JPH0521412B2 - - Google Patents

Info

Publication number
JPH0521412B2
JPH0521412B2 JP60050351A JP5035185A JPH0521412B2 JP H0521412 B2 JPH0521412 B2 JP H0521412B2 JP 60050351 A JP60050351 A JP 60050351A JP 5035185 A JP5035185 A JP 5035185A JP H0521412 B2 JPH0521412 B2 JP H0521412B2
Authority
JP
Japan
Prior art keywords
temperature
emissivity
radiation
radiation source
contribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60050351A
Other languages
Japanese (ja)
Other versions
JPS61210921A (en
Inventor
Isao Hishikari
Toshihiko Ide
Yoshiki Fukutaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60050351A priority Critical patent/JPS61210921A/en
Publication of JPS61210921A publication Critical patent/JPS61210921A/en
Publication of JPH0521412B2 publication Critical patent/JPH0521412B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/064Ambient temperature sensor; Housing temperature sensor; Constructional details thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • G01J5/0804Shutters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0896Optical arrangements using a light source, e.g. for illuminating a surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration
    • G01J5/802Calibration by correcting for emissivity

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 (1) 発明の分野 この発明は、鋼板等の測定物体の放射率および
温度の測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of the Invention The present invention relates to an apparatus for measuring emissivity and temperature of a measuring object such as a steel plate.

(2) 従来技術 出願人は、たとえば特開昭57−161521号公報に
あるように、比較熱板(補助熱源、放射源)と測
定物体との距離を変化させたときの放射検出器の
出力変化から測定物体の放射率を求める方法を提
案している。
(2) Prior art The applicant has proposed, for example, the output of a radiation detector when the distance between the comparative heat plate (auxiliary heat source, radiation source) and the measurement object is changed, as described in Japanese Patent Application Laid-open No. 161521/1983. We have proposed a method to determine the emissivity of a measurement object from the change.

しかしながら、この方法では、比較熱板を駆動
する装置が大型なものとなつてしまう等の問題点
を生じている。
However, this method has problems such as the need for a large device for driving the comparative hot plate.

(3) 発明の目的 この発明の目的は、以上の点に鑑み、より簡便
に、物体の放射率および温度を測定する装置を提
供することである。
(3) Purpose of the Invention In view of the above points, the purpose of the present invention is to provide a device that more easily measures the emissivity and temperature of an object.

(4) 問題点を解決するための手段 上記目的を達成するため、本発明の物体の放射
率および温度の測定装置は、測定物体に放射エネ
ルギーを放射する放射源と、前記測定物からの放
射エネルギーを検出する放射検出器と、前記放射
源が測定物体に放射する放射エネルギーの寄与率
を変化させる寄与率変化手段と、放射源および寄
与率変化手段の温度を測定する第1、第2の温度
検出器と、寄与率変化手段により放射源からの放
射エネルギーが測定物体で反射して寄与率F1
F2で放射検出器に入射したときの第1、第2の
検出値E1,E2および放射源からの放射エネルギ
ーが放射検出器に入射しないときの検出値E0
うち2つの信号の差の比R=(E1−E0/E2−E0
=F1/F2を求めこの寄与率の比R=F1/F2と寄
与率の差D=F2−F1とが予め実験的に求めた所
定の関係にあることに基づいて寄与率の差Dを求
め、この寄与率の差Dおよび前記第1、第2の検
出値E1,E2および前記第1、第2の温度検出器
の温度に関連する放射エネルギーを用いて測定物
体の放射率を求め、この放射率から測定物体の温
度を求める演算手段とを備えたことを特徴として
いる。
(4) Means for Solving the Problems In order to achieve the above object, the emissivity and temperature measuring device of the present invention comprises a radiation source that emits radiant energy to a measurement object, and a radiation source that emits radiant energy from the measurement object. a radiation detector for detecting energy; a contribution rate changing means for changing the contribution rate of the radiant energy radiated by the radiation source to the measurement object; and first and second radiation detectors for measuring the temperature of the radiation source and the contribution rate changing means. The temperature detector and the contribution rate changing means reflect the radiant energy from the radiation source on the measurement object and change the contribution rate F 1 ,
The two signals are the first and second detected values E 1 , E 2 when the radiation energy is incident on the radiation detector at F 2 and the detected value E 0 when the radiation energy from the radiation source is not incident on the radiation detector. Difference ratio R = (E 1 −E 0 /E 2 −E 0 )
= F 1 /F 2 is determined and the contribution is determined based on the fact that the ratio of contribution rates R = F 1 /F 2 and the difference in contribution rates D = F 2 - F 1 are in a predetermined relationship determined experimentally in advance. A difference D in contribution rates is determined and measured using the difference D in contribution rates and the radiant energy related to the first and second detected values E 1 , E 2 and the temperatures of the first and second temperature detectors. The present invention is characterized by comprising calculation means for determining the emissivity of the object and determining the temperature of the measured object from this emissivity.

また、前記寄与率変化手段として、シヤツタ手
段または移動可能な大きさの異なつた開口を有す
る遮光板を用いる構成としても良い。
Further, as the contribution rate changing means, a shutter means or a movable light shielding plate having apertures of different sizes may be used.

(5) 発明の実施例 第1図は、この発明の一実施例を示す構成説明
図である。
(5) Embodiment of the Invention FIG. 1 is a configuration explanatory diagram showing an embodiment of the invention.

図において、1は、測定物体、2は、測定物体
1に放射エネルギーを放射する放射源、3は、放
射源2が測定物体1に放射する放射エネルギーを
変化させる水冷等がなされている寄与率変化手段
としてのシヤツタ手段、4は、放射源2の開孔2
aを介して測定物体1からの放射エネルギーを検
出する放射検出器、5は、放射検出器4の出力信
号、放射源2の温度を検出する温度検出器20の
出力信号、シヤツタ手段3の背景相当の温度を検
出する温度検出器30の出力信号が供給されるア
ナログ回路、マイクロコンピユータ、パーソナル
コンピユータ等よりなる演算手段である。
In the figure, 1 is the measurement object, 2 is the radiation source that emits radiant energy to the measurement object 1, and 3 is the contribution rate of water cooling, etc. that changes the radiant energy that the radiation source 2 emits to the measurement object 1. shutter means 4 as changing means, an aperture 2 of the radiation source 2;
5 is the output signal of the radiation detector 4, the output signal of the temperature detector 20 that detects the temperature of the radiation source 2, and the background of the shutter means 3; It is a calculation means consisting of an analog circuit, a microcomputer, a personal computer, etc. to which the output signal of the temperature detector 30 that detects a corresponding temperature is supplied.

測定物体1の温度をT、放射率をε、放射源2
の温度をTr、放射率をεr、シヤツタ手段3の温
度をTa、放射検出器4の出力信号をEi、温度T
の黒体相当の放射エネルギーをE(T)とする。
Temperature of measurement object 1 is T, emissivity is ε, radiation source 2
temperature is Tr, emissivity is εr, temperature of shutter means 3 is Ta, output signal of radiation detector 4 is Ei, temperature T
Let E(T) be the radiant energy equivalent to a black body.

図示のように、シヤツタ手段3を、ほぼ閉とし
測定物体1からの放射エネルギーのみが通過でき
るようにした状態、半開状態、開状態の
各々の放射検出器4の出力信号E0,E1,E2は次
のようになる。
As shown in the figure, the output signals E 0 , E 1 , E 2 becomes:

E0=εE(T)+(1−ε)E(Ta) …(1) E1=εE(T)+F1(1−ε)εrE(Tr) +(1−F1)(1−ε)E(Ta) …(2) E2=εE(T)+F2(1−ε)εrE(Tr) +(1−F2)(1−ε)E(Ta) …(3) ここで、F1,F2は、放射源2からの放射エネ
ルギーが測定物体1を反射して放射検出器4に入
射する寄与率でF1<F2である。
E 0 = εE (T) + (1-ε) E (Ta) ...(1) E 1 = εE (T) + F 1 (1-ε) εrE (Tr) + (1-F 1 ) (1-ε )E(Ta)...(2) E2 = εE(T)+ F2 (1-ε)εrE(Tr) +(1- F2 )(1-ε)E(Ta)...(3) Here, F 1 and F 2 are the contribution rates of the radiation energy from the radiation source 2 reflecting off the measurement object 1 and entering the radiation detector 4, and F 1 <F 2 .

つまり、シヤツタ手段3が閉のときの(1)式右辺
第1項は測定物体1自体からの放射エネルギー、
第2項はシヤツタ手段3からの放射エネルギーの
寄与分で、放射源2からの放射エネルギーは無視
できる。(2)、(3)式の右辺第2項は放射源2からの
寄与分、第3項はシヤツタ手段3からの寄与分で
ある。
In other words, when the shutter means 3 is closed, the first term on the right side of equation (1) is the radiant energy from the measuring object 1 itself,
The second term is the contribution of the radiant energy from the shutter means 3, and the radiant energy from the radiation source 2 can be ignored. The second term on the right side of equations (2) and (3) is the contribution from the radiation source 2, and the third term is the contribution from the shutter means 3.

(2)式から(1)式を減算し、(3)式から(1)式を減算す
ると次式が得られる。
By subtracting equation (1) from equation (2) and subtracting equation (1) from equation (3), the following equation is obtained.

E1−E0=F1(1−ε)εrE(Tr) −F1(1−ε)E(Ta) E2−E0=F2(1−ε)εrE(Tr) −F2(1−ε)E(Ta) その比Rをとると次式が得られる。 E 1 −E 0 =F 1 (1−ε)εrE(Tr) −F 1 (1−ε)E(Ta) E 2 −E 0 =F 2 (1−ε)εrE(Tr) −F 2 ( 1-ε)E(Ta) Taking the ratio R, the following equation is obtained.

R=(E1−E0)/(E2−E0) =F1/F2 …(4) また、(2)、(3)式を辺々差し引くと次式が得られ
る。
R=(E 1 −E 0 )/(E 2 −E 0 )=F 1 /F 2 (4) Further, by subtracting equations (2) and (3), the following equation is obtained.

E2−E1=(F2−F1)(1−ε){εrE(Tr)−E
(Ta)} これより、放射率εは次式となる。
E 2 −E 1 = (F 2 −F 1 ) (1−ε) {εrE(Tr)−E
(Ta)} From this, the emissivity ε is given by the following formula.

ε=1−(E2−E1)/[(F2−F1)・ {εrE(Tr)−E(Ta)}] …(5) ここで、D=F2−F1と、R=F1/F2との関係
は、第2図で示すようにD=f(R)で所定の関
数関係にあることが実験的に見い出された。つま
り、RからDを求めることができ、(5)式右辺のそ
の他の値は、測定等により求めるので、放射率ε
を求めることができる。
ε=1−(E 2 −E 1 )/[(F 2 −F 1 )・{εrE(Tr)−E(Ta)}] …(5) Here, D=F 2 −F 1 and R It has been experimentally found that the relationship with =F 1 /F 2 is a predetermined functional relationship where D=f(R) as shown in FIG. In other words, D can be found from R, and the other values on the right side of equation (5) are found by measurement, etc., so the emissivity ε
can be found.

そして、(1)式より E(T)={E0−(1−ε)E(Ta)}/ε …(6) であるから、この(6)式に、(5)式より求めた放射率
ε等を代入して、測定物体1の真温度が求まる。
Then, from equation (1), E(T) = {E 0 − (1-ε) E(Ta)}/ε ...(6), so in equation (6), By substituting the emissivity ε, etc., the true temperature of the measuring object 1 is determined.

つまり、測定前あらかじめ、第2図で示すよう
に、測定により求めたDとRとの関係関数D=f
(R)、放射源2の放射率εrを演算手段5に記憶す
る。
In other words, before the measurement, as shown in FIG.
(R), and the emissivity εr of the radiation source 2 is stored in the calculation means 5.

次に、測定時、シヤツタ手段3を開閉し、(1)、
(2)、(3)式のE0,E1,E2を放射検出器4で検出し、
また、放射源2、シヤツタ手段3の温度Tr,Ta
を温度検出器20,40で検出し、それぞれ演算
手段5に供給する。
Next, during measurement, open and close the shutter means 3, (1),
E 0 , E 1 , E 2 of equations (2) and (3) are detected by the radiation detector 4,
Also, the temperatures Tr and Ta of the radiation source 2 and the shutter means 3 are
are detected by temperature detectors 20 and 40 and supplied to calculation means 5, respectively.

演算手段5は、信号E0,E1,E2より、(4)式の
比Rを求め、これよりDを求め、また、信号Tr,
TaよりE(Tr),E(Ta)を演算し、(5)式右辺の
演算を行つて放射率εを求める。また、放射率ε
を用いて(6)式の演算を行つて測定物体1の温度T
を求めることができる。
The calculation means 5 calculates the ratio R of equation (4) from the signals E 0 , E 1 , and E 2 , calculates D from this, and calculates the signals Tr,
E(Tr) and E(Ta) are calculated from Ta, and the right side of equation (5) is calculated to find the emissivity ε. Also, emissivity ε
The temperature T of the measuring object 1 is calculated by calculating equation (6) using
can be found.

なお、以上の例では、寄与率変化手段としてシ
ヤツタ手段3を用い、その開度を変化させて寄与
率を変化させたが、大きさの異なつた開口を有す
る遮光板を移動させて寄与率を変化させるように
してもよい。
In the above example, the shutter means 3 was used as the contribution rate changing means, and the contribution rate was changed by changing its opening degree. It may be changed.

(6) 発明の効果 あらかじめ、寄与率の差が寄与率の比と所定の
関係にあることを用いて、放射率、温度を測定す
るようにしているので、簡単な構成で、放射率補
正された正しい物体の温度を測定することができ
る。
(6) Effects of the invention Since emissivity and temperature are measured using the fact that the difference in contribution rates has a predetermined relationship with the ratio of contribution rates, the emissivity can be corrected with a simple configuration. can measure the temperature of the correct object.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例を示す構成説明
図、第2図は、寄与率の差と比との関係図であ
る。 1……測定物体、2……放射源、3……シヤツ
タ手段(寄与率変化手段)、4……放射検出器、
5……演算手段。
FIG. 1 is a configuration explanatory diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between the difference and ratio of contribution rates. 1... Measurement object, 2... Radiation source, 3... Shutter means (contribution rate changing means), 4... Radiation detector,
5... Calculation means.

Claims (1)

【特許請求の範囲】 1 測定物体に放射エネルギーを放射する放射源
と、前記測定物からの放射エネルギーを検出する
放射検出器と、前記放射源が測定物体に放射する
放射エネルギーの寄与率を変化させる寄与率変化
手段と、放射源および寄与率変化手段の温度を測
定する第1、第2の温度検出器と、寄与率変化手
段により放射源からの放射エネルギーが測定物体
で反射して寄与率F1,F2で放射検出器に入射し
たときの第1、第2の検出値E1,E2および放射
源からの放射エネルギーが放射検出器に入射しな
いときの検出値E0のうち2つの信号の差の比R
=(E1−E0/E2−E0)=F1/F2を求めこの寄与率
の比R=F1/F2と寄与率の差D=F2−F1とが予
め実験的に求めた所定の関係にあることに基づい
て寄与率の差Dを求め、この寄与率の差Dおよび
前記第1、第2の検出値E1,E2および前記第1、
第2の温度検出器の温度に関連する放射エネルギ
ーを用いて測定物体の放射率を求め、この放射率
から測定物体の温度を求める演算手段とを備えた
ことを特徴とする物体の放射率および温度の測定
装置。 2 前記寄与率変化手段として、シヤツタ手段ま
たは移動可能な大きさの異なつた開口を有する遮
光板を用いた特許請求の範囲第1項記載の物体の
放射率および温度の測定装置。
[Claims] 1. A radiation source that emits radiant energy to a measurement object, a radiation detector that detects the radiant energy from the measurement object, and a variable contribution ratio of the radiant energy that the radiation source radiates to the measurement object. a contribution rate changing means that measures the temperature of the radiation source and the contribution rate changing means; Two of the first and second detected values E 1 and E 2 when the radiation energy enters the radiation detector at F 1 and F 2 and the detected value E 0 when the radiation energy from the radiation source does not enter the radiation detector Ratio of the difference between two signals R
= (E 1 - E 0 / E 2 - E 0 ) = F 1 / F 2 is calculated, and the ratio of this contribution rate R = F 1 / F 2 and the difference in contribution rate D = F 2 - F 1 are determined by experiment in advance. A difference D in contribution rates is determined based on a predetermined relationship determined by
emissivity of the object, characterized in that the emissivity of the object is determined by calculating the emissivity of the object to be measured using the radiant energy related to the temperature of the second temperature detector, and the calculating means for calculating the temperature of the object to be measured from the emissivity. Temperature measuring device. 2. The device for measuring the emissivity and temperature of an object according to claim 1, wherein the contribution rate changing means is a shutter means or a light shielding plate having movable openings of different sizes.
JP60050351A 1985-03-15 1985-03-15 Instrument for measuring emissivity and temperature of subject Granted JPS61210921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60050351A JPS61210921A (en) 1985-03-15 1985-03-15 Instrument for measuring emissivity and temperature of subject

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60050351A JPS61210921A (en) 1985-03-15 1985-03-15 Instrument for measuring emissivity and temperature of subject

Publications (2)

Publication Number Publication Date
JPS61210921A JPS61210921A (en) 1986-09-19
JPH0521412B2 true JPH0521412B2 (en) 1993-03-24

Family

ID=12856484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60050351A Granted JPS61210921A (en) 1985-03-15 1985-03-15 Instrument for measuring emissivity and temperature of subject

Country Status (1)

Country Link
JP (1) JPS61210921A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254132A (en) * 1988-08-19 1990-02-23 Chino Corp Radiation temperature measuring device
JPH02245624A (en) * 1989-03-20 1990-10-01 Chino Corp Radiation temperature measuring apparatus
JPH03231126A (en) * 1990-02-07 1991-10-15 Chino Corp Radiation-temperature measuring apparatus
JPH0772701B2 (en) * 1992-04-23 1995-08-02 達男 戸川 Biomedical thermography device
US6132084A (en) * 1998-11-30 2000-10-17 General Electric Company Infrared non-contact temperature measurement for household appliances
DE102004061101B3 (en) 2004-12-18 2006-01-19 Miele & Cie. Kg Determining thermal emissivity of heated surface, e.g. hob or base of cooking vessel, first determines incident heat flux and heating temperature
MD391Z (en) * 2009-08-04 2012-01-31 Институт Химии Академии Наук Молдовы Device for measuring the temperature in a microwave oven

Also Published As

Publication number Publication date
JPS61210921A (en) 1986-09-19

Similar Documents

Publication Publication Date Title
US3796099A (en) Method for measuring the surface temperature of a metal object
US4172383A (en) Method and an apparatus for simultaneous measurement of both temperature and emissivity of a heated material
US4435092A (en) Surface temperature measuring apparatus for object within furnace
US3057200A (en) Pyrometer
US3492869A (en) Means of measuring surface temperature by reflection
JPH0521412B2 (en)
US6786634B2 (en) Temperature measuring method and apparatus
US3610592A (en) Method and apparatus for estimating errors in pyrometer readings
JPS634651B2 (en)
JPH0521491B2 (en)
JPH0367137A (en) Surface temperatude controller
Ulrickson Surface thermography
JPS6330890Y2 (en)
JPH0511252B2 (en)
JPS6225972B2 (en)
JPH0514852B2 (en)
JPH0548405B2 (en)
SU412496A1 (en) METHOD OF RELATIVE MEASUREMENT OF THE DEGREE OF BLACKNESS OF SOLID TELTIJObi &#34;l ;; .- ^! - &#39;:? -?; ^ * ^?&#34;. WIJ in S, -&#39; • &lt;. -, - &#39;.- ^ r ^ V •• fi &#39;L&#39; ^ - * r-; • ..-- • .-.; ^ N ,. &#34;s (f&#39;J
JPH0310128A (en) Method for simultaneously measuring temperature and emissivity in high temperature furnace
JPH0643032A (en) Radiation thermometer
JPH05203497A (en) Measuring method for temperature of steel plate
JP2632086B2 (en) Radiation thermometry and radiation thermometer used for the temperature measurement
JPH08122155A (en) Radiation temperature measurement method for temperature object surface
JPH0643033A (en) Radiation thermometer
JPS6014193Y2 (en) Simultaneous measurement device for metal surface temperature and emissivity

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term