JPS61292528A - Correction in temperature measurement for steel material in furnace - Google Patents

Correction in temperature measurement for steel material in furnace

Info

Publication number
JPS61292528A
JPS61292528A JP13472385A JP13472385A JPS61292528A JP S61292528 A JPS61292528 A JP S61292528A JP 13472385 A JP13472385 A JP 13472385A JP 13472385 A JP13472385 A JP 13472385A JP S61292528 A JPS61292528 A JP S61292528A
Authority
JP
Japan
Prior art keywords
temperature
furnace
steel material
radiation
furnace wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13472385A
Other languages
Japanese (ja)
Inventor
Nagahisa Iida
飯田 永久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13472385A priority Critical patent/JPS61292528A/en
Publication of JPS61292528A publication Critical patent/JPS61292528A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To accurately correct the effect of radiation from the wall of a heating furnace by measuring at least two furnace wall portions having the effect of radiation on a steel material being heated in the furnace when the temperature of the steel material is measured. CONSTITUTION:A radiation thermometer 3 for measuring the temperature of a steel material 2 is provided in the necessary position of the wall 1 of a heating furnace and a detection output from the thermometer 3 is inputted to an arithmetic unit 5. Further, first and second furnace wall thermometers 41 and 42, respectively, are mounted in two positions near the position of the furnace wall 1 wherein the thermometer 3 is provided, and within a range having the effect of radiation on the steel material 2. The detection output of the thermometers 51 and 52 is inputted to the unit 5 via auxiliary arithmetic units 51 and 52 and coefficient setting units 53 and 54, respectively. The arithmetic units 51 and 52 calculate a back light noise L from the detection output of the thermometers 41 and 42 and the setting units 53 and 54 set the degree of effect on the position of the furnace wall 1 wherein the thermometer 3 is provided in accordance with the coefficients a1 and a2, respectively, obtained in advance. The unit 5 operates the addition of the output of the setting units 53 and 54 and performs a calculation for correcting the output of the thermometer 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炉内で加熱されている鋼材の表面温度を測定
する方法に関するもので、さらに詳言すれば、放射温度
計を用いての鋼材測温に際し、炉壁からの放射の影響を
補正する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for measuring the surface temperature of steel materials being heated in a furnace. The present invention relates to a method for correcting the influence of radiation from the furnace wall when measuring temperature of steel materials.

〔従来の技術〕[Conventional technology]

炉内の加熱中のスラブ等の鋼材の表面を放射温度計を用
いて測定する場合は、炉壁からの放射が鋼材表面で反射
するために、一般には正の測温誤差を伴うことになる。
When using a radiation thermometer to measure the surface of steel materials such as slabs that are being heated in a furnace, there is generally a positive temperature measurement error because the radiation from the furnace wall is reflected on the steel surface. .

この炉壁からの影響(以下、背光ノイズと称すことにす
る)を除去するために、各種の測温方法が提案されてい
るが、その代表例の一つとして炉壁温度、補正法があり
、この炉壁温度補正法は成る程度の範囲で実用化されて
いる。
Various temperature measurement methods have been proposed to eliminate this influence from the furnace wall (hereinafter referred to as backlight noise), and one representative example is the furnace wall temperature correction method. This furnace wall temperature correction method has been put into practical use to some extent.

この従来の炉壁温度補正法は、第2図に示す如く、炉壁
1の所望する箇所に放射温度計3を設置すると共に、こ
の放射温度計3が設置された炉壁1部分の近傍部分に、
この近傍部分の炉壁1の温度を測定する炉壁温度計4を
取付け、放射温度計3および炉壁温度計4の検出信号を
演算装置5に入力し、放射温度計3の測定値を炉壁温度
計4からの測定信号で補正して鋼材2の温度を算出する
のである。
As shown in FIG. 2, this conventional furnace wall temperature correction method involves installing a radiation thermometer 3 at a desired location on the furnace wall 1, and at a portion near the portion of the furnace wall 1 where the radiation thermometer 3 is installed. To,
A furnace wall thermometer 4 is attached to measure the temperature of the furnace wall 1 in this vicinity, and the detection signals of the radiation thermometer 3 and the furnace wall thermometer 4 are input to the calculation device 5, and the measured value of the radiation thermometer 3 is The temperature of the steel material 2 is calculated by correcting it with the measurement signal from the wall thermometer 4.

すなわち、炉壁1の温度を温度計4で検出し。That is, the temperature of the furnace wall 1 is detected by the thermometer 4.

この検出された炉壁温度Twを。This detected furnace wall temperature Tw.

L  (S)=εL  (T)+  (1−g)L  
(Tw)・ ・ ・ (1) の式のTwとして用いるのである。
L (S)=εL (T)+ (1-g)L
It is used as Tw in the equation (Tw)... (1).

なお、この第(1)式において、Sは放射温度計3から
得られる見掛けの温度、Tは鋼材2の表面温度、εは鋼
材2の放射率、 Twは測定された炉壁温度、  L 
(T)は温度Tの黒体からの放射輝度。
In addition, in this equation (1), S is the apparent temperature obtained from the radiation thermometer 3, T is the surface temperature of the steel material 2, ε is the emissivity of the steel material 2, Tw is the measured furnace wall temperature, L
(T) is the radiance from a blackbody at temperature T.

L (S)は温度Sの黒体の単位面積から単位立体角内
に放射されるエネルギの単位時間当たりの大きさを表し
ている。
L (S) represents the amount of energy radiated per unit time from a unit area of a black body at a temperature S within a unit solid angle.

ただし、一般には、温度Sの物体からの実際の放射輝度
は、εL (S)(0<ε≦1)で表現される。
However, in general, the actual radiance from an object at temperature S is expressed as εL (S) (0<ε≦1).

いま、炉の実効的炉壁温度をTw’ とし、炉壁温度計
4の測定温度をTwとすると、放射率εが正しい場合に
は、炉壁温度Twと放射率εとで補正した後の見掛けの
温度Sと表面温度Tとの関係は、前記した第(1)式か
ら。
Now, if the effective furnace wall temperature of the furnace is Tw' and the temperature measured by the furnace wall thermometer 4 is Tw, then if the emissivity ε is correct, then after correcting the furnace wall temperature Tw and the emissivity ε, The relationship between the apparent temperature S and the surface temperature T is based on the above-mentioned equation (1).

L (S)=L (T)+ (1/ε−1)・(L (
Tw’ ) −L (’h) 〕  ・・ (2)とな
る。
L (S)=L (T)+ (1/ε-1)・(L (
Tw' ) -L ('h) ] ... (2).

要するに、実効的炉壁温度TW′ と測定温度Twとが
等しければ、見掛けの温度Sと表面温度Tとは等しくな
るのである。
In short, if the effective furnace wall temperature TW' and the measured temperature Tw are equal, the apparent temperature S and the surface temperature T will be equal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、実際の加熱炉においては、実効的炉壁温
度Tw’  と測定温度Twとの間には数十℃以上の温
度差があることがあり、これに従って測温誤差も一般に
は30℃以上にも及ぶことになる。
However, in an actual heating furnace, there may be a temperature difference of several tens of degrees Celsius or more between the effective furnace wall temperature Tw' and the measured temperature Tw, and accordingly, the temperature measurement error is generally 30 degrees Celsius or more. It will also be extended.

この第2図に示した従来技術において、炉壁温度計4の
測定温度Twが実効的炉壁温度Tw’ と大きく異なる
ことになる主たる原因は、炉内の温度分布が一様ではな
く、これがため測定温度Twが鋼材2表面への背光ノイ
ズ源を正確に代表するものとなり得ないことにある。
In the prior art shown in FIG. 2, the main reason why the temperature Tw measured by the furnace wall thermometer 4 differs greatly from the effective furnace wall temperature Tw' is that the temperature distribution inside the furnace is not uniform. Therefore, the measured temperature Tw cannot accurately represent the source of backlight noise on the surface of the steel material 2.

このことは、連続加熱炉のように必然的に炉内に温度分
布の生じる加熱炉においては、どうしても発生すること
であって、i!¥け得ないこととなっている。
This inevitably occurs in heating furnaces such as continuous heating furnaces where temperature distribution inevitably occurs within the furnace, and i! It is not possible to pay ¥.

本発明は、上記した従来例における問題点および不都合
を解消すべく創案されたもので、炉壁からの放射の影響
を正確に補正することのできる方法を提供することを目
的としたものである。
The present invention was devised to solve the problems and inconveniences in the conventional examples described above, and aims to provide a method that can accurately correct the influence of radiation from the furnace wall. .

〔問題点を解決するための手段および作用〕以下1本発
明を2本発明の一実施形態を示す第1図を参照しながら
説明する。
[Means and effects for solving the problems] The present invention will be described below with reference to FIG. 1, which shows an embodiment of the present invention.

本発明による炉内鋼材測温の補正方法は、加熱炉で加熱
中の鋼材2の温度を放射温度計3を用いて測温するに際
し、測温位置における前記鋼材2に放射の影響を及ぼす
少なくとも二箇所の炉壁部分の温度Tivnを測定し、
この測温されたそれぞれの炉壁部分の測温値を前記鋼材
20表面に与える放射の一次結合として、炉全体が鋼材
表面温度Tの放射測温に与える影習度を算出して前記放
射温度計3の測温値を補正するのである。
The method for correcting the temperature measurement of steel material in a furnace according to the present invention is such that when the temperature of the steel material 2 being heated in the heating furnace is measured using the radiation thermometer 3, the temperature of the steel material 2 at the temperature measurement position is at least Measure the temperature Tivn of the furnace wall at two locations,
As a linear combination of the radiation given to the surface of the steel material 20 by the measured temperature value of each furnace wall portion, the shadow habit that the whole furnace gives to the radiation temperature measurement of the steel material surface temperature T is calculated, and the radiation temperature is A total of three temperature measurements are corrected.

すなわち、加熱炉の炉内温度分布は、一般に鋼材2の進
行方向に向かって変化するものであるから、加熱炉内の
鋼材2の温度を測定する放射温度計3が設けられた炉壁
lの部分の前後の炉壁1の数箇所、すなわち鋼材2に放
射の影響を及ぼす炉壁1の複数箇所の温度を測定し、こ
の各測温箇所における測定値の背光ノイズ量の一次結合
を実効炉壁温度Tw′ の与えるノイズ量推定値とする
のである。
That is, since the temperature distribution inside the heating furnace generally changes in the direction of progress of the steel material 2, the temperature distribution in the furnace wall l on which the radiation thermometer 3 for measuring the temperature of the steel material 2 in the heating furnace is installed. Measure the temperature at several points on the furnace wall 1 before and after the section, that is, at multiple points on the furnace wall 1 where radiation affects the steel material 2, and calculate the linear combination of the backlight noise amount of the measured values at each temperature measurement point to calculate the effective furnace wall 1. This is the estimated value of the amount of noise given by the wall temperature Tw'.

要するに、放射測温では、背光ノイズの量は。In short, in radiometric thermometry, the amount of backlight noise is.

温度に比例するのではなく、各温度の放射源の放射輝度
L (Tw+ )、  L (Twi)、  ・・L 
(Twn )に比例するから、実効炉壁温度TW′ と
して。
Rather than being proportional to temperature, the radiance of the radiation source at each temperature is L (Tw+), L (Twi), ...L
Since it is proportional to (Twn), it is taken as the effective furnace wall temperature TW'.

L (Tw’ )’ =αIL (Tivt )+αz
L (’hz ) +−。
L (Tw')' = αIL (Tivt) + αz
L ('hz) +-.

−・+dnL (Twn )   ・・(3)を用いる
場合の係数αiは、炉体形状と鋼材2との幾何学的関係
で決まるものであるから、予め実験的に係数αiの最適
値を求めておくことができる。
-・+dnL (Twn) ...The coefficient αi when using (3) is determined by the geometric relationship between the furnace body shape and the steel material 2, so the optimum value of the coefficient αi is determined experimentally in advance. You can leave it there.

この予め求めた係数11iは実用上充分な普遍性がある
ものであるので、以後一定の係数として利用することが
できる。
Since this predetermined coefficient 11i has sufficient practical universality, it can be used as a constant coefficient from now on.

要するに、係数αiは主に加熱炉の天井と鋼材2の測温
対象点との距離関係によって決まるものであるから、鋼
材2の高さが変わると、厳密には係数αiも変わるはず
であるが、実際の加熱炉では。
In short, the coefficient αi is mainly determined by the distance relationship between the ceiling of the heating furnace and the temperature measurement point of the steel material 2, so strictly speaking, if the height of the steel material 2 changes, the coefficient αi should also change. , in the actual heating furnace.

目的に応じて、ビレットならビレット、スラブならスラ
ブと云うように3類似の材料を専用炉として加熱するの
で、係数αjは極端に大きくは変わらない。通常の操作
では、係数4iは個々のサイズの鋼材2に従ってかえわ
必要はない。
Depending on the purpose, the three similar materials are heated in a dedicated furnace, such as a billet for a billet or a slab for a slab, so the coefficient αj does not change significantly. In normal operation, the factor 4i need not vary according to the individual size of the steel 2.

係数41の変化が測温に及ぼす影響より、鋼材2の放射
率の変動や、温度計単体の誤差等の方が一般には大きい
Generally, the variation in the emissivity of the steel material 2, the error in the thermometer itself, etc. are larger than the effect of the change in the coefficient 41 on the temperature measurement.

〔実施例〕〔Example〕

第1図に示した実施例の場合、第2図に示した従来例と
同様に、鋼材2を加熱する加熱炉の炉壁1の必要な箇所
に鋼材2の温度を測定する放射温度計3が設けられてお
り、この放射温度計3からの検出出力は演算装置5に入
力され、この演算装置5によって演算補正されるのであ
るが、第2図に示した従来例と異なる点は、放射温度計
3が設けられた炉壁1の箇所の近傍の二箇所、すなわち
鋼材2に放射の影響を及ぼす範囲内の二箇所に。
In the case of the embodiment shown in FIG. 1, similarly to the conventional example shown in FIG. The detection output from the radiation thermometer 3 is input to the calculation device 5, where it is corrected by the calculation.The difference from the conventional example shown in FIG. 2 is that the radiation At two locations near the location on the furnace wall 1 where the thermometer 3 was installed, that is, at two locations within the range where the radiation affects the steel material 2.

第1の炉壁温度計41と第2の炉壁温度計42とを設置
し1両炉壁温度計41.42の検出出力を、それぞれ補
助演算器5L 52と、係数設定器53.54とを経て
演算装置5に入力していることである。
A first oven wall thermometer 41 and a second oven wall thermometer 42 are installed, and the detection outputs of the two oven wall thermometers 41 and 42 are input to the auxiliary calculator 5L 52 and the coefficient setter 53 and 54, respectively. This means that the data is input to the arithmetic unit 5 through the .

両袖助演算器51.52は、炉壁温度計41.42の検
出出力から背光ノイズL (Tw+ ) 、  L (
Twz)を演算算出するものであり、係数設定器53.
54は。
Both side auxiliary calculators 51.52 calculate backlight noise L (Tw+), L (
Twz), and the coefficient setter 53.
54 is.

予め求められている係数α1.a2に従って、放射温度
計3の設けられた炉壁1の箇所における影響度を設定す
るものであり、そして第1図図示実施例における演算装
置5は1両係数設定器53.、.54の出力を加算して
、放射温度計3の出力を補正する演算を行うのである。
Coefficient α1 determined in advance. a2, the degree of influence at the location of the furnace wall 1 where the radiation thermometer 3 is installed is set, and the arithmetic unit 5 in the embodiment shown in FIG. ,.. The outputs of the radiation thermometer 3 are added together to perform calculations for correcting the output of the radiation thermometer 3.

係数の、α2は、実験等により予め炉体形状および鋼材
2の寸法に適合した値に設定されているものであるので
、実効炉壁温度Tw’ の背光ノイズに近い補正値。
The coefficient α2 is set in advance to a value suitable for the furnace body shape and the dimensions of the steel material 2 through experiments, etc., so it is a correction value close to the backlight noise of the effective furnace wall temperature Tw'.

(2+L   (TW+   )   +a2L   
(Tw2 )を得ることが可能となる。この係数(11
,axを設定することができたならば、炉体の幾何学的
構造と鋼材2の寸法との関係が著しく変化しない限り。
(2+L (TW+) +a2L
(Tw2) can be obtained. This coefficient (11
, ax can be set, unless the relationship between the geometry of the furnace body and the dimensions of the steel material 2 changes significantly.

係数(lb、(isは一定の値とすることができ、以後
の鋼材2の加熱にそのまま利用することができる。
The coefficients (lb, (is) can be set to constant values, and can be used as they are for heating the steel material 2 later.

第1図に示した如き構成を利用して本発明方法を実施し
て計測し、同時に鋼材2に直接熱電対を取付けて鋼材2
の表面温度を実測して、この実測温度と1本発明方法に
よって補正した放射温度計3の測定値とを比較したとこ
ろ、鋼材2に直接取付けた熱電対の実測値が1043℃
であったのに対して1本発明方法により補正された放射
温度計3の測定値は1048℃となった。
The method of the present invention is implemented and measured using the configuration shown in FIG. 1, and at the same time a thermocouple is attached directly to the steel material 2.
When the surface temperature of the steel material 2 was actually measured and this measured temperature was compared with the measured value of the radiation thermometer 3 corrected by the method of the present invention, the actual measured value of the thermocouple directly attached to the steel material 2 was 1043°C.
On the other hand, the measured value of radiation thermometer 3 corrected by the method of the present invention was 1048°C.

そして、全く同じ条件のもとに、第2図に示した従来手
段により測定された鋼材2の測定値は。
The measured values of steel material 2 were measured by the conventional means shown in FIG. 2 under exactly the same conditions.

1076°Cとなった。The temperature reached 1076°C.

この実測結果から明らかなように1本発明方法は、従来
手段に比べてはるかに正確に鋼材2の表面温度を測温す
ることができることが明白となった。
As is clear from the actual measurement results, it has become clear that the method of the present invention can measure the surface temperature of the steel material 2 much more accurately than the conventional means.

なお、第1図図示実施例の場合1両係数(Lb、(Lx
の関係を、αI+(2J=1としてあり、理論的にもそ
のように設定すべきであるが、実際の場合には。
In the case of the embodiment shown in FIG. 1, both coefficients (Lb, (Lx
The relationship is αI+(2J=1, and theoretically it should be set as such, but in actual case.

4++α1≠1であっても良い。4++α1≠1 may be satisfied.

要するに。in short.

L (Tw’ ) =α+L (Tw+ ) +dzL
 (Twz )・・・・ (4) を満足すれば良い訳で、もしtw’  =TW+ =T
w2ならば、山+α2−1でなければならないが、逆に
Tw’ f−Tw+  ≠Tw2 、 tw’  ≠T
w2である普通の場合には、α1+4z≠1で(4)式
が満たされることにあり得る。ただし、実際には(1+
、 0−2を決める場合には、 ll+ +にLx =
 1とした方が自由度が減って決め易い。
L (Tw') = α+L (Tw+) +dzL
(Twz)... (4) If tw' =TW+ =T
If w2, it must be mountain + α2-1, but conversely, Tw' f-Tw+ ≠Tw2, tw' ≠T
In the normal case where w2 is, it is possible that equation (4) is satisfied with α1+4z≠1. However, in reality (1+
, 0-2, Lx = ll+ +
Setting it to 1 reduces the degree of freedom and makes it easier to decide.

また、設置される炉壁温度計4の数、すなわち炉壁温度
測定点の数は、二つに限定されるものではなく、二つ以
上の複数箇所であってもよいことは云うまでもない。
Furthermore, it goes without saying that the number of furnace wall thermometers 4 installed, that is, the number of furnace wall temperature measurement points, is not limited to two, and may be two or more locations. .

さらに、これまでの説明においては、炉壁1からの背光
ノイズの低減のための遮蔽管の使用を考慮しなかったが
、遮蔽管の有無は本発明の本質とは無関係である。
Furthermore, in the explanation so far, the use of a shielding tube for reducing backlight noise from the furnace wall 1 has not been considered, but the presence or absence of a shielding tube is irrelevant to the essence of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかな如く9本発明による炉内鋼材測
温の補正方法は、炉内鋼材測温の精度を向上させること
ができ、これによって鋼材の品質向上および加かシに要
するエネルギーの節減に極めて有効であり、さらに幾何
学的炉体の変化がない限り、係数の設定変更を要するこ
とがない等の優れた効果を発揮するものである。
As is clear from the above explanation, the correction method for temperature measurement of steel materials in a furnace according to the present invention can improve the accuracy of temperature measurement of steel materials in a furnace, thereby improving the quality of steel materials and reducing the energy required for heating. It is extremely effective in this regard, and furthermore, unless there is a change in the geometrical furnace body, it exhibits excellent effects such as not requiring changes in coefficient settings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は3本発明方法を実施した最も簡単な構成例を示
すものである。 第2図は、従来法の代表的な構成別図である。 符号の説明 1;炉壁52;鋼材、3;放射温度計、  4.41゜
42;炉壁温度計。 出願人  川 崎 製 鉄 株式会社 ごψシ/す 1−炉壁 2・−@軒゛
FIG. 1 shows an example of the simplest configuration in which the three methods of the present invention are implemented. FIG. 2 is a diagram showing a typical configuration of the conventional method. Explanation of symbols 1; Furnace wall 52; Steel material; 3; Radiation thermometer; 4.41° 42; Furnace wall thermometer. Applicant: Kawasaki Steel Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 加熱炉で加熱中の鋼材の温度を放射温度計を用いて測温
するに際し、測温位置における前記鋼材に放射の影響を
及ぼす少なくとも二箇所の炉壁部分の温度を測定し、該
測温されたそれぞれの炉壁部分の測温値を前記鋼材表面
に与える放射の一次結合として、炉全体が鋼材表面温度
の放射測温に与える影響度を算出して前記放射温度計の
測温値を補正する炉内鋼材測温の補正方法。
When measuring the temperature of steel material being heated in a heating furnace using a radiation thermometer, the temperature of at least two furnace wall portions where radiation affects the steel material at the temperature measurement position is measured, and the temperature is measured at the temperature measurement position. The temperature measurement value of the radiation thermometer is corrected by calculating the degree of influence of the entire furnace on the radiation temperature measurement of the steel surface temperature, using the temperature measurement value of each furnace wall portion as a linear combination of the radiation applied to the steel surface. Correction method for temperature measurement of steel materials in the furnace.
JP13472385A 1985-06-20 1985-06-20 Correction in temperature measurement for steel material in furnace Pending JPS61292528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13472385A JPS61292528A (en) 1985-06-20 1985-06-20 Correction in temperature measurement for steel material in furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13472385A JPS61292528A (en) 1985-06-20 1985-06-20 Correction in temperature measurement for steel material in furnace

Publications (1)

Publication Number Publication Date
JPS61292528A true JPS61292528A (en) 1986-12-23

Family

ID=15135092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13472385A Pending JPS61292528A (en) 1985-06-20 1985-06-20 Correction in temperature measurement for steel material in furnace

Country Status (1)

Country Link
JP (1) JPS61292528A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008233020A (en) * 2007-03-23 2008-10-02 Nippon Steel Corp Surface temperature measurement system, heating furnace, surface temperature measurement method, and computer program
JP2008241413A (en) * 2007-03-27 2008-10-09 Nippon Steel Corp Surface temperature measuring system, heating furnace, surface temperature measuring method, and computer program
JP2008275463A (en) * 2007-04-27 2008-11-13 Nippon Steel Corp System and method for temperature control, heating furnace, and computer program
WO2013100069A1 (en) * 2011-12-27 2013-07-04 旭硝子株式会社 Method of picking up image inside furnace, system for picking up image inside furnace, and method of manufacturing glass goods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008233020A (en) * 2007-03-23 2008-10-02 Nippon Steel Corp Surface temperature measurement system, heating furnace, surface temperature measurement method, and computer program
JP2008241413A (en) * 2007-03-27 2008-10-09 Nippon Steel Corp Surface temperature measuring system, heating furnace, surface temperature measuring method, and computer program
JP2008275463A (en) * 2007-04-27 2008-11-13 Nippon Steel Corp System and method for temperature control, heating furnace, and computer program
WO2013100069A1 (en) * 2011-12-27 2013-07-04 旭硝子株式会社 Method of picking up image inside furnace, system for picking up image inside furnace, and method of manufacturing glass goods

Similar Documents

Publication Publication Date Title
KR101057237B1 (en) Temperature measuring method and temperature measuring apparatus of steel sheet, and temperature control method of steel sheet
JP2007010476A (en) Method and apparatus for measuring temperature of sheet steel
JPS61292528A (en) Correction in temperature measurement for steel material in furnace
US3610592A (en) Method and apparatus for estimating errors in pyrometer readings
JPS6049246B2 (en) Measured value compensation method in infrared temperature measurement method
JPS634651B2 (en)
JP2001274109A5 (en)
JPH07174634A (en) Method for measuring temperature of object in furnace
JP2005233790A (en) Method and apparatus for measuring temperature of sheet steel
JP7414044B2 (en) Metal strip temperature measuring method, metal strip temperature measuring device, metal strip manufacturing method, metal strip manufacturing equipment, and metal strip quality control method
JPS6411691B2 (en)
JPH06192751A (en) Method for estimating and controlling temperature of steel slab in steel slab continuous heating furnace
JP6959211B2 (en) Oxidation film thickness measuring device and the method
JPS6225972B2 (en)
JPS6225973B2 (en)
JPH07270241A (en) Measuring method for surface temperature distribution of object in furnace
JPS6160364B2 (en)
JPH0458568B2 (en)
JPS62823A (en) Temperature measuring method
JPH02296121A (en) Surface-temperature measuring of object in heating furnace
JPS60107533A (en) Temperature measuring method of body to be heated
JPH0427496B2 (en)
JP2683203B2 (en) Measuring method of temperature of profile
JPS63140036A (en) Method for identifying overall heat absorptivity of continuous heating furnace
JPH0230650B2 (en) HOSHAONDOKEINYORURONAIKOHANONDOSOKUTEIHOHO