the IH heating furnace is controlled in advance by forward forward control. The subsequent steel strip temperature can be brought closer to the target temperature, and as a result, it is possible to reduce the area of defective materials. In this specific example, fluctuations in the amount of heat removed due to changes in emissivity during heating by IH are predicted, but it is also possible to perform feedforward control of heat removed during air cooling and heat retention in the same way.

このような金属帯の製造設備及び金属帯の製造方法によれば、金属帯を歩留りよく製造することができる。特に、金属帯を鋼帯とした場合、すなわち鋼帯の製造設備及び鋼帯の製造方法の場合には、フィードフォワード制御の利点を最大限に生かすことができるので、特に好ましい。 According to such metal strip manufacturing equipment and metal strip manufacturing method, metal strips can be manufactured with high yield. In particular, when the metal strip is a steel strip, that is, in the case of steel strip manufacturing equipment and steel strip manufacturing method, the advantage of feedforward control can be maximized, so it is particularly preferable.

さらに、本発明を金属帯の品質管理方法に適用し、金属帯の温度を測定することにより、金属帯の品質管理を行うようにしてもよい。すなわち、製造工程における金属帯の温度履歴は最終製品の表面性状や材質に大きく影響する。したがって、各製造工程において所定の温度に制御することは品質管理上、非常に重要である。具体的には、本発明で金属帯の温度を温度測定ステップで測定し、温度測定ステップで得られた測定結果から、金属帯の品質管理を行うことができる。次に続く品質管理ステップでは、温度測定ステップで得られた測定結果に基づき、各工程で測定された温度が製造された金属帯が予め指定された温度管理基準を満たしているかどうかを判定し、金属帯の品質を管理する。このような金属帯の品質管理方法によれば、高品質の金属帯を提供することができる。特に、金属帯を鋼帯とした場合、すなわち鋼帯の品質管理方法の場合には特に好ましい。 Furthermore, the present invention may be applied to a method for controlling the quality of a metal strip, and the quality of the metal strip may be controlled by measuring the temperature of the metal strip. That is, the temperature history of the metal strip during the manufacturing process greatly affects the surface quality and material quality of the final product. Therefore, it is very important for quality control to control the temperature to a predetermined value in each manufacturing process. Specifically, in the present invention, the temperature of the metal strip is measured in the temperature measurement step, and the quality of the metal strip can be controlled from the measurement results obtained in the temperature measurement step. In the next quality control step, based on the measurement results obtained in the temperature measurement step, it is determined whether the temperature measured in each step satisfies pre-specified temperature control standards for the manufactured metal strip, Control the quality of metal strips. According to such a metal strip quality control method, a high quality metal strip can be provided. It is particularly preferable when the metal strip is a steel strip, that is, in the case of a quality control method for steel strips.

1 鋼帯測温装置
10,110 鋼帯
20 下部搬送ロール
30 上部搬送ロール(上流側ロール)
31,131 熱電対
41 第1放射温度計
42 第2放射温度計
50 直線パス
60,160 急冷装置
70,170 制御装置
80 搬送ロール(下流側ロール)
120,130 ロール
140,142 放射温度計
1 Steel strip temperature measurement device 10, 110 Steel strip 20 Lower conveyance roll 30 Upper conveyance roll (upstream roll)
31,131 Thermocouple 41 First radiation thermometer 42 Second radiation thermometer 50 Straight path 60,160 Rapid cooling device 70,170 Control device 80 Conveyance roll (downstream roll)
120,130 Roll 140,142 Radiation thermometer

Claims (8)

金属帯の搬送方向に間隔をあけて配置された、前記金属帯が巻き付く2つのロールの間の直線パスで、前記金属帯の温度を測定する金属帯の温度測定方法であって
記2つのロールのうち、前記金属帯の搬送方向で上流側に位置する上流側ロールに埋設された熱電対によって前記上流側ロールの温度を測定するステップと、
前記上流側ロールに前記金属帯が半周以上巻き付いており、前記金属帯の前記上流側ロールに巻き付いた部分を第1放射温度計で測定し、放射輝度を求めるステップと、
前記熱電対によって測定された温度と前記放射輝度とから、前記金属帯の放射率を算出するステップと、
前記放射率を用いて第2放射温度計により、前記2つのロールの間に設定された測定位置で前記金属帯の表面温度を測定するステップと、
を有し、
前記2つのロールの間には、他のロールが前記金属帯に巻き付いていない前記直線パスしか存在しない、
ことを特徴とする金属帯の温度測定方法。
A method for measuring the temperature of a metal band, the method comprising: measuring the temperature of the metal band in a straight line between two rolls around which the metal band is wound, which are spaced apart in the conveying direction of the metal band ;
Of the two rolls, measuring the temperature of the upstream roll with a thermocouple embedded in the upstream roll located on the upstream side in the conveyance direction of the metal strip;
The metal band is wrapped around the upstream roll for more than half a circumference, and a step of measuring the portion of the metal band wrapped around the upstream roll with a first radiation thermometer to obtain radiance;
calculating the emissivity of the metal band from the temperature measured by the thermocouple and the radiance;
measuring the surface temperature of the metal strip at a measurement position set between the two rolls with a second radiation thermometer using the emissivity;
has
Between the two rolls, there is only the straight path in which no other roll is wrapped around the metal strip,
A method for measuring the temperature of a metal band characterized by the following.
前記金属帯の搬送方向における、前記第1放射温度計による金属帯表面の測定位置と、前記第2放射温度計による金属帯表面の測定位置との距離と、
前記金属帯の搬送速度または前記上流側ロールの回転数と、
を用いて、
金属帯表面の同一個所を前記第1放射温度計及び前記第2放射温度計によって測定することを特徴とする請求項1に記載の金属帯の温度測定方法。
a distance between a measurement position of the metal band surface by the first radiation thermometer and a measurement position of the metal band surface by the second radiation thermometer in the conveyance direction of the metal band;
the conveyance speed of the metal band or the rotation speed of the upstream roll;
Using,
2. The method for measuring the temperature of a metal strip according to claim 1, wherein the same location on the surface of the metal strip is measured by the first radiation thermometer and the second radiation thermometer.
金属帯の搬送方向に間隔をあけて配置された、前記金属帯が巻き付く2つのロールの間の直線パスで、前記金属帯の表面温度を測定する金属帯の温度測定装置であって、
前記2つのロールの間には、他のロール前記金属帯巻き付いていない前記直線パスしか存在せず、
前記2つのロールのうち、前記金属帯の搬送方向で上流側に位置する上流側ロールに埋設され、前記上流側ロールの温度を測定する熱電対と、
前記上流側ロールに前記金属帯が半周以上巻き付いており、前記金属帯の前記上流側ロールに巻き付いた部分を測定する第1放射温度計と、
前記熱電対によって測定された温度と、前記第1放射温度計の測定結果から得られた放射輝度とから、前記金属帯の放射率を算出する手段と、
前記放射率を用いて、前記2つのロールの間に設定された測定位置で前記金属帯の表面温度を測定する第2放射温度計と、
を備えることを特徴とする金属帯の温度測定装置。
A metal band temperature measuring device that measures the surface temperature of the metal band in a straight path between two rolls around which the metal band is wound, which are arranged at intervals in the conveying direction of the metal band,
Between the two rolls , there is only the straight path in which no other roll is wrapped around the metal strip,
a thermocouple embedded in an upstream roll located upstream in the conveyance direction of the metal strip among the two rolls, and measuring the temperature of the upstream roll;
a first radiation thermometer in which the metal band is wrapped around the upstream roll for more than half a circumference, and a first radiation thermometer that measures a portion of the metal band wrapped around the upstream roll;
means for calculating the emissivity of the metal band from the temperature measured by the thermocouple and the radiance obtained from the measurement result of the first radiation thermometer;
a second radiation thermometer that measures the surface temperature of the metal strip at a measurement position set between the two rolls using the emissivity;
A metal band temperature measuring device comprising:
前記金属帯の搬送方向における、前記第1放射温度計による金属帯表面の測定位置と、前記第2放射温度計による金属帯表面の測定位置との距離と、
前記金属帯の搬送速度または前記上流側ロールの回転数と、
を用いて、
金属帯表面の同一個所を前記第1放射温度計及び前記第2放射温度計によって測定することを特徴とする請求項3に記載の金属帯の温度測定装置。
a distance between a measurement position of the metal band surface by the first radiation thermometer and a measurement position of the metal band surface by the second radiation thermometer in the conveyance direction of the metal band;
the conveyance speed of the metal band or the rotation speed of the upstream roll;
Using,
4. The temperature measuring device for a metal strip according to claim 3, wherein the first radiation thermometer and the second radiation thermometer measure the same location on the surface of the metal strip.
金属帯の製造ステップと、
請求項1または2に記載の金属帯の温度測定方法によって、前記製造ステップにおいて、前記金属帯の温度を測定する温度測定ステップと、
を含むことを特徴とする金属帯の製造方法。
manufacturing steps of the metal strip;
A temperature measuring step of measuring the temperature of the metal band in the manufacturing step by the method for measuring the temperature of the metal band according to claim 1 or 2;
A method for manufacturing a metal strip, comprising:
前記温度測定ステップは、前記金属帯の搬送中の温度を測定するものであり、
前記温度測定ステップで測定した温度を用いて、前記製造ステップに含まれる工程のうち、前記温度測定ステップより後にある1つまたは複数の工程の条件を制御することを特徴とする請求項5に記載の金属帯の製造方法。
The temperature measuring step measures the temperature of the metal band during transportation,
6. The temperature measured in the temperature measuring step is used to control the conditions of one or more steps subsequent to the temperature measuring step among the steps included in the manufacturing step. A method of manufacturing metal strips.
金属帯を製造するための製造設備と、
前記製造設備により製造される金属帯の温度を測定する請求項3または4に記載の金属帯の温度測定装置と、
を備え、
前記製造設備は、前記金属帯を搬送するロールを有する搬送設備を備え、
前記温度測定装置は、前記搬送設備内に設けられることを特徴とする金属帯の製造設備。
manufacturing equipment for manufacturing metal strips;
The metal strip temperature measuring device according to claim 3 or 4, which measures the temperature of the metal strip manufactured by the manufacturing equipment;
Equipped with
The manufacturing equipment includes transport equipment having rolls that transport the metal strip,
A manufacturing facility for metal strips, wherein the temperature measuring device is provided within the conveying facility.
請求項1または2に記載の金属帯の温度測定方法によって、金属帯の温度を測定する温度測定ステップと、
前記温度測定ステップにより得られた温度測定結果から、前記金属帯の品質管理を行う品質管理ステップと、
を含むことを特徴とする金属帯の品質管理方法。
A temperature measuring step of measuring the temperature of the metal band by the metal band temperature measurement method according to claim 1 or 2;
a quality control step of controlling the quality of the metal strip from the temperature measurement results obtained in the temperature measurement step;
A method for quality control of a metal strip, comprising:
JP2021130195A 2020-10-21 2021-08-06 Metal strip temperature measuring method, metal strip temperature measuring device, metal strip manufacturing method, metal strip manufacturing equipment, and metal strip quality control method Active JP7414044B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020176486 2020-10-21
JP2020176486 2020-10-21

Publications (2)

Publication Number Publication Date
JP2022068097A JP2022068097A (en) 2022-05-09
JP7414044B2 true JP7414044B2 (en) 2024-01-16

Family

ID=81456014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021130195A Active JP7414044B2 (en) 2020-10-21 2021-08-06 Metal strip temperature measuring method, metal strip temperature measuring device, metal strip manufacturing method, metal strip manufacturing equipment, and metal strip quality control method

Country Status (1)

Country Link
JP (1) JP7414044B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024129925A (en) * 2023-03-14 2024-09-30 株式会社Screenホールディングス Emissivity adjustment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233790A (en) 2004-02-19 2005-09-02 Nippon Steel Corp Method and apparatus for measuring temperature of sheet steel
JP2010066132A (en) 2008-09-11 2010-03-25 Nippon Steel Corp Method of controlling temperature in continuous annealing furnace, and continuous annealing furnace
JP2016156811A (en) 2015-02-25 2016-09-01 株式会社神戸製鋼所 Intergranular oxidation detecting apparatus and intergranular oxidation detecting method
JP2017057447A (en) 2015-09-15 2017-03-23 Jfeスチール株式会社 Production facility and production method for high tensile strength steel plate
CN208443483U (en) 2018-04-25 2019-01-29 张明程 A kind of Non-contact Infrared Temperature Measurement device of steel rider laminating machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625382B2 (en) * 1986-07-18 1994-04-06 川崎製鉄株式会社 Calibration method of radiation thermometer in continuous annealing furnace.
JPH01169328A (en) * 1987-12-25 1989-07-04 Kawasaki Steel Corp Temperature measuring apparatus of metal strip
JPH06331447A (en) * 1993-05-18 1994-12-02 Kawasaki Steel Corp Method and apparatus for evaluating precision of radiation thermometer
JPH0843212A (en) * 1994-07-29 1996-02-16 Kawasaki Steel Corp Method and instrument for measuring temperature by multicolor radiation thermometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233790A (en) 2004-02-19 2005-09-02 Nippon Steel Corp Method and apparatus for measuring temperature of sheet steel
JP2010066132A (en) 2008-09-11 2010-03-25 Nippon Steel Corp Method of controlling temperature in continuous annealing furnace, and continuous annealing furnace
JP2016156811A (en) 2015-02-25 2016-09-01 株式会社神戸製鋼所 Intergranular oxidation detecting apparatus and intergranular oxidation detecting method
JP2017057447A (en) 2015-09-15 2017-03-23 Jfeスチール株式会社 Production facility and production method for high tensile strength steel plate
CN208443483U (en) 2018-04-25 2019-01-29 张明程 A kind of Non-contact Infrared Temperature Measurement device of steel rider laminating machine

Also Published As

Publication number Publication date
JP2022068097A (en) 2022-05-09

Similar Documents

Publication Publication Date Title
US8047706B2 (en) Calibration of temperature control system for semiconductor processing chamber
US20130030561A1 (en) Rolled material cooling control apparatus, rolled material cooling control method, and rolled material cooling control program
JP7414044B2 (en) Metal strip temperature measuring method, metal strip temperature measuring device, metal strip manufacturing method, metal strip manufacturing equipment, and metal strip quality control method
US8812168B2 (en) Temperature measuring method and temperature measuring device of steel plate, and temperature control method of steel plate
JP2006281300A (en) Cooling control method, device, and computer program
JP5493993B2 (en) Thick steel plate cooling control device, cooling control method, and manufacturing method
JPH08193887A (en) Method for measuring temperature of material in hot rolling line
JP7444125B2 (en) Metal plate surface temperature measuring device, annealing equipment, and surface temperature measuring method
WO2021219024A1 (en) Apparatus and method for measuring temperature of object in space
JP2022165402A (en) Temperature measuring method, temperature measuring device, temperature control method, temperature control device, method for manufacturing steel material, and facility for manufacturing steel material
JP6645036B2 (en) Cooling control method, cooling control device, manufacturing method, and manufacturing device for thick steel plate
JP2019014953A (en) Temperature prediction method for steel material
JP2006272395A (en) Method and apparatus for controlling cooling and computer program
CN103344358B (en) Low-temperature fine metal wire non-contact temperature measuring method in complex setting
JP6627609B2 (en) Cooling control method and cooling device
JPH0525567B2 (en)
JP6645037B2 (en) Cooling control method, cooling control device, manufacturing method, and manufacturing device for thick steel plate
CN114777929B (en) Ground test temperature measurement method based on trajectory in airplane ground heat intensity test
JPS61292528A (en) Correction in temperature measurement for steel material in furnace
KR100723168B1 (en) Method and system for compensating emissivity in continuous annealing process
JPH0663849B2 (en) Measuring method of material temperature in continuous heating furnace
JP2833461B2 (en) Metal strip temperature control method
JPH04168232A (en) Method for controlling temperature of steel strip
JPS6326315A (en) Method for calibrating radiation thermometer for continuous annealing furnace
JPS60159127A (en) Method for controlling cooling of steel strip in continuous annealing installation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231211

R150 Certificate of patent or registration of utility model

Ref document number: 7414044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150