JPH05203497A - Measuring method for temperature of steel plate - Google Patents

Measuring method for temperature of steel plate

Info

Publication number
JPH05203497A
JPH05203497A JP4014101A JP1410192A JPH05203497A JP H05203497 A JPH05203497 A JP H05203497A JP 4014101 A JP4014101 A JP 4014101A JP 1410192 A JP1410192 A JP 1410192A JP H05203497 A JPH05203497 A JP H05203497A
Authority
JP
Japan
Prior art keywords
temperature
measured
steel plate
plate
emissivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4014101A
Other languages
Japanese (ja)
Inventor
Kenji Yamauchi
賢志 山内
Akiyoshi Honda
昭芳 本田
Takeo Yamada
健夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP4014101A priority Critical patent/JPH05203497A/en
Publication of JPH05203497A publication Critical patent/JPH05203497A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To obtain a temperature measurement capable of accurately measuring emissivity and temperature of a steel plate to be measured without being affected by the ageing change in the emissivity of a reflection plate. CONSTITUTION:In the present temperature measurement for a steel plate, a reflection plate 2 so constituted that the reflectivity is known and the temperature can be kept constant is placed slantingly to the measured steel plate 1 against the measured steel plate 1 and the temperature of the reflection plate 2 is directly measured with a temperature meter 4. Also, the first radiation energy multiplly reflecting between the reflection plate 2 and the measured steel plate 1 and the second radiation energy radiated from the above measured steel plate 1 are individually measured with a radiation temperature meter. Based on the temperature measured value from the temperature meter 4 and the first and the second radiation energy from the radiation temperature meter 3 as well as a specific correlation including the multiple reflection number, the reflectivity and temperature of the measured steel plate 1 are measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば合金化溶融亜鉛
メッキ処理ラインに使用され、非接触にて鋼板の温度を
測定する温度測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature measuring method which is used, for example, in a hot-dip galvanizing process line to measure the temperature of a steel sheet without contact.

【0002】[0002]

【従来の技術】一般に鋼板の表面温度を非接触で測定す
るには、放射温度計が用いられている。放射温度計は、
測定対象物から放射される放射エネルギーを温度に換算
するものである。この換算に当たっては、放射率を正し
く設定する必要があり、このため、放射温度計により鋼
板の温度を測定する場合には、鋼板の表面温度の放射率
を求めることがきわめて重要である。
A radiation thermometer is generally used to measure the surface temperature of a steel sheet in a non-contact manner. The radiation thermometer
The radiant energy emitted from the object to be measured is converted into temperature. In this conversion, it is necessary to set the emissivity correctly. Therefore, when measuring the temperature of the steel sheet with a radiation thermometer, it is extremely important to obtain the emissivity of the surface temperature of the steel sheet.

【0003】従来、放射率を考慮した鋼板の温度測定方
法として以下に述べる方法が公知(特開昭59ー873
29号公報)である。この方法は、測定対象物である鋼
板と対向して反射率r2が既知の反射板を角度αだけ傾
斜して設置して、反射板と鋼板との間を多重反射する放
射エネルギーEおよび鋼板から放射されるエネルギーE
1 を放射温度計によって測定し、これらの間には次の
(1)式が成立することから、この(1)式に基づいて
鋼板の反射率および温度を求める方法である。 E=ε1×{[1−(r1・r2)]N1÷[1−(r1・r2)]} ×Eb(T1)+ε2×r1×{[1−(r1・r2)]N2 ÷[1−(r1・r2)]}×Eb(T2) ……(1) 但し、ε1:鋼板の放射率 r1:鋼板の反射率(キルヒホッフの法則よりr1=1
−ε1) ε2:反射板の放射率 r2:反射板の反射率(キルヒホッフの法則よりr2=
1−ε2) T1:鋼板の温度 T2:反射板の温度 Eb(T):温度Tの黒体放射エネルギー N :多重反射光の鋼板表面での反射回数(幾何学的に求
められる) (1)式中の右辺の第1項のε1×Eb(T1)は、鋼
板からの放射光エネルギーであり、放射温度計によって
測定される。従って、(1)式中の未知数は、鋼板の反
射率r1のみとなり、このr1は0<r1<1であるた
め、はさみうち法によって求めることができる。
Conventionally, the following method is known as a method for measuring the temperature of a steel sheet in consideration of the emissivity (Japanese Patent Laid-Open No. 59-873).
No. 29). According to this method, a reflecting plate having a known reflectance r2 is installed at an angle α so as to face a steel plate which is an object to be measured. Radiant energy E
Since 1 is measured by a radiation thermometer and the following equation (1) is established between them, this is a method for obtaining the reflectance and temperature of the steel sheet based on this equation (1). E = ε1 × {[1- (r1 · r2)] N1 ÷ [1- (r1 · r2)]} × Eb (T1) + ε2 × r1 × {[1- (r1 · r2)] N2 ÷ [1- (R1 · r2)] × Eb (T2) (1) where ε1: emissivity of steel sheet r1: reflectance of steel sheet (r1 = 1 from Kirchhoff's law)
-Ε1) ε2: Reflector emissivity r2: Reflector reflectivity (r2 = from Kirchhoff's law)
1- [epsilon] 2) T1: Temperature of steel plate T2: Temperature of reflector plate Eb (T): Black body radiant energy at temperature T N: Number of reflections of multiple reflected light on the steel plate surface (determined geometrically) (1) The first term ε1 × Eb (T1) on the right side of the equation is the radiant light energy from the steel plate, and is measured by a radiation thermometer. Therefore, the unknown number in the equation (1) is only the reflectance r1 of the steel sheet, and since this r1 is 0 <r1 <1, it can be obtained by the scissors method.

【0004】[0004]

【発明が解決しようとする課題】以上述べた公知の鋼板
の温度測定方法では、反射板の反射率を正確に把握して
おくことが必要で、反射板の放射率が正しくない場合、
大きな測温誤差を生じてしまう。この反射板の放射率の
設定誤差による鋼板の測温誤差への影響が大きい。
In the above-mentioned known temperature measuring method for a steel plate, it is necessary to accurately grasp the reflectance of the reflector, and when the emissivity of the reflector is incorrect,
A large temperature measurement error will occur. The error in setting the emissivity of the reflector greatly affects the temperature measurement error of the steel plate.

【0005】図5のbは、これを説明するための図であ
り、従来の多重反射式温度計により、下記の条件でシミ
ュレーションを行ったときの結果を示す図である。シミ
ュレーション条件は、反射板の放射率εが0.1〜0.
9、反射板の温度が100°C、鋼板の放射率が0.
1、鋼板温度が500°C、反射回数N が11回であ
る。この横軸は反射板放射率設定誤差(=設定値−真
値)であり、縦軸は測温誤差°C(=測定値−真値)で
ある。この図から明らかなように、反射板の放射率εを
経時変化に対応して正確に測定することができれば、鋼
板の温度を測定することができる。
FIG. 5B is a diagram for explaining this, and is a diagram showing a result when a simulation is performed under the following conditions by a conventional multiple reflection type thermometer. The simulation condition is that the emissivity ε of the reflector is 0.1 to 0.
9, the temperature of the reflector is 100 ° C, and the emissivity of the steel plate is 0.
1, the steel plate temperature is 500 ° C., and the number of reflections N is 11 times. The abscissa is the reflector emissivity setting error (= set value-true value), and the ordinate is the temperature measurement error ° C (= measured value-true value). As is clear from this figure, if the emissivity ε of the reflection plate can be accurately measured in response to the change over time, the temperature of the steel plate can be measured.

【0006】しかしながら、実際には反射板の放射率ε
を経時変化に対応して正確に測定することは難しく、ま
た、粉塵や表面の酸化等の影響で反射率が変動したり、
さらには、温度によっても鋼板および反射板の反射率は
変化するため、実際のプロセスラインへの適用ができな
かった。
However, in practice, the emissivity ε of the reflector is
Is difficult to measure accurately in response to changes over time, and the reflectance may fluctuate due to the effects of dust and surface oxidation,
Furthermore, the reflectivity of the steel plate and the reflecting plate changes depending on the temperature, so that it cannot be applied to an actual process line.

【0007】そこで、本発明は反射板の放射率の経時変
化に影響されず、測定すべき鋼板の放射率および温度の
測定が高精度に行うことができる鋼板の温度測定方法を
提供することを目的とする。
Therefore, the present invention provides a method for measuring the temperature of a steel sheet, which is not affected by the change in the emissivity of the reflector plate with time and can measure the emissivity and temperature of the steel sheet to be measured with high accuracy. To aim.

【0008】[0008]

【課題を解決するための手段】本発明は前記目的を達成
するため、被測定鋼板に対向して、反射率が既知で、か
つ温度を一定に保つことができるように構成した反射板
を前記被測定鋼板に対して傾斜して設置し、前記反射板
の温度を温度計で直接測定し、また前記反射板と前記被
測定鋼板の間を多重反射する第1の放射エネルギーおよ
び前記被測定鋼板から放射される第2の放射エネルギー
をそれぞれ放射温度計により測定し、前記温度計からの
温度測定値と前記放射温度計からの第1および第2の放
射エネルギー、ならびに、多重反射回数を含んだ所定の
関係式に基づいて前記被測定鋼板の反射率および温度を
測定する鋼板の温度測定方法である。
In order to achieve the above object, the present invention provides a reflector plate facing a steel plate to be measured, the reflectance of which is known and the temperature can be kept constant. The first radiant energy and the measured steel plate, which are installed to be inclined with respect to the measured steel plate, directly measure the temperature of the reflection plate with a thermometer, and multiple-reflect between the reflection plate and the measured steel plate. The second radiant energy radiated from each was measured by a radiation thermometer, and the temperature measurement value from the thermometer, the first and second radiant energies from the radiation thermometer, and the number of multiple reflections were included. It is a steel plate temperature measuring method for measuring the reflectance and temperature of the steel plate to be measured based on a predetermined relational expression.

【0009】[0009]

【作用】本発明方法によれば、反射板の放射率の経時変
化に影響されず、測定すべき鋼板の放射率および温度の
測定が高精度に行うことができる。
According to the method of the present invention, the emissivity and temperature of the steel sheet to be measured can be measured with high accuracy without being affected by the change in emissivity of the reflecting plate with time.

【0010】[0010]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。図1は、本発明方法を説明するための概念
図である。図中1は温度を測定すべき被測定鋼板(スト
リップ)、2は鋼板1に対して角度αだけ傾斜して設置
されした反射板であり、これには図示しないが反射板2
の温度を所望の値に保つための温度制御装置が設けられ
ている。3は鋼板1と反射板2の間で多重反射した放射
エネルギー(多重反射光)Emおよび鋼板1からの放射
エネルギー(直接反射光)Edを非接触方式で測定する
放射温度計、4は反射板2の温度4tを直接接触方式で
測定する温度計、5はこの温度計4で測定した温度4t
ならびに放射温度計の放射エネルギーEm,Edを入力
すると共に、多重反射回数を前述の(1)式に基づいて
前記被測定鋼板の反射率および温度を演算する演算装置
である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual diagram for explaining the method of the present invention. In the figure, reference numeral 1 is a steel plate (strip) to be measured whose temperature is to be measured, and 2 is a reflector plate that is installed at an angle α with respect to the steel plate 1.
There is provided a temperature control device for maintaining the temperature at the desired value. 3 is a radiation thermometer for measuring the radiant energy (multi-reflected light) Em multiple-reflected between the steel plate 1 and the reflector 2 and the radiant energy (direct reflected light) Ed from the steel plate 1 in a non-contact method, and 4 is a reflector plate. Thermometer 5 for measuring the temperature 4t of No. 2 by the direct contact method, 5 is the temperature 4t measured by this thermometer 4.
Also, the radiant energy Em and Ed of the radiation thermometer are input, and the number of multiple reflections is calculated based on the equation (1) to calculate the reflectance and temperature of the steel sheet to be measured.

【0011】このように構成されたものにおいて、鋼板
1と反射板2との間で放射光の反射が生ずる。また、反
射板の反射率を予め求めておく。そして、反射板2に設
置した温度計2で、反射板2の温度を直接測定する。さ
らに、放射温度計3により、鋼板1と反射板2の間で多
重反射した放射エネルギーおよび鋼板1からの放射エネ
ルギーを測定する。これらの測定値を(1)式に代入
し、鋼板の放射率を求め、このようにして得られた反射
率と鋼板からの放射エネギーにより鋼板温度を求める。
In the structure thus constructed, radiation of light is reflected between the steel plate 1 and the reflection plate 2. Moreover, the reflectance of the reflector is obtained in advance. Then, the temperature of the reflection plate 2 is directly measured by the thermometer 2 installed on the reflection plate 2. Further, the radiation thermometer 3 measures the radiation energy multiple-reflected between the steel plate 1 and the reflection plate 2 and the radiation energy from the steel plate 1. By substituting these measured values into the equation (1), the emissivity of the steel sheet is obtained, and the steel sheet temperature is obtained from the reflectance thus obtained and the radiant energy from the steel sheet.

【0012】ここで、反射板4の反射率設定誤差がある
場合の反射板2の温度と鋼板温度の測定誤差の関係につ
いて考える。これを図2および図3を参照して説明す
る。図2は、シミュレーションの条件は、反射板2の温
度0〜800°C、反射板2の放射率測定誤差は−0.
01、鋼板1の放射率が0.1、鋼板1の温度が500
°C、反射回数N が11回である。横軸は、反射板2の
温度°Cを示し、縦軸は測温誤差°Cを示している。
The relationship between the temperature of the reflector 2 and the measurement error of the steel plate temperature when there is a reflectance setting error of the reflector 4 will now be considered. This will be described with reference to FIGS. 2 and 3. In FIG. 2, the condition of the simulation is that the temperature of the reflection plate 2 is 0 to 800 ° C., and the emissivity measurement error of the reflection plate 2 is −0.
01, the emissivity of the steel plate 1 is 0.1, the temperature of the steel plate 1 is 500
C, the number of reflections N is 11 times. The horizontal axis represents the temperature ° C of the reflector 2, and the vertical axis represents the temperature measurement error ° C.

【0013】図3は、シミュレーションの条件は、反射
板2の温度0〜800°C、反射板2の放射率測定誤差
は+0.01、鋼板1の放射率が0.1、鋼板1の温度
が500°C、反射回数N が11回である。横軸は、反
射板2の温度°Cを示し、縦軸は測温誤差°Cを示して
いる。
FIG. 3 shows the conditions of simulation: the temperature of the reflector 2 is 0 to 800 ° C., the emissivity measurement error of the reflector 2 is +0.01, the emissivity of the steel plate 0.1 is 0.1, the temperature of the steel plate 1 is Is 500 ° C. and the number of reflections N is 11 times. The horizontal axis represents the temperature ° C of the reflector 2, and the vertical axis represents the temperature measurement error ° C.

【0014】図2および図3の結果から、反射板2の温
度を360°C程度に保てば、反射板2の放射率εが経
時的に変化しても反射板2の反射率設定誤差に起因する
鋼板温度測定誤差を小さくすることができることがわか
る。この理由は次のように考えられる。
From the results shown in FIGS. 2 and 3, if the temperature of the reflection plate 2 is maintained at about 360 ° C., the reflectance setting error of the reflection plate 2 will not change even if the emissivity ε of the reflection plate 2 changes with time. It can be seen that the steel plate temperature measurement error caused by is reduced. The reason for this is considered as follows.

【0015】反射板2の設定放射率に誤差が含まれ、
(設定値)=(真値)+(誤差)のように表すとき、誤
差が正の場合、この誤差は前述の(1)式の右辺第1項
を増加させ、右辺第2項を減少させるように作用する。
このとき、該減少分と該増加分が等しいとき、前記反射
板2の反射率誤差による影響が相殺され、温度測定誤差
が生じないことになる。該増加分と該減少分の差を小さ
くするためには、黒体放射エネルギーEb(T1)とE
b(T2)の大きさを同程度とすることが有効であり、
T2をT1に近い値にすることによって容易に実現す
る。この場合、T2の最適値は、T1,r1,r2,N
によって決まり、T2=T1とは限らない。本発明の温
度測定方法は、この特性を利用して反射板2の温度をあ
る適当な温度に保つことによって鋼板1の温度を精度良
く測定することができる。例えば、図4のcに示すよう
に、反射板2の温度を図示しない温度制御装置により3
60°Cに設定(鋼板1の放射率εが0.1のとき、最
適となるように設定)すると、鋼板1の温度を、放射温
度計3により精度よく測定することができる。
An error is included in the set emissivity of the reflector 2,
When expressed as (set value) = (true value) + (error), if the error is positive, this error increases the first term on the right side of the above equation (1) and decreases the second term on the right side. Acts like.
At this time, when the decrease amount and the increase amount are equal to each other, the influence of the reflectance error of the reflection plate 2 is offset and the temperature measurement error does not occur. In order to reduce the difference between the increase and the decrease, the blackbody radiant energy Eb (T1) and E
It is effective to make the size of b (T2) about the same,
It is easily realized by setting T2 to a value close to T1. In this case, the optimum value of T2 is T1, r1, r2, N
And T2 = T1 is not always the case. The temperature measuring method of the present invention can accurately measure the temperature of the steel sheet 1 by keeping the temperature of the reflection plate 2 at an appropriate temperature by utilizing this characteristic. For example, as shown in c of FIG.
When the temperature is set to 60 ° C. (optimized when the emissivity ε of the steel sheet 1 is 0.1), the temperature of the steel sheet 1 can be accurately measured by the radiation thermometer 3.

【0016】図4のaは、放射温度計で測定(通常の手
法で、放射率εの設定は0.2)したときの測定温度を
示し、図4のbは、従来の反射板を使い、かつ反射板温
度が常温25°Cの場合の測定温度である。図4のa,
b,cはいずれも鋼板温度が500°Cで、反射板の放
射率εが0.1で、かつ反射板の放射率ε設定誤差が
0.01の場合であって、それぞれの手法で鋼板の放射
率εを0〜0.5まで変化したときの測定温度を示して
いる。反射板の放射率ε設定誤差が無ければ、b,cの
いずれの方法であっても真温が得られる。反射板の放射
率ε設定誤差があるとき、cはbより精度よく測定でき
る。本発明の実施例は、放射率ε設定誤差がある状態で
も鋼板の反射板εに関係なく精度よく測定できることが
わかる。
FIG. 4a shows the measured temperature when measured by a radiation thermometer (normal method, emissivity ε is set to 0.2), and FIG. 4b shows a conventional reflection plate. And the measurement temperature when the reflector temperature is 25 ° C. at room temperature. 4a,
In b and c, the steel plate temperature is 500 ° C., the emissivity ε of the reflector is 0.1, and the emissivity ε setting error of the reflector is 0.01. 3 shows the measured temperature when the emissivity ε of γ is changed from 0 to 0.5. As long as there is no error in setting the emissivity ε of the reflector, true temperature can be obtained by either method b or c. When there is an error in setting the emissivity ε of the reflector, c can be measured more accurately than b. It can be seen that the embodiment of the present invention can perform accurate measurement regardless of the reflection plate ε of the steel plate even in the presence of the emissivity ε setting error.

【0017】図1を溶融亜鉛メッキ処理ラインの合金化
炉出口部に適用した場合、以下のようになる。すなわ
ち、反射板2の大きさは、縦の長さLを110cm、横
100cmとし、設置角度αは6.8度、放射温度計3
の傾きθは38度、鋼板1と反射板2の距離dは、ライ
ンセンターにおいて30cmとした場合である。この場
合、鋼板1のばたつきがラインセンターから±15cm
であったとしても、反射回数は安定して7回得られる。
反射板2には、アルミ板やステンレス板を使用し、裏面
に加熱装置と保温材を設置し、反射板2に設けれる温度
制御装置によって任意の温度約400°Cに保つように
した。また、反射板2の表面に、熱電対を取り付け、表
面温度を測定する。放射温度計3は走査形のもの(検出
波長4.0μm)を使用し、多重反射エネルギーEm
と、鋼板1からの直接放射エネルギーEdを同時に測定
できるようにした。
When FIG. 1 is applied to the exit portion of the alloying furnace of the hot dip galvanizing process line, it becomes as follows. That is, the reflector 2 has a vertical length L of 110 cm and a width of 100 cm, an installation angle α of 6.8 degrees, and a radiation thermometer 3.
Is 38 degrees and the distance d between the steel plate 1 and the reflection plate 2 is 30 cm at the line center. In this case, the flapping of the steel plate 1 is ± 15 cm from the line center.
Even if it is, the number of reflections can be stably obtained 7 times.
An aluminum plate or a stainless plate was used for the reflector 2, a heating device and a heat insulating material were installed on the back surface, and an arbitrary temperature of about 400 ° C. was maintained by a temperature control device provided on the reflector 2. Further, a thermocouple is attached to the surface of the reflection plate 2 to measure the surface temperature. The radiation thermometer 3 uses a scanning type (detection wavelength of 4.0 μm) and has multiple reflection energy Em.
And the direct radiant energy Ed from the steel plate 1 can be simultaneously measured.

【0018】以上述べた実施例によれば、反射板2の放
射率の経時変化に影響されず、放射率が未知の鋼板1の
放射率および温度の測定が、非接触で、高精度に行うこ
とができる。特に、加熱温度を正確に管理する必要があ
るが、表面の放射率が大きく変化する溶融亜鉛メッキ処
理ラインの合金化温度管理に有効であり、製品品質の向
上につながる。
According to the embodiment described above, the emissivity and temperature of the steel plate 1 whose emissivity is unknown can be measured in a non-contact and highly accurate manner without being affected by the temporal change in the emissivity of the reflector 2. be able to. In particular, it is necessary to accurately control the heating temperature, but it is effective for controlling the alloying temperature of the hot dip galvanizing line in which the emissivity of the surface changes greatly, which leads to the improvement of product quality.

【0019】[0019]

【発明の効果】本発明方法によれば、反射板の放射率の
経時変化にに影響されず、測定すべき鋼板の放射率およ
び温度の測定が高精度に行うことができる。
According to the method of the present invention, the emissivity and the temperature of the steel sheet to be measured can be measured with high accuracy without being affected by the temporal change in the emissivity of the reflecting plate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を説明するための概念図。FIG. 1 is a conceptual diagram for explaining a method of the present invention.

【図2】図1の作用効果を説明するための反射板温度と
測温誤差の関係を示す図。
FIG. 2 is a diagram showing a relationship between a reflector temperature and a temperature measurement error for explaining the function and effect of FIG.

【図3】図1の作用効果を説明するための反射板温度と
測温誤差の関係を示す図。
FIG. 3 is a diagram showing a relationship between a reflector temperature and a temperature measurement error for explaining the function and effect of FIG.

【図4】図1の作用効果を説明するための鋼板の放射率
と温度測定値の関係を示す図。
FIG. 4 is a diagram showing the relationship between the emissivity of the steel sheet and the temperature measurement value for explaining the effect of FIG.

【図5】従来の鋼板の温度測定方法の問題点を説明する
ため、実際にシミュレーションを行った反射板放射率設
定誤差と測温誤差の関係を示す図。
FIG. 5 is a diagram showing a relationship between a reflector emissivity setting error and a temperature measurement error, which were actually simulated in order to explain the problems of the conventional method for measuring the temperature of the steel plate.

【符号の説明】[Explanation of symbols]

1…被測定鋼板、2…反射板、3…放射温度計、4…温
度計、5…演算装置。
1 ... Steel to be measured, 2 ... Reflector, 3 ... Radiation thermometer, 4 ... Thermometer, 5 ... Arithmetic device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測定鋼板に対向して、反射率が既知
で、かつ温度を一定に保つことができるように構成した
反射板を前記被測定鋼板に対して傾斜して設置し、前記
反射板の温度を温度計で直接測定し、また前記反射板と
前記被測定鋼板の間を多重反射する第1の放射エネルギ
ーおよび前記被測定鋼板から放射される第2の放射エネ
ルギーをそれぞれ放射温度計により測定し、前記温度計
からの温度測定値と前記放射温度計からの第1および第
2の放射エネルギー、ならびに、多重反射回数を含んだ
所定の関係式に基づいて前記被測定鋼板の反射率および
温度を測定する鋼板の温度測定方法。
1. A reflection plate facing the measured steel plate and having a known reflectance and capable of maintaining a constant temperature is installed at an angle to the measured steel plate, and the reflection plate is provided. The temperature of the plate is directly measured by a thermometer, and the first radiant energy and the second radiant energy radiated from the steel plate to be measured which are multiple-reflected between the reflection plate and the steel plate to be measured are respectively radiated thermometers. The measured value from the thermometer, the first and second radiant energies from the radiation thermometer, and the reflectance of the steel sheet to be measured based on a predetermined relational expression including the number of multiple reflections. And a method for measuring the temperature of a steel sheet for measuring the temperature.
JP4014101A 1992-01-29 1992-01-29 Measuring method for temperature of steel plate Pending JPH05203497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4014101A JPH05203497A (en) 1992-01-29 1992-01-29 Measuring method for temperature of steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4014101A JPH05203497A (en) 1992-01-29 1992-01-29 Measuring method for temperature of steel plate

Publications (1)

Publication Number Publication Date
JPH05203497A true JPH05203497A (en) 1993-08-10

Family

ID=11851732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4014101A Pending JPH05203497A (en) 1992-01-29 1992-01-29 Measuring method for temperature of steel plate

Country Status (1)

Country Link
JP (1) JPH05203497A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013004A1 (en) 2006-07-27 2008-01-31 Kabushiki Kaisha Kobe Seiko Sho Temperature measuring method and temperature measuring device of steel plate, and temperature control method of steel plate
JP2008032486A (en) * 2006-07-27 2008-02-14 Kobe Steel Ltd Steel plate temperature measuring method and temperature measuring apparatus, and steel plate temperature control method
JP2011214979A (en) * 2010-03-31 2011-10-27 Kobe Steel Ltd Method of controlling temperature of reference plate in temperature measuring device of metal plate
JP2018141778A (en) * 2017-02-24 2018-09-13 Jfeスチール株式会社 Method of deriving apparent emissivity, temperature measurement method, method of manufacturing pipe materials, and temperature measurement device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013004A1 (en) 2006-07-27 2008-01-31 Kabushiki Kaisha Kobe Seiko Sho Temperature measuring method and temperature measuring device of steel plate, and temperature control method of steel plate
JP2008032486A (en) * 2006-07-27 2008-02-14 Kobe Steel Ltd Steel plate temperature measuring method and temperature measuring apparatus, and steel plate temperature control method
US8812168B2 (en) 2006-07-27 2014-08-19 Kobe Steel, Ltd. Temperature measuring method and temperature measuring device of steel plate, and temperature control method of steel plate
JP2011214979A (en) * 2010-03-31 2011-10-27 Kobe Steel Ltd Method of controlling temperature of reference plate in temperature measuring device of metal plate
JP2018141778A (en) * 2017-02-24 2018-09-13 Jfeスチール株式会社 Method of deriving apparent emissivity, temperature measurement method, method of manufacturing pipe materials, and temperature measurement device

Similar Documents

Publication Publication Date Title
US3796099A (en) Method for measuring the surface temperature of a metal object
US4172383A (en) Method and an apparatus for simultaneous measurement of both temperature and emissivity of a heated material
EP0335224B1 (en) Radiation thermometry
GB2074722A (en) Measuring surface temperature and emmissivity of a heated sample
KR970077431A (en) Method and apparatus for substrate temperature measurement
US2611541A (en) Radiation pyrometer with illuminator
US3413474A (en) Coating thickness determination by means of measuring black-body radiation resultant from infrared irradiation
KR101057237B1 (en) Temperature measuring method and temperature measuring apparatus of steel sheet, and temperature control method of steel sheet
JPH05203497A (en) Measuring method for temperature of steel plate
US3334230A (en) Nuclear gauge standardization
JPH0521412B2 (en)
JPS6047538B2 (en) How to measure the temperature and emissivity of an object
JPS634651B2 (en)
JPS6250627A (en) Controlling method for surface temperature of substrate
JPS6049850B2 (en) radiation thermometer
KR100398415B1 (en) Method and apparatus for measuring temperature of heating body
JP2000297330A (en) Method for measuring strip temperature in strip continuous annealing furnace and instrument therefor
JP4878234B2 (en) Steel plate temperature measuring method and temperature measuring device, and steel plate temperature control method
JP3291781B2 (en) Method and apparatus for measuring temperature of steel sheet
JP2000186962A (en) Temperature measuring method and device for steel sheet
JPH0625382B2 (en) Calibration method of radiation thermometer in continuous annealing furnace.
JPS6219947Y2 (en)
JPS61292528A (en) Correction in temperature measurement for steel material in furnace
JPS6196425A (en) Measuring method of steel plate temperature
AU685840B2 (en) Determination of coating thickness and temperature of thinly coated substrates