JP2010066132A - Method of controlling temperature in continuous annealing furnace, and continuous annealing furnace - Google Patents

Method of controlling temperature in continuous annealing furnace, and continuous annealing furnace Download PDF

Info

Publication number
JP2010066132A
JP2010066132A JP2008232814A JP2008232814A JP2010066132A JP 2010066132 A JP2010066132 A JP 2010066132A JP 2008232814 A JP2008232814 A JP 2008232814A JP 2008232814 A JP2008232814 A JP 2008232814A JP 2010066132 A JP2010066132 A JP 2010066132A
Authority
JP
Japan
Prior art keywords
metal strip
continuous annealing
temperature
annealing furnace
emissivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008232814A
Other languages
Japanese (ja)
Other versions
JP5293022B2 (en
Inventor
Toshiyuki Shiraishi
利幸 白石
Atsushi Ishii
篤 石井
Daisuke Kasai
大輔 河西
Shigeru Ogawa
茂 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008232814A priority Critical patent/JP5293022B2/en
Publication of JP2010066132A publication Critical patent/JP2010066132A/en
Application granted granted Critical
Publication of JP5293022B2 publication Critical patent/JP5293022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To highly accurately control the temperature in a continuous annealing furnace of a metal strip, which is rolled by a dull work roll at the final stand and of which the surface roughness varies, thereby manufacturing the metal strip, which is uniform and stable in the quality of the material, in the continuous annealing furnace. <P>SOLUTION: The method of controlling the temperature in the continuous annealing furnace 10 includes a step of measuring a surface state of the metal strip S in a surface gloss measuring device 4 located on the upstream side of the continuous annealing furnace 10, a step of determining emissivity from the relation between the surface state of the metal strip S decided beforehand on each kind of steel and the emissivity, and a step of performing the temperature control, based on the determined emissivity and a temperature determined by a radiation thermometer 11, so that the surface temperature of the metal strip S in the continuous annealing furnace 10 may be a desired temperature. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、連続焼鈍炉における温度制御方法および連続焼鈍炉に関する。 The present invention relates to a temperature control method in a continuous annealing furnace and a continuous annealing furnace.

冷間タンデムで金属ストリップを冷間圧延すると、冷間圧延された金属ストリップは塑性変形によって生じた転位がからみ合って硬化する。硬化した金属ストリップは、プレス加工性などの二次加工性が悪いため、硬化した金属ストリップを軟化させるために焼鈍を行う。焼鈍工程は、一般に金属ストリップを加熱・保時・冷却する工程から成り立っている。加熱することによって鉄原子は移動しやすくなるので、加工によって硬化した鋼の結晶は回復し、再結晶する。この過程で、からみ合った転位は消滅し、加熱、保持条件に対応した大きさの新しい結晶粒が生成し、成長する。さらに、加熱、保持の時に、析出物は分解し固溶原子になる。固溶した原子は、冷却時、冷却速度に応じた大きさと分布でふたたび析出する。このような結晶粒や析出物の変化も材料の硬さに影響を及ぼす。この一連のプロセスは連続的に行われ、連続焼鈍炉と呼ばれている。 When a metal strip is cold-rolled with cold tandem, the cold-rolled metal strip is entangled and hardened by dislocations caused by plastic deformation. Since the hardened metal strip has poor secondary workability such as press workability, annealing is performed to soften the hardened metal strip. The annealing process generally comprises a process of heating, holding and cooling the metal strip. Heating makes it easier for iron atoms to move, so the steel crystals hardened by processing recover and recrystallize. In this process, the entangled dislocations disappear, and new crystal grains with a size corresponding to the heating and holding conditions are generated and grown. Furthermore, the precipitate decomposes into solid solution atoms during heating and holding. When the atoms are dissolved, they are precipitated again with a size and distribution according to the cooling rate. Such changes in crystal grains and precipitates also affect the hardness of the material. This series of processes is performed continuously and is called a continuous annealing furnace.

上述したように、連続焼鈍炉では圧延された金属ストリップを熱処理するため、その温度制御精度が材質に大きな影響を及ぼす。一般に連続焼鈍炉内の加熱された金属ストリップの温度は、非接触方式の放射温度計で測定される。放射温度計は被測定物の表面状態の影響を受けるので、温度測定精度を向上させるためには被測定物の表面状態(粗度、スケール等)に応じて、上記放射温度計の放射率を正しく設定する必要がある。放射率が適正でないと、実際の加熱された金属ストリップの温度を、実際の温度よりも高くあるいは低く検出し、その検出された温度を元に炉の温度制御が行われるため連続焼鈍炉で熱処理された後の金属ストリップに材質上のバラツキが生じてしまう。近年、品質管理の厳格化が進み、このバラツキが問題として浮上した。このため、連続焼鈍炉における高精度な温度制御が望まれていた。 As described above, since the rolled metal strip is heat-treated in the continuous annealing furnace, the temperature control accuracy greatly affects the material. Generally, the temperature of the heated metal strip in the continuous annealing furnace is measured by a non-contact type radiation thermometer. Since the radiation thermometer is affected by the surface condition of the object to be measured, in order to improve the temperature measurement accuracy, the emissivity of the radiation thermometer is set according to the surface condition (roughness, scale, etc.) of the object to be measured. It is necessary to set it correctly. If the emissivity is not appropriate, the temperature of the actual heated metal strip is detected higher or lower than the actual temperature, and the furnace temperature is controlled based on the detected temperature, so heat treatment is performed in a continuous annealing furnace. The resulting metal strip will vary in material. In recent years, quality control has become stricter, and this variation has emerged as a problem. For this reason, highly accurate temperature control in a continuous annealing furnace has been desired.

これを解決するため、例えば鋼板の表面温度を高精度に測定するために、複数の波長の放射輝度を複数の偏光角の成分において測定し、その測定された複数の偏光角成分における信号と表面温度にもとづいて放射率を算出する鋼板温度計測方法(特許文献1)や、外部酸化層の酸化物の組成比率をオンライン測定しその組成比率に基づいて放射率を補正する方法(特許文献2)や、炉温とストリップ温度とライン速度と炉内ロール温度を測定して放射率を算出設定する方法(特許文献3)などがある。 In order to solve this, for example, in order to measure the surface temperature of a steel sheet with high accuracy, the radiance of a plurality of wavelengths is measured in a plurality of polarization angle components, and the signals and surfaces in the measured plurality of polarization angle components are measured. Steel plate temperature measurement method for calculating emissivity based on temperature (Patent Document 1) and method for on-line measurement of oxide composition ratio of external oxide layer and correcting emissivity based on the composition ratio (Patent Document 2) Alternatively, there is a method of calculating and setting the emissivity by measuring the furnace temperature, strip temperature, line speed, and in-furnace roll temperature (Patent Document 3).

特開2007−10476号公報JP 2007-10476 A 特開平08−219891号公報Japanese Unexamined Patent Publication No. 08-219891 特開平07―34140号公報Japanese Patent Application Laid-Open No. 07-34140

これらの方法は有効であるものの、最終スタンドでダルワークロールにより圧延された表面粗度が変化する金属ストリップ(粗度変化の要因はダルワークロールの摩耗による粗度の平滑化による)のようなものには、あまり効果がないという問題がある。 Although these methods are effective, such as metal strips with varying surface roughness rolled by a dull work roll at the final stand (the cause of the roughness change is due to the smoothing of the roughness due to wear of the dull work roll) There is a problem that things are not very effective.

従来の連続焼鈍炉の温度制御方法では、放射率に及ぼす金属ストリップの粗度等の表面状態の影響が考慮されていないため、最終スタンドでダルワークロールにより圧延された表面粗度が変化する金属ストリップの温度制御は十分でなく、材質にバラツキが生じてしまう。 In conventional temperature control methods for continuous annealing furnaces, the influence of surface conditions such as the roughness of the metal strip on the emissivity is not taken into account, so the metal whose surface roughness is rolled by the dull work roll at the final stand changes. The temperature control of the strip is not sufficient, resulting in variations in material.

本発明は、最終スタンドでダルワークロールにより圧延された表面状態が変化する金属ストリップの連続焼鈍炉における温度を高精度に制御し、材質にバラツキのない安定した金属ストリップを連続焼鈍炉で製造することが可能な連続焼鈍炉における温度制御方法を提供することを課題としている。   The present invention controls the temperature in a continuous annealing furnace of a metal strip whose surface state is changed by a dull work roll at the final stand with high accuracy, and manufactures a stable metal strip having no material variation in the continuous annealing furnace. It is an object of the present invention to provide a temperature control method in a continuous annealing furnace that can be used.

上記課題を解決するため、本発明によれば、連続焼鈍炉における金属ストリップの温度制御方法であって、連続焼鈍炉上流において金属ストリップの表面状態を測定する工程と、予め鋼種毎に定められる前記金属ストリップの表面状態と放射率の関係から放射率を求める工程と、求まった放射率を用いて前記放射温度計で測定した温度に基づいて、前記連続焼鈍炉内における前記金属ストリップの表面温度が所望の温度となるように温度制御を行う工程と、を有することを特徴とする、連続焼鈍炉における温度制御方法が提供される。 In order to solve the above-mentioned problem, according to the present invention, there is provided a method for controlling the temperature of a metal strip in a continuous annealing furnace, the step of measuring the surface state of the metal strip upstream of the continuous annealing furnace, and the above-mentioned predetermined for each steel type Based on the step of obtaining the emissivity from the relationship between the surface state of the metal strip and the emissivity, and the temperature measured by the radiation thermometer using the obtained emissivity, the surface temperature of the metal strip in the continuous annealing furnace is There is provided a temperature control method in a continuous annealing furnace, comprising a step of performing temperature control so as to obtain a desired temperature.

また、前記金属ストリップの表面状態の測定は、断続的に表面粗度を測定することで行われてもよく、前記金属ストリップの表面状態の測定は、連続的または断続的に表面光沢を測定することで行われてもよい。 In addition, the measurement of the surface state of the metal strip may be performed by intermittently measuring the surface roughness, and the measurement of the surface state of the metal strip may measure the surface gloss continuously or intermittently. It may be done.

さらに、請求項1〜3に記載の温度制御方法において、連続焼鈍設備の金属ストリップと接触するロール表面近傍に熱電対を設置し定常状態の温度を測定し、前記熱電対で測定されたロール温度と前記放射温度計で測定された温度とが一致する放射率を求めるとともに、測定された金属ストリップの表面状態と放射率を用いて金属ストリップ表面状態と放射率の関係式を学習することとしてもよい。 Furthermore, in the temperature control method according to claims 1 to 3, a thermocouple is installed in the vicinity of the roll surface in contact with the metal strip of the continuous annealing equipment, the temperature in a steady state is measured, and the roll temperature measured by the thermocouple The emissivity at which the temperature measured by the radiation thermometer matches the emissivity, and the relation between the metal strip surface state and emissivity is learned using the measured metal strip surface state and emissivity. Good.

また、別の観点からの本発明によれば、金属ストリップの温度制御を行う予熱帯、均熱帯および冷却帯によって構成される連続焼鈍炉であって、前記連続焼鈍炉内に設けられる放射温度計と、前記連続焼鈍炉の上流に配置される前記金属ストリップの表面状態測定装置と、前記表面状態測定装置の測定結果から放射率を演算し、前記放射率と前記放射温度計で求めた温度に基づいて、前記予熱帯、均熱帯および冷却帯の温度制御を行う演算制御部と、を備えることを特徴とする、連続焼鈍炉が提供される。 According to another aspect of the present invention, there is provided a continuous annealing furnace constituted by a pre-tropical zone, a soaking zone and a cooling zone for controlling the temperature of the metal strip, and a radiation thermometer provided in the continuous annealing furnace. And a surface state measuring device of the metal strip disposed upstream of the continuous annealing furnace, and calculating an emissivity from the measurement result of the surface state measuring device, and calculating the emissivity and the temperature obtained by the radiation thermometer. Based on this, a continuous annealing furnace is provided, comprising: an arithmetic control unit that performs temperature control of the pretropical zone, the soaking zone, and the cooling zone.

本発明では、最終スタンドでダルワークロールにより圧延された表面状態が変化する金属ストリップの表面状態(表面粗度あるいは表面光沢)を測定し、その結果に基づいて該金属ストリップの温度を測定するための放射温度計の放射率を設定して炉の温度を高精度に制御することが可能となる。   In the present invention, in order to measure the surface state (surface roughness or surface gloss) of a metal strip whose surface state is changed by a dull work roll at the final stand, and to measure the temperature of the metal strip based on the result. The emissivity of the radiation thermometer can be set to control the furnace temperature with high accuracy.

本発明の形態をここでは、TRIP鋼の圧延を例に挙げて説明する。このTRIP鋼の合金成分は質量%で0.11%C,1.3%Si,1.6%Mnである。熱間圧延された板厚3.0mm、板幅1240mmのコイルを酸洗し、冷間タンデム圧延機で板厚1.01mmまで圧延しその後、電清した材料が連続焼鈍炉用の金属ストリップとして用いられた。なお、冷間タンデム圧延機の最終スタンドでは放電ダル加工されたワークロール(初期ワークロール表面粗度:3.5μmRa)が用いられており、圧下率3%程度の圧延が行われ該金属ストリップの表面にワークロール粗度が20〜40%程度転写されている。 The embodiment of the present invention will be described here by taking the rolling of TRIP steel as an example. The alloy components of this TRIP steel are 0.11% C, 1.3% Si, 1.6% Mn in mass%. Hot rolled steel sheet with a thickness of 3.0mm and sheet width of 1240mm is pickled, rolled to a sheet thickness of 1.01mm with a cold tandem rolling mill, and then electropolished material is used as a metal strip for a continuous annealing furnace. Used. In the final stand of the cold tandem rolling mill, a work roll subjected to electric discharge dull processing (initial work roll surface roughness: 3.5 μm Ra) is used, and rolling with a reduction rate of about 3% is performed. The work roll roughness is transferred to the surface by about 20 to 40%.

冷間タンデム圧延機の最終スタンドのワークロール粗度は摩耗により圧延本数と共に低下し、それに伴い、該金属ストリップの表面粗度も低減する。一般にTRIP鋼は普通鋼と比較して変形抵抗が大きく圧延荷重が高いので、この摩耗による最終スタンドのワークロール粗度低下は普通鋼と比べて早いという特徴がある。このため、一般には許容される該金属ストリップの表面粗度範囲内に納まるように、予め試験を行い連続圧延可能なコイル本数を求め、その範囲に収まるように圧延スケジュールを調整したり、あるいは、ワークロールを交換したりして製造されている。 The work roll roughness of the final stand of the cold tandem rolling mill decreases with the number of rolling due to wear, and accordingly, the surface roughness of the metal strip also decreases. In general, TRIP steel has a large deformation resistance and a higher rolling load than ordinary steel, so that the lowering of the work roll roughness of the final stand due to this wear is faster than that of ordinary steel. For this reason, in general, the number of coils that can be continuously rolled by performing a test in advance so as to be within the allowable surface roughness range of the metal strip is determined, and the rolling schedule is adjusted to be within that range, or It is manufactured by exchanging work rolls.

このように徐々に表面粗度が低減するような金属ストリップを連続焼鈍炉で熱処理する際、連続焼鈍炉内の放射温度計の放射率が一定の場合には、測定された温度と実際の温度とに差が生じるため、機械的性質としては許容範囲内に納まるものの材質にバラツキが生じる。焼鈍前の上記サンプルを採取し、温度850℃の雰囲気の実験炉を用いて定常状態で熱電対を用いて測定した真の温度と放射温度計で測定した温度とを比較した結果、最大で30℃程度の差が認められた。 When heat treatment is performed in a continuous annealing furnace on a metal strip whose surface roughness gradually decreases in this way, if the emissivity of the radiation thermometer in the continuous annealing furnace is constant, the measured temperature and the actual temperature Therefore, although the mechanical properties are within the allowable range, the materials vary. The above-mentioned sample before annealing was collected, and as a result of comparing the true temperature measured with a thermocouple in a steady state using an experimental furnace with an atmosphere of 850 ° C. and the temperature measured with a radiation thermometer, a maximum of 30 A difference of about ℃ was recognized.

これらのサンプルを用いて、真の温度と一致する放射温度計の放射率を求め、この放射率と金属ストリップの表面粗度との回帰式を作成した。このようにして求めた表面粗度と放射率の関係を図1に示す。図1より、表面粗度が大きくなるにつれて放射率も増大すること、また、表面粗度と放射率の関係は1次式で近似可能であることが分かる。重回帰を行い、上記表面粗度と放射率の1次式の定数を求めれば良い。 Using these samples, the emissivity of the radiation thermometer corresponding to the true temperature was determined, and a regression equation between the emissivity and the surface roughness of the metal strip was created. FIG. 1 shows the relationship between the surface roughness thus obtained and the emissivity. As can be seen from FIG. 1, the emissivity increases as the surface roughness increases, and the relationship between the surface roughness and the emissivity can be approximated by a linear expression. Multiple regression may be performed to obtain the linear constants of the surface roughness and emissivity.

別の圧延チャンスで採取した金属ストリップのサンプルを用い温度850℃の雰囲気の実験炉を用いて定常状態で熱電対で測定した真の温度と表面粗度を測定しその結果を用いて上記放射率と金属ストリップの表面粗度との回帰式から求められた放射率を用いて放射温度計で測定した温度とを比較した結果、温度差は最大でも2℃であった。 Using the sample of the metal strip taken at another rolling opportunity, the true temperature and surface roughness measured with a thermocouple in a steady state using an experimental furnace with an atmosphere of 850 ° C., and using the result, the emissivity is measured. As a result of comparing the temperature measured with the radiation thermometer using the emissivity obtained from the regression equation of the surface roughness of the metal strip, the temperature difference was 2 ° C. at the maximum.

同様にして、真の温度と一致する放射温度計の放射率を求め、この放射率と金属ストリップの表面光沢との回帰式を作成した。このようにして求めた表面光沢と放射率の関係を図2に示す。図2より、表面光沢が大きくなるにつれて放射率は減少すること、また、表面光沢と放射率の関係は1次式で近似可能であることが分かる。重回帰を行い、上記表面光沢と放射率の1次式の定数を求めれば良い。 Similarly, the emissivity of the radiation thermometer that coincided with the true temperature was obtained, and a regression equation between the emissivity and the surface gloss of the metal strip was created. FIG. 2 shows the relationship between the surface gloss and emissivity thus obtained. 2 that the emissivity decreases as the surface gloss increases, and the relationship between the surface gloss and the emissivity can be approximated by a linear expression. Multiple regression may be performed to obtain the linear constants of the surface gloss and emissivity.

別の圧延チャンスで採取した金属ストリップのサンプルを用い温度850℃の雰囲気の実験炉を用いて定常状態で熱電対を用いて測定した真の温度と表面光沢を測定しその結果を用いて上記放射率と金属ストリップの表面光沢との回帰式から求められた放射率を用いて放射温度計で測定した温度とを比較した結果、温度差は最大でも4℃であった。 Using a sample of a metal strip taken at another rolling opportunity, the true temperature and surface gloss measured using a thermocouple in a steady state using an experimental furnace with an atmosphere of 850 ° C., and using the results, the above radiation was measured. As a result of comparing the temperature measured with a radiation thermometer using the emissivity obtained from the regression equation of the rate and the surface gloss of the metal strip, the temperature difference was 4 ° C. at the maximum.

このように、焼鈍される金属ストリップの表面粗度あるいは表面光沢を測定し、予め求めた放射率と金属ストリップの表面粗度あるいは表面光沢の回帰式から、放射率を算出し、算定された放射率を用いて焼鈍炉内の金属ストリップの温度を測定し温度制御することによって、材質のバラツキを減少できる可能性があることが明らかとなった。 In this way, the surface roughness or surface gloss of the metal strip to be annealed is measured, and the emissivity is calculated from the previously determined emissivity and the regression equation of the surface roughness or surface gloss of the metal strip. It was found that the variation in material could be reduced by measuring the temperature of the metal strip in the annealing furnace using the rate and controlling the temperature.

連続焼鈍炉で、本発明を実施するに当たり上述した放射率と金属ストリップの表面粗度あるいは表面光沢の回帰式が必要となるが、実験炉と実際の連続焼鈍炉では雰囲気やスケール等の条件が必ずしも一致してはいないので、連続焼鈍炉で測定された放射率と金属ストリップの表面粗度あるいは表面光沢の回帰式を学習する必要がある。このため、放射温度計で測定される金属ストリップが接触しているロール表面近傍に熱電対を設置し、ロールの温度を測定する。定常状態時にはこのロールの温度と金属ストリップの温度とは等しいので、定常状態時にロール温度と測定された金属ストリップ温度とが一致する放射率を求めその値を真の放射率として学習すれば良い。 In the continuous annealing furnace, in order to carry out the present invention, the regression equation of the emissivity and the surface roughness or surface gloss of the metal strip described above is required. However, in the experimental furnace and the actual continuous annealing furnace, there are conditions such as atmosphere and scale. Since they do not necessarily match, it is necessary to learn the regression equation of the emissivity measured in the continuous annealing furnace and the surface roughness or surface gloss of the metal strip. For this reason, a thermocouple is installed in the vicinity of the roll surface in contact with the metal strip measured by the radiation thermometer, and the temperature of the roll is measured. Since the temperature of the roll and the temperature of the metal strip are equal in the steady state, the emissivity at which the roll temperature and the measured metal strip temperature coincide with each other in the steady state is obtained, and the value is learned as the true emissivity.

表面粗度は例えばJISB0651に、表面光沢は例えばJISZ8741に準じてそれぞれ測定する。表面粗度は金属ストリップが停止していないと測れないので断続的な測定値になる。表面光沢も金属ストリップが停止している方が好ましいが、平均的な値の場合には金属ストリップが停止していなくても良い。この場合には連続的な測定値となる。 The surface roughness is measured according to, for example, JISB0651, and the surface gloss is measured according to, for example, JISZ8741. Since the surface roughness cannot be measured unless the metal strip is stopped, it becomes an intermittent measurement. The surface gloss is also preferably stopped by the metal strip, but in the case of an average value, the metal strip may not be stopped. In this case, it becomes a continuous measurement value.

図3は本発明の実施例の1例を示す連続焼鈍炉10の図である。図示してはいないがこの連続焼鈍炉の上流に冷間タンデム圧延機が配置されており、熱間圧延され酸洗されたコイルが冷間圧延される。本実施例では、使用した金属ストリップは合金成分質量%で0.11%C,1.3%Si,1.6%MnのTRIP鋼であり、熱間圧延された板厚3.0mm、板幅1240mmのコイルを酸洗し、冷間タンデム圧延機で板厚1.01mmまで圧延したもので、その後電清され連続化された金属ストリップSが連続焼鈍炉に供給されている。
なお、冷間タンデム圧延機の最終スタンドでは放電ダル加工されたワークロール(初期ワークロール表面粗度:3.5μmRa)が用いられており、圧下率3%程度の圧延が行われ該金属ストリップの表面にワークロール粗度が20〜40%程度転写されている。
FIG. 3 is a diagram of a continuous annealing furnace 10 showing an example of an embodiment of the present invention. Although not shown, a cold tandem rolling mill is disposed upstream of the continuous annealing furnace, and the hot-rolled and pickled coil is cold-rolled. In this example, the metal strip used was TRIP steel of 0.11% C, 1.3% Si, 1.6% Mn in terms of alloy component mass%, a hot-rolled plate thickness of 3.0 mm, A coil having a width of 1240 mm is pickled and rolled to a plate thickness of 1.01 mm by a cold tandem rolling mill, and then the electro-polished and continuous metal strip S is supplied to a continuous annealing furnace.
In the final stand of the cold tandem rolling mill, a work roll subjected to electric discharge dull processing (initial work roll surface roughness: 3.5 μm Ra) is used, and rolling with a reduction rate of about 3% is performed. The work roll roughness is transferred to the surface by about 20 to 40%.

図3において、上記金属ストリップSの表面光沢は連続焼鈍炉10の上流に設置された表面光沢測定装置4によって連続的に測定される。その測定結果は演算機7に伝達され、予め鋼種毎に求められた焼鈍される金属ストリップ表面光沢と放射率の関係式から金属ストリップSの表面温度を測定する放射温度計11の放射率が求められ、連続焼鈍炉10の放射温度計11の放射率が設定される。
連続焼鈍炉10は,予熱帯1と均熱帯2と冷却帯3から構成されており、熱処理が施された金属ストリップSは,連続焼鈍炉の下流に配置された六重圧延機5である調質圧延機で形状を矯正した後,精整装置のサイドトリマーで金属ストリップ巾方向の両端部を切断して所定寸法にするとともに塗油機で防錆油を塗布して簡易防錆処理を施した後,塗油機下流のシャー6によって所望の長さで切断され,巻き取りリール8に巻き取られ,金属ストリップコイルが製造されている。
In FIG. 3, the surface gloss of the metal strip S is continuously measured by a surface gloss measuring device 4 installed upstream of the continuous annealing furnace 10. The measurement result is transmitted to the calculator 7 and the emissivity of the radiation thermometer 11 for measuring the surface temperature of the metal strip S is obtained from the relational expression between the surface gloss of the metal strip to be annealed and the emissivity previously obtained for each steel type. The emissivity of the radiation thermometer 11 of the continuous annealing furnace 10 is set.
The continuous annealing furnace 10 is composed of a pre-tropical zone 1, a soaking zone 2, and a cooling zone 3. The heat-treated metal strip S is a six-roll mill 5 arranged downstream of the continuous annealing furnace. After correcting the shape with a quality rolling mill, cut both ends in the width direction of the metal strip with the side trimmer of the finishing device to a predetermined size and apply a rust preventive oil with an oil coater to apply a simple rust prevention treatment. After that, the metal strip coil is manufactured by being cut to a desired length by the shear 6 downstream of the oil coater and wound on the take-up reel 8.

例えば、図3において、金属ストリップSの任意の点が位置Xにあるとき、当該位置Xの放射率が表面光沢測定装置4によって測定され、演算機7に入力される。演算機7は、入力された表面光沢から前記任意の点の金属ストリップS表面の放射率を演算する。そして、前記任意の点が図3中の位置Xに移動したときに、予め求められている放射率に基づいて放射温度計11によって前記任意の点の金属ストリップSの温度が求まる。その求まった温度が演算機7に入力され、演算機7の制御により予熱帯1の温度が所望の温度となる。 For example, in FIG. 3, when an arbitrary point of the metal strip S is at the position X, the emissivity at the position X is measured by the surface gloss measurement device 4 and input to the calculator 7. The calculator 7 calculates the emissivity of the surface of the metal strip S at the arbitrary point from the input surface gloss. Then, when the arbitrary point moves to the position X 1 in FIG. 3, the temperature of the metal strip S of the arbitrary point is determined by the radiation thermometer 11 on the basis of the emissivity that has been determined in advance. The obtained temperature is input to the calculator 7, and the temperature of the pretropical zone 1 becomes a desired temperature under the control of the calculator 7.

なお、均熱帯2における位置Xおよび冷却帯3における位置Xにおいても同様の温度制御が行われる。この方法は上記位置Xの場合と同様のため説明は省略する。 The same temperature control is performed at the position X 2 in the soaking zone 2 and the position X 3 in the cooling zone 3. The method described for as in the case of the position X 1 is omitted.

比較のため、放射率が一定であるとして放射温度計11で測定し温度制御した場合を従来技術とした。金属ストリップSとしては冷間タンデム圧延機の最終スタンドワークロール組み替え直後からの15コイル(連続的に表面粗度は低下)を熱処理するとともに調質圧延して、引っ張り試験を行い0.2%耐力を測定しそのバラツキで評価することとした。
従来技術である放射率が一定であるとして放射温度計11で測定し温度制御した場合には、バラツキとして0.2%耐力は80MPa程度あった。一方、表面光沢測定装置4によって連続的に測定され、その測定結果を基に、予め鋼種毎に求められた焼鈍される金属ストリップ表面光沢と放射率の関係式をから該金属ストリップの表面温度を測定する放射温度計11の放射率が求められ、その放射率に基づいて、放射温度計によって温度測定を行い、連続焼鈍炉の温度制御した場合には、バラツキとして0.2%耐力は10MPa程度であった。
For comparison, the case where the emissivity is constant and the temperature is controlled by measuring with the radiation thermometer 11 is defined as the conventional technique. As metal strip S, heat treatment and temper rolling of 15 coils (continuously lowering the surface roughness) immediately after the final stand work roll recombination of the cold tandem mill, 0.2% proof stress Was measured and evaluated based on the variation.
When the emissivity, which is the prior art, is constant and measured with the radiation thermometer 11 and temperature controlled, the 0.2% proof stress was about 80 MPa as a variation. On the other hand, the surface temperature of the metal strip is determined from the relational expression between the surface gloss of the metal strip to be annealed and the emissivity obtained for each steel type based on the measurement results continuously measured by the surface gloss measuring device 4. The emissivity of the radiation thermometer 11 to be measured is obtained, and when the temperature is measured by the radiation thermometer based on the emissivity and the temperature of the continuous annealing furnace is controlled, the 0.2% proof stress is about 10 MPa as variation. Met.

実施例1と同様であるが、ここでは上記表面光沢測定装置4を用いて測定する表面光沢ではなく、表面粗度の測定を用いた。上述したようにこの連続焼鈍炉の上流に冷間タンデム圧延機が配置されており、熱間圧延され酸洗されたコイルが冷間圧延される。冷間圧延されたコイルは搬送され、電清装置の上流に設置された接合機で連続化される。このとき一時的にコイルは静止状態になるのでその時の表面粗度を測定した。この時、冷間タンデム圧延機の圧延ロールの粗度を測定することによりコイルの粗度が測定されることとなる。即ち、図示しない冷間タンデム圧延機の圧延ロールの粗度を測定する表面粗度測定装置が用いられることとなる。なお、ここでは表面粗度測定は接合時の例を示しているが、冷間タンデム圧延後から連続焼鈍炉の入側までのどこのタイミングで測定しても構わない。 Although it is the same as that of Example 1, the measurement of surface roughness was used here instead of the surface gloss measured using the surface gloss measuring device 4. As described above, a cold tandem rolling mill is disposed upstream of the continuous annealing furnace, and the hot-rolled and pickled coil is cold-rolled. The coil that has been cold-rolled is transported and continuous by a bonding machine installed upstream of the electrocleaning apparatus. At this time, since the coil temporarily became stationary, the surface roughness at that time was measured. At this time, the roughness of the coil is measured by measuring the roughness of the rolling roll of the cold tandem rolling mill. That is, a surface roughness measuring device that measures the roughness of a rolling roll of a cold tandem rolling mill (not shown) is used. In addition, although the surface roughness measurement has shown the example at the time of joining here, you may measure at any timing from after cold tandem rolling to the entrance side of a continuous annealing furnace.

比較のため、放射温度計の放射率を一定で測定し温度制御した場合を従来技術とした。
金属ストリップとしては冷間タンデム圧延機の最終スタンドワークロール組み替え直後からの15コイル(連続的に表面粗度は低下)を熱処理するとともに調湿圧延して、引っ張り試験を行い0.2%耐力を測定しそのバラツキで評価することとした。
従来技術である放射温度計の放射率を一定で測定し温度制御した場合には、バラツキとして0.2%耐力は80MPa程度あったが、本発明である表面粗度測定装置によって断続的に測定され、その測定結果を基に、予め鋼種毎に求められた焼鈍される金属ストリップ表面粗度と放射率の関係式をから該金属ストリップの表面温度を測定する放射温度計の放射率が求められ連続焼鈍炉の放射温度計の放射率が設定されて測定して温度制御した場合には、バラツキとして0.2%耐力は19MPa程度であった。
For comparison, the case where the emissivity of the radiation thermometer was measured at a constant level and the temperature was controlled was used as the prior art.
As a metal strip, heat treatment is performed on 15 coils (continuously lowering the surface roughness) immediately after the final stand work roll recombination of the cold tandem rolling mill and humidity control rolling is performed, and a tensile test is performed to obtain 0.2% proof stress. It was decided to measure and evaluate the variation.
When the emissivity of a conventional radiation thermometer was measured and controlled at a constant temperature, the 0.2% proof stress was about 80 MPa as variation, but it was measured intermittently by the surface roughness measuring device of the present invention. Based on the measurement results, the emissivity of a radiation thermometer that measures the surface temperature of the metal strip is obtained from the relational expression between the surface roughness and emissivity of the metal strip that is annealed for each steel type in advance. When the emissivity of the radiation thermometer of the continuous annealing furnace was set and measured and the temperature was controlled, the 0.2% proof stress was about 19 MPa as a variation.

本発明は、上記最良の形態に限定されるものではない。例えば、操業速度によってスケールの生成が若干異なり、放射率が変化する場合には上記、表面粗度あるいは表面光沢と放射率の回帰式ではなく、表面粗度あるいは表面光沢と操業速度と放射率の回帰式を用いることが好ましいことは言うまでもない。 The present invention is not limited to the best mode described above. For example, when the generation of scale is slightly different depending on the operation speed and the emissivity changes, it is not the regression equation of surface roughness or surface gloss and emissivity, but the surface roughness or surface gloss, operation speed and emissivity. Needless to say, it is preferable to use a regression equation.

この発明は、連続焼鈍炉における温度制御方法および連続焼鈍炉に適用できる。   The present invention can be applied to a temperature control method in a continuous annealing furnace and a continuous annealing furnace.

表面粗度と放射率の関係を示す図である。It is a figure which shows the relationship between surface roughness and emissivity. 表面光沢と放射率の関係を示す図である。It is a figure which shows the relationship between surface glossiness and emissivity. 本発明の実施例を実施する装置を示す図である。It is a figure which shows the apparatus which implements the Example of this invention.

符号の説明Explanation of symbols

S 金属ストリップ
1 予熱帯
2 均熱帯
3 冷却帯
4 表面光沢測定装置
5 六重圧延機
6 シャー
7 演算機
8 巻き取りリール
10 連続焼鈍炉
11 放射温度計
S Metal strip 1 Pre-tropical zone 2 Soaking zone 3 Cooling zone 4 Surface gloss measuring device 5 Hexagon rolling mill 6 Shear 7 Calculator 8 Take-up reel 10 Continuous annealing furnace 11 Radiation thermometer

Claims (5)

連続焼鈍炉における金属ストリップの温度制御方法であって、
連続焼鈍炉上流において金属ストリップの表面状態を測定する工程と、
予め鋼種毎に定められる前記金属ストリップの表面状態と放射率の関係から放射率を求める工程と、
求まった放射率を用いて前記放射温度計で測定した温度に基づいて、前記連続焼鈍炉内における前記金属ストリップの表面温度が所望の温度となるように温度制御を行う工程と、を有することを特徴とする、連続焼鈍炉における温度制御方法。
A temperature control method for a metal strip in a continuous annealing furnace,
Measuring the surface state of the metal strip upstream of the continuous annealing furnace;
Obtaining emissivity from the relationship between the surface state of the metal strip and emissivity determined in advance for each steel type;
And a step of performing temperature control so that the surface temperature of the metal strip in the continuous annealing furnace becomes a desired temperature based on the temperature measured by the radiation thermometer using the obtained emissivity. The temperature control method in the continuous annealing furnace characterized by the above-mentioned.
前記金属ストリップの表面状態の測定は、断続的に表面粗度を測定することで行われることを特徴とする、請求項1に記載の連続焼鈍炉における温度制御方法。   The temperature control method for a continuous annealing furnace according to claim 1, wherein the measurement of the surface state of the metal strip is performed by intermittently measuring the surface roughness. 前記金属ストリップの表面状態の測定は、連続的または断続的に表面光沢を測定することで行われることを特徴とする、請求項1に記載の連続焼鈍炉における温度制御方法。   The method for temperature control in a continuous annealing furnace according to claim 1, wherein the surface state of the metal strip is measured by measuring the surface gloss continuously or intermittently. 請求項1〜3に記載の温度制御方法において、連続焼鈍設備の金属ストリップと接触するロール表面近傍に熱電対を設置し定常状態の温度を測定し、前記熱電対で測定されたロール温度と前記放射温度計で測定された温度とが一致する放射率を求めるとともに、測定された金属ストリップの表面状態と放射率を用いて金属ストリップ表面状態と放射率の関係式を学習することを特徴とする連続焼鈍炉における温度制御方法。 The temperature control method according to any one of claims 1 to 3, wherein a thermocouple is installed in the vicinity of the roll surface in contact with the metal strip of the continuous annealing equipment to measure a steady-state temperature, and the roll temperature measured by the thermocouple and the temperature It is characterized in that an emissivity that matches a temperature measured by a radiation thermometer is obtained, and a relational expression between the metal strip surface state and the emissivity is learned using the measured surface state and emissivity of the metal strip. Temperature control method in continuous annealing furnace. 金属ストリップの温度制御を行う予熱帯、均熱帯および冷却帯によって構成される連続焼鈍炉であって、
前記連続焼鈍炉内に設けられる放射温度計と、
前記連続焼鈍炉の上流に配置される前記金属ストリップの表面状態測定装置と、
前記表面状態測定装置の測定結果から放射率を演算し、前記放射率と前記放射温度計で求めた温度に基づいて、前記予熱帯、均熱帯および冷却帯の温度制御を行う演算制御部と、を備えることを特徴とする、連続焼鈍炉。
A continuous annealing furnace composed of a pre-tropical zone, a soaking zone and a cooling zone that controls the temperature of the metal strip,
A radiation thermometer provided in the continuous annealing furnace;
An apparatus for measuring the surface condition of the metal strip disposed upstream of the continuous annealing furnace;
An emissivity is calculated from the measurement result of the surface state measuring device, and based on the temperature obtained by the emissivity and the radiation thermometer, an arithmetic control unit that performs temperature control of the pretropical zone, a soaking zone, and a cooling zone, A continuous annealing furnace comprising:
JP2008232814A 2008-09-11 2008-09-11 Temperature control method in continuous annealing furnace and continuous annealing furnace Active JP5293022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008232814A JP5293022B2 (en) 2008-09-11 2008-09-11 Temperature control method in continuous annealing furnace and continuous annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008232814A JP5293022B2 (en) 2008-09-11 2008-09-11 Temperature control method in continuous annealing furnace and continuous annealing furnace

Publications (2)

Publication Number Publication Date
JP2010066132A true JP2010066132A (en) 2010-03-25
JP5293022B2 JP5293022B2 (en) 2013-09-18

Family

ID=42191840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008232814A Active JP5293022B2 (en) 2008-09-11 2008-09-11 Temperature control method in continuous annealing furnace and continuous annealing furnace

Country Status (1)

Country Link
JP (1) JP5293022B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020810A (en) * 2014-07-11 2016-02-04 光洋サーモシステム株式会社 Continuous heating furnace, and temperature measuring method
JP2017057447A (en) * 2015-09-15 2017-03-23 Jfeスチール株式会社 Production facility and production method for high tensile strength steel plate
WO2017221514A1 (en) * 2016-06-22 2017-12-28 株式会社クレハ Cutting blade for storage container and storage container
KR20210158684A (en) * 2020-06-24 2021-12-31 주식회사 티피에스 Method and apparatus for evaluating erosion resistance of coin cell type secondary battery electrode terminal
JP2022068097A (en) * 2020-10-21 2022-05-09 Jfeスチール株式会社 Metal strip temperature measuring method, metal strip temperature measuring device, metal strip manufacturing method, metal strip manufacturing equipment, and metal strip quality control method
WO2024062765A1 (en) * 2022-09-21 2024-03-28 Jfeスチール株式会社 Method for controlling warp shape of metallic band, method for producing metallic band, and device for controlling warp shape of metallic band
KR102655799B1 (en) * 2023-06-13 2024-04-19 주식회사 동지케미칼 Method for evaluating erosion resistance of coin cell type secondary battery electrode terminal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106435160B (en) * 2016-11-22 2018-11-09 首钢京唐钢铁联合有限责任公司 A kind of annealing furnace method for controlling temperature inner and system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5485079A (en) * 1977-12-20 1979-07-06 Nippon Steel Corp Simultaneous measurement method of temperature and emissivity
JPS57103024A (en) * 1980-12-18 1982-06-26 Nippon Steel Corp Method for measurement of object surface temperature
JPH01169328A (en) * 1987-12-25 1989-07-04 Kawasaki Steel Corp Temperature measuring apparatus of metal strip
JPH075041A (en) * 1993-06-18 1995-01-10 Kawasaki Steel Corp Measuring apparatus for radiation characteristic of hot object surface
JPH10239160A (en) * 1997-02-24 1998-09-11 Nippon Steel Corp Method and device for measuring plate temperature of continuous type drying and baking oven
JP2000114194A (en) * 1998-09-30 2000-04-21 Dainippon Screen Mfg Co Ltd Calibration method for substrate heat-treatment apparatus, and light-emitting and heat-transferring calibration apparatuses used therefor
JP2000297330A (en) * 1999-04-13 2000-10-24 Nippon Steel Corp Method for measuring strip temperature in strip continuous annealing furnace and instrument therefor
JP2004109023A (en) * 2002-09-20 2004-04-08 Jfe Steel Kk Method and apparatus for measuring surface temperature of steel product

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5485079A (en) * 1977-12-20 1979-07-06 Nippon Steel Corp Simultaneous measurement method of temperature and emissivity
JPS57103024A (en) * 1980-12-18 1982-06-26 Nippon Steel Corp Method for measurement of object surface temperature
JPH01169328A (en) * 1987-12-25 1989-07-04 Kawasaki Steel Corp Temperature measuring apparatus of metal strip
JPH075041A (en) * 1993-06-18 1995-01-10 Kawasaki Steel Corp Measuring apparatus for radiation characteristic of hot object surface
JPH10239160A (en) * 1997-02-24 1998-09-11 Nippon Steel Corp Method and device for measuring plate temperature of continuous type drying and baking oven
JP2000114194A (en) * 1998-09-30 2000-04-21 Dainippon Screen Mfg Co Ltd Calibration method for substrate heat-treatment apparatus, and light-emitting and heat-transferring calibration apparatuses used therefor
JP2000297330A (en) * 1999-04-13 2000-10-24 Nippon Steel Corp Method for measuring strip temperature in strip continuous annealing furnace and instrument therefor
JP2004109023A (en) * 2002-09-20 2004-04-08 Jfe Steel Kk Method and apparatus for measuring surface temperature of steel product

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012011853; 浅野有一郎,外5名: '"レーザを用いた鋼板の表面粗度および光沢度の測定"' 川崎製鉄技報 Vol.18 No.2, 198606, pp.114-121 *
JPN6012060295; 中園敦之,他1名: '"冷延鋼板表面粗度の赤外域放射率に与える影響 "' 日本機械学会論文集 Vol.59 No.559, 199903, pp.963-966 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020810A (en) * 2014-07-11 2016-02-04 光洋サーモシステム株式会社 Continuous heating furnace, and temperature measuring method
JP2017057447A (en) * 2015-09-15 2017-03-23 Jfeスチール株式会社 Production facility and production method for high tensile strength steel plate
WO2017221514A1 (en) * 2016-06-22 2017-12-28 株式会社クレハ Cutting blade for storage container and storage container
KR20210158684A (en) * 2020-06-24 2021-12-31 주식회사 티피에스 Method and apparatus for evaluating erosion resistance of coin cell type secondary battery electrode terminal
KR102393385B1 (en) * 2020-06-24 2022-05-02 주식회사 동지케미칼 Method and apparatus for evaluating erosion resistance of coin cell type secondary battery electrode terminal
KR20220054783A (en) * 2020-06-24 2022-05-03 주식회사 동지케미칼 Method and apparatus for evaluating erosion resistance of coin cell type secondary battery electrode terminal
KR102544615B1 (en) * 2020-06-24 2023-06-22 주식회사 동지케미칼 Method and apparatus for evaluating erosion resistance of coin cell type secondary battery electrode terminal
JP2022068097A (en) * 2020-10-21 2022-05-09 Jfeスチール株式会社 Metal strip temperature measuring method, metal strip temperature measuring device, metal strip manufacturing method, metal strip manufacturing equipment, and metal strip quality control method
JP7414044B2 (en) 2020-10-21 2024-01-16 Jfeスチール株式会社 Metal strip temperature measuring method, metal strip temperature measuring device, metal strip manufacturing method, metal strip manufacturing equipment, and metal strip quality control method
WO2024062765A1 (en) * 2022-09-21 2024-03-28 Jfeスチール株式会社 Method for controlling warp shape of metallic band, method for producing metallic band, and device for controlling warp shape of metallic band
KR102655799B1 (en) * 2023-06-13 2024-04-19 주식회사 동지케미칼 Method for evaluating erosion resistance of coin cell type secondary battery electrode terminal

Also Published As

Publication number Publication date
JP5293022B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
KR101185597B1 (en) Method of continuous annealing for steel strip with curie point and continuous annealing apparatus therefor
JP5293022B2 (en) Temperature control method in continuous annealing furnace and continuous annealing furnace
CN108779508B (en) Method for rolling and/or heat treating a metal product
CN103212585B (en) A control device of a hot mill used for thin plates and a control method of the hot mill used for thin plates
US11268765B2 (en) Fast response heaters and associated control systems used in combination with metal treatment furnaces
JP2006508803A (en) Method for process control or process adjustment of equipment for metal forming, cooling and / or heat treatment
KR100353283B1 (en) Method and apparatus for manufacturing hot-rolled steel sheet
JP5217543B2 (en) Continuous annealing method and continuous annealing equipment for steel strip with Curie point
JP5135534B2 (en) Continuous annealing method and continuous annealing equipment for steel strip with Curie point
US20190201954A1 (en) Coil width control method and apparatus
JP7311764B2 (en) Cold tandem rolling equipment and cold tandem rolling method
JP2008238241A (en) Manufacturing method of aluminum metal sheet
JP6295932B2 (en) Metal strip shape control method and shape control apparatus
CN115921550A (en) Monitoring method, monitoring device, monitoring equipment and readable storage medium
JP5217542B2 (en) Continuous annealing method and continuous annealing equipment for steel strip with Curie point
JP3596460B2 (en) Heat treatment method for thick steel plate and heat treatment equipment
KR100995600B1 (en) Temperature Compensation Apparatus of Hot Rolled Sheet Getting into Finishing Mill Stand and Method Thereof
JP5310964B1 (en) Steel plate manufacturing method
JP2018047483A (en) Shape control method of metal strip and shape control device
JP3058403B2 (en) Cooling control method for hot rolled steel sheet
JP2017057447A (en) Production facility and production method for high tensile strength steel plate
JP3848618B2 (en) Sheet width control method in cold rolling process
WO2023190645A1 (en) Method for annealing hot-rolled steel strip
WO2024009783A1 (en) Hot-rolled steel strip annealing method, and electromagnetic steel sheet production method using said annealing method
JP3582517B2 (en) Manufacturing method of hot-rolled steel strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R151 Written notification of patent or utility model registration

Ref document number: 5293022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350