JPS6225972B2 - - Google Patents

Info

Publication number
JPS6225972B2
JPS6225972B2 JP56048865A JP4886581A JPS6225972B2 JP S6225972 B2 JPS6225972 B2 JP S6225972B2 JP 56048865 A JP56048865 A JP 56048865A JP 4886581 A JP4886581 A JP 4886581A JP S6225972 B2 JPS6225972 B2 JP S6225972B2
Authority
JP
Japan
Prior art keywords
measured
temperature
comparison
radiant energy
emissivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56048865A
Other languages
Japanese (ja)
Other versions
JPS57163830A (en
Inventor
Toshihiko Ide
Toshifusa Suzuki
Kensaku Katayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHINOO KK
Original Assignee
CHINOO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHINOO KK filed Critical CHINOO KK
Priority to JP56048865A priority Critical patent/JPS57163830A/en
Publication of JPS57163830A publication Critical patent/JPS57163830A/en
Publication of JPS6225972B2 publication Critical patent/JPS6225972B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • G01J5/53Reference sources, e.g. standard lamps; Black bodies
    • G01J5/532Reference sources, e.g. standard lamps; Black bodies using a reference heater of the emissive surface type, e.g. for selectively absorbing materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 この発明は、放射率の影響を除去して被測定物
の温度を測定するような放射温度計に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radiation thermometer that measures the temperature of an object by removing the influence of emissivity.

従来放射温度計には、物体からの放射エネルギ
ー量より物体温度を求める単色温度計、異なる2
波長の分光放射エネルギーの比より物体温度を求
める2色温度計等があつた。これらの放射温度計
は単色温度計の場合は黒体、2色温度計の場合は
灰色体のみ真の温度が測定でき、一般の物体では
放射率の影響は除去することができず大きな問題
点であつた。
Conventional radiation thermometers include monochromatic thermometers that measure the temperature of an object based on the amount of radiant energy from the object, and two different types.
There were two-color thermometers that determined the temperature of an object from the ratio of spectral radiant energies of wavelengths. These radiation thermometers can only measure the true temperature of a black body in the case of a monochrome thermometer, and only a gray body in the case of a two-color thermometer, and the influence of emissivity cannot be removed for ordinary objects, which is a major problem. It was hot.

この発明の目的は、以上の点に鑑み、一般の物
体においても放射率の影響を除去し、物体の表面
温度を測定することができる放射温度計を提供す
ることである。
In view of the above points, it is an object of the present invention to provide a radiation thermometer that can measure the surface temperature of an ordinary object while eliminating the influence of emissivity.

この発明の原理を第1図について説明する。図
において1は、温度T、放射率εの被測定物、2
は被測定物1と所定の距離lをもたせて設けられ
被測定物1に放射エネルギーを放出する温度
Tc,放射率εcの比較熱板、3は比較熱板2の
開孔2aより被測定物1自体が放出する放射エネ
ルギーおよび被測定物1より反射された比較熱板
2の放射エネルギーを検出する放射検出器であ
る。
The principle of this invention will be explained with reference to FIG. In the figure, 1 indicates an object to be measured with temperature T and emissivity ε, and 2
is set at a predetermined distance l from the object to be measured 1, and is the temperature at which radiant energy is emitted to the object to be measured 1.
A comparative hot plate with Tc and emissivity εc, 3 detects the radiant energy emitted by the object to be measured 1 itself through the opening 2a of the comparative hot plate 2, and the radiant energy of the comparative hot plate 2 reflected from the object to be measured 1. It is a radiation detector.

波長λ、温度Tのとき黒体から放出される分光
放射エネルギー輝度をL(λ,T)、被測定物1
と比較熱板2との距離がlのとき、放射検出器3
の出力信号をe(l)とすれば、比較熱板2の放
射率εcが十分1に近いとして距離l1のとき次式
が成り立つ。
When the wavelength λ and the temperature T, the spectral radiant energy luminance emitted from the black body is L (λ, T), and the measured object 1
When the distance between and the comparison hot plate 2 is l, the radiation detector 3
If the output signal of is e(l), then the following equation holds true when the distance l 1 , assuming that the emissivity εc of the comparison hot plate 2 is sufficiently close to 1.

e(l1)=ε・L(λ,T)+εc(1−ε)L(λ,Tc)・f(l1) ……(1) (1)式の右辺第1項は被測定物1自体が放出する
放射エネルギーの寄与分、第2項は比較熱板2か
ら放出された放射エネルギーεcL(λ,Tc)
が、被測定物で反射して放射検出器3に入射する
寄与分で、f(l1)は、この比較熱板2よりの放
射エネルギーが被測定物1で反射して放射検出器
3に入射する割合を示す形状係数である。
e(l 1 )=ε・L(λ,T)+εc(1−ε)L(λ,Tc)・f(l 1 )...(1) The first term on the right side of equation (1) is the object to be measured. The contribution of the radiant energy emitted by 1 itself, the second term is the radiant energy εcL (λ, Tc) emitted from the comparative hot plate 2
is the contribution of the radiation energy reflected by the object to be measured and incident on the radiation detector 3, and f(l 1 ) is the contribution of the radiation energy from the comparison hot plate 2 reflected by the object to be measured 1 and incident on the radiation detector 3. This is a shape factor indicating the incidence rate.

次に、被測定物1と比較熱板2との距離をl2
すれば、次式が成り立つ。
Next, if the distance between the object to be measured 1 and the comparison hot plate 2 is l2 , then the following equation holds true.

e(l2)=ε・L(λ,T)+εc(1−ε)L(λ,Tc)・f(l2) ……(2) (1)式から(2)式を減算すると e(l1)−e(l2)=εc(1−ε)・L(λ,Tc)・{f(l1)−f(l2) ……(3) となり、よつて、 1−ε=e(l)−e(l)/εc・L(λ,Tc)・{f(l)−f(l)} ……(4) となる。この右辺において、e(l1)−e(l2)は
測定可能な量、εc,L(λ,Tc)は既知の量
であるので、f(l1)−f(l2)が分つていれば、
(4)式より放射率εが求まる。求めた放射率εを(1)
式または(2)式に代入演算することにより、被測定
物1の温度Tが、常時求まることになる。
e(l 2 )=ε・L(λ,T)+εc(1−ε)L(λ,Tc)・f(l 2 )...(2) Subtracting equation (2) from equation (1) gives e (l 1 )−e(l 2 )=εc(1−ε)・L(λ,Tc)・{f(l 1 )−f(l 2 ) ……(3) Therefore, 1−ε =e(l 1 )−e(l 2 )/εc·L(λ, Tc)·{f(l 1 )−f(l 2 )} (4). On this right-hand side, e(l 1 ) - e(l 2 ) is a measurable quantity, and εc, L(λ, Tc) are known quantities, so f(l 1 ) - f(l 2 ) is If it's on,
Emissivity ε can be found from equation (4). The obtained emissivity ε is (1)
By substituting into the equation or equation (2), the temperature T of the object to be measured 1 can be found at all times.

なお、形状係数f(l)は、被測定物1、比較
熱板2の幾何学的形状、相互の位置関係のみに依
存する量なのであらかじめ測定により定めておけ
ばよい。
Note that the shape factor f(l) is a quantity that depends only on the geometrical shapes of the object to be measured 1 and the comparison hot plate 2, and their mutual positional relationship, so it may be determined in advance by measurement.

ところで、形状係数f(l)は、被測定物1の
鏡面性が変化すると第2図で示すように変化す
る。つまり鏡面性が増すと、曲線は右方にずれる
ものとなる。
By the way, the shape factor f(l) changes as shown in FIG. 2 when the specularity of the object to be measured 1 changes. In other words, as the specularity increases, the curve shifts to the right.

ここで、被測定物1と比較熱板2との距離をl3
とすれば、 e(l3)=ε・L(λ,T)+εc(1−ε)L(λ,Tc)f(l3) ……(5) となる。(1)、(2)、(5)式より e(l)−e(l)/e(l)−e(l)=f(l)−f(l)/f(l)−f(l)≡F(l
)……(6) となる。(6)式の右辺F(l)は被測定物1の鏡面
性により決定される量で、左辺は測定可能な量で
ある。従つて、あらかじめ被測定物1の鏡面性と
形状係数f(l)との関係を測定してF(l)を
決定しておけば、(6)式F(l)より形状係数f
(l)の関数形が求まり、(4)式より放射率εが求
まり、(1)または(2)式に、f(l),εを代入する
ことにより、鏡面性が変化しても被測定物1の温
度Tが求まる。
Here, the distance between the object to be measured 1 and the comparison hot plate 2 is l 3
Then, e(l 3 )=ε·L(λ,T)+εc(1−ε)L(λ,Tc)f(l 3 )...(5). From equations (1), (2), and (5), e(l 1 )-e(l 2 )/e(l 1 )-e(l 3 )=f(l 1 )-f(l 2 )/f (l 1 )−f(l 3 )≡F(l
)...(6) becomes. The right side F(l) of equation (6) is a quantity determined by the specularity of the object to be measured 1, and the left side is a measurable quantity. Therefore, if F(l) is determined by measuring the relationship between the specularity of the object 1 and the shape factor f(l) in advance, the shape factor f(l) can be determined from equation (6) F(l).
The functional form of (l) is found, the emissivity ε is found from equation (4), and by substituting f(l) and ε into equation (1) or (2), even if the specularity changes, The temperature T of the measurement object 1 is determined.

また、あらかじめF(l)とf(l1)−f(l2
との関係を求め、(4)式よりεを求めるようにして
もよい。
Also, in advance, F(l) and f(l 1 )−f(l 2 )
You may also calculate ε from equation (4).

なお、第2図を参照して、(6)式として F(l)=f(l)−f(l)/f(l)−f
(l)……(6)′ を用い、l3を無限大として求めるようにしてもよ
い。ここでl3を無限大とするには、比較熱板2を
被測定物1と放射検出器3との光軸上からそらす
ことにより実現される。
In addition, referring to FIG. 2, as equation (6), F(l)=f(l 1 )-f(l 3 )/f(l 2 )-f
(l 3 )...(6)' may be used to find l 3 as infinity. Here, l 3 can be made infinite by moving the comparative heating plate 2 away from the optical axis of the object to be measured 1 and the radiation detector 3.

第3図は、この発明のより具体的な一実施例を
示す構成説明図である。図において、被測定物1
に対して比較熱板2はある角度θをもつて斜めに
移動可能となつており、比較熱板2の中心をはず
れた位置の開孔2aより、放射検出器3は、被測
定物1よりの放射エネルギーを検出することがで
きるようになつている。また、比較熱板2は図示
しない駆動機構により被測定物1との距離lを変
化させることができ、必要に応じてB方向の側方
に移動させ、その影響をなくすようにすることが
できる。また比較熱板2にはヒータHが設けら
れ、熱電対等の温度検出器Dによりその温度Tc
が検出され、温度制御部4によりヒータHを制御
して、その温度の制御を行つている。そして、比
較熱板2の位置信号、温度信号Tc、放射検出器
3の出力信号e(l)は、マイクロコンピユータ
のような演算部5に入力され、前述のような被測
定物1の温度Tを測定するための比較熱板2の移
動等の制御、演算処理が行なわれ、出力端子6よ
り出力信号T,ε等が取り出せる。なお温度制御
部4の処理は、すべて演算部5で行うようにする
こともできる。
FIG. 3 is a configuration explanatory diagram showing a more specific embodiment of the present invention. In the figure, the object to be measured 1
On the other hand, the comparison heating plate 2 can be moved obliquely at a certain angle θ, and the radiation detector 3 can be moved from the object to be measured 1 through the aperture 2a located off the center of the comparison heating plate 2. It has become possible to detect the radiant energy of Further, the distance l between the comparative hot plate 2 and the object to be measured 1 can be changed by a drive mechanism (not shown), and if necessary, it can be moved to the side in the B direction to eliminate the influence of this. . Further, the comparative heat plate 2 is provided with a heater H, and its temperature Tc is detected by a temperature detector D such as a thermocouple.
is detected, and the temperature controller 4 controls the heater H to control its temperature. Then, the position signal of the comparison heat plate 2, the temperature signal Tc, and the output signal e(l) of the radiation detector 3 are inputted to a calculation unit 5 such as a microcomputer, and the temperature T of the object to be measured 1 as described above is Control of the movement of the comparison hot plate 2 for measuring the temperature and calculation processing are performed, and output signals T, ε, etc. can be taken out from the output terminal 6. Note that all the processing of the temperature control section 4 may be performed by the calculation section 5.

以上述べたように、この発明は、比較熱板を移
動させたときの放射検出器の出力信号の変化か
ら、演算処理を行い、被測定物の放射率および温
度を測定するようにした放射温度計である。
As described above, the present invention is a radiation temperature sensor that performs arithmetic processing based on the change in the output signal of the radiation detector when the comparative heat plate is moved, and measures the emissivity and temperature of the object to be measured. It is a total.

従つて、被測定物の放射率の影響は除去して正
しい温度が測定でき、放射率が変動しても補正が
自動的に行えるので常時、オンラインにて測定を
するのに好適で、鋼板等の移動物体の温度も容易
に測定することができる。又、鋼板等の鏡面性の
強い金属板の場合は、被測定物と比較熱板との距
離は十分大きくすることができるので、走行鋼板
等の測定において、被測定物の上下振動等のバタ
ツキがあつても、安全に測定をすることができ
る。又、比較熱板の温度を被測定物の温度と一致
させるような平衡方式ではないので高速応答が可
能である。又、放射検出器の種類は何でもよく、
放射率と温度とを同時に出力できる。又、被測定
物の鏡面性が変化しても容易に補正ができる等の
すぐれた効果がある。
Therefore, the influence of the emissivity of the object to be measured can be removed to measure the correct temperature, and even if the emissivity fluctuates, corrections can be made automatically, so it is suitable for always on-line measurements. The temperature of a moving object can also be easily measured. In addition, in the case of metal plates with strong specularity such as steel plates, the distance between the object to be measured and the comparison hot plate can be made sufficiently large, so when measuring running steel plates, etc., fluctuations such as vertical vibrations of the object to be measured can be avoided. Measurements can be made safely even when In addition, since it is not an equilibrium method in which the temperature of the comparison hot plate is matched with the temperature of the object to be measured, high-speed response is possible. Also, any type of radiation detector may be used,
Emissivity and temperature can be output simultaneously. In addition, even if the specularity of the object to be measured changes, it can be easily corrected, which is an excellent effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の原理説明図、第2図は、
動作説明用の関係図、第3図は、この発明の一実
施例を示す構成説明図である。 1…被測定物、2…比較熱板、3…放射検出
器、5…演算部。
Figure 1 is a diagram explaining the principle of this invention, Figure 2 is
FIG. 3, a relational diagram for explaining the operation, is a configuration explanatory diagram showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Measurement object, 2...Comparison hot plate, 3...Radiation detector, 5...Calculating section.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定物に放射エネルギーを放出する比較熱
板と、前記被測定物自体が放出する放射エネルギ
ーおよび被測定物より反射された前記比較熱板の
放射エネルギーを検出する放射検出器と、前記被
測定物と比較熱板との距離を3つの異なつた距離
に変化させたときの前記放射検出器の3つの出力
信号のうち、任意の2つの信号の差の比をとるこ
とにより被測定物の鏡面性を決定し、放射率を求
め被測定物の温度を演算する演算部とを備えたこ
とを特徴とする放射温度計。
1. A comparison heating plate that emits radiant energy to the object to be measured, a radiation detector that detects the radiant energy emitted by the object to be measured itself and the radiant energy of the comparison heating plate reflected from the object to be measured, and the By calculating the ratio of the difference between any two signals among the three output signals of the radiation detector when the distance between the measurement object and the comparison hot plate is changed to three different distances, the measurement object can be detected. A radiation thermometer characterized by comprising a calculation unit that determines specularity, calculates emissivity, and calculates the temperature of an object to be measured.
JP56048865A 1981-04-01 1981-04-01 Radiation thermometer Granted JPS57163830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56048865A JPS57163830A (en) 1981-04-01 1981-04-01 Radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56048865A JPS57163830A (en) 1981-04-01 1981-04-01 Radiation thermometer

Publications (2)

Publication Number Publication Date
JPS57163830A JPS57163830A (en) 1982-10-08
JPS6225972B2 true JPS6225972B2 (en) 1987-06-05

Family

ID=12815168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56048865A Granted JPS57163830A (en) 1981-04-01 1981-04-01 Radiation thermometer

Country Status (1)

Country Link
JP (1) JPS57163830A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227633A (en) * 1985-07-29 1987-02-05 Kawasaki Steel Corp Method and apparatus for measuring temperature of body
ATE248356T1 (en) * 1998-01-30 2003-09-15 Tecnimed Srl INFRARED THERMOMETER

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529157A (en) * 1975-07-14 1977-01-24 Hitachi Ltd Safety device for boller functions at low pressure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529157A (en) * 1975-07-14 1977-01-24 Hitachi Ltd Safety device for boller functions at low pressure

Also Published As

Publication number Publication date
JPS57163830A (en) 1982-10-08

Similar Documents

Publication Publication Date Title
US4435092A (en) Surface temperature measuring apparatus for object within furnace
US4144758A (en) Radiation measurement of a product temperature in a furnace
JPS634651B2 (en)
JPS6225973B2 (en)
JPS6049849B2 (en) Device for measuring surface temperature and emissivity of objects
JPS6225972B2 (en)
JPS6219947Y2 (en)
JPH0521412B2 (en)
JPS6049246B2 (en) Measured value compensation method in infrared temperature measurement method
JP2566952Y2 (en) Surface temperature distribution measuring device for steel strip
JPH0514852B2 (en)
JPS6184528A (en) Temperature measuring instrument
JPS61292528A (en) Correction in temperature measurement for steel material in furnace
JPS6049850B2 (en) radiation thermometer
JPH0521491B2 (en)
JPH0523703B2 (en)
JPH0511252B2 (en)
JPH0643033A (en) Radiation thermometer
JPH0643032A (en) Radiation thermometer
JPH0427496B2 (en)
JPS6227633A (en) Method and apparatus for measuring temperature of body
JPS6014193Y2 (en) Simultaneous measurement device for metal surface temperature and emissivity
JPH0458568B2 (en)
JPS60107533A (en) Temperature measuring method of body to be heated
JPH0413910A (en) Measuring device of distribution of thickness of oxide film