JP2008032486A - Steel plate temperature measuring method and temperature measuring apparatus, and steel plate temperature control method - Google Patents
Steel plate temperature measuring method and temperature measuring apparatus, and steel plate temperature control method Download PDFInfo
- Publication number
- JP2008032486A JP2008032486A JP2006205031A JP2006205031A JP2008032486A JP 2008032486 A JP2008032486 A JP 2008032486A JP 2006205031 A JP2006205031 A JP 2006205031A JP 2006205031 A JP2006205031 A JP 2006205031A JP 2008032486 A JP2008032486 A JP 2008032486A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- steel plate
- measured
- reflector
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Radiation Pyrometers (AREA)
Abstract
Description
本発明は、例えば連続焼鈍設備や合金化溶融亜鉛メッキ設備に使用され、非接触にて鋼板の温度を測定する方法およびその装置に関する。 The present invention relates to a method and apparatus for measuring the temperature of a steel sheet in a non-contact manner, for example, used in a continuous annealing facility or an alloyed hot dip galvanizing facility.
鋼板を連続熱処理する連続焼鈍設備や溶融メッキの後に合金化処理する合金化溶融亜鉛メッキ設備においては、多品種の鋼板は連続処理される。このため、品種ごとに異なる鋼板の機械的特性(強度や伸びなど)やメッキ特性(合金化度など)を安定化させるためには、加熱・冷却を伴う熱処理プロセス後の鋼板温度を目標温度に精度良く制御することが重要である。 In continuous annealing equipment for continuously heat-treating steel sheets and galvannealed equipment for galvanizing after hot-dip plating, various types of steel sheets are continuously processed. For this reason, in order to stabilize the mechanical properties (strength, elongation, etc.) and plating properties (degree of alloying, etc.) of steel plates that differ for each product type, the steel plate temperature after the heat treatment process with heating / cooling is set to the target temperature. It is important to control accurately.
これらの設備において連続的に搬送される鋼板の温度測定は、非接触による放射温度計を用いた測定が一般的である。放射温度計を用いる場合、被測定対象物である鋼板の放射率の設定が必要である。ところが、鋼板の放射率は鋼種、表面性状など鋼板自体の物理性状の他、鋼板温度など種々の要因によって変動するため、このような変動に対応して鋼板の放射率を設定することは非常に困難である。この結果、鋼板温度の測定に誤差が生じやすく、鋼板温度を目標温度に精度良く制御できない問題があった。 In general, the temperature of a steel sheet continuously conveyed in these facilities is measured using a non-contact radiation thermometer. When using a radiation thermometer, it is necessary to set the emissivity of the steel sheet that is the object to be measured. However, since the emissivity of a steel sheet varies depending on various factors such as the steel sheet itself, the physical properties of the steel sheet, such as the surface properties, and the temperature of the steel sheet, setting the emissivity of the steel sheet in response to such variations is very Have difficulty. As a result, there is a problem that an error is easily generated in the measurement of the steel plate temperature, and the steel plate temperature cannot be accurately controlled to the target temperature.
そこで、上記のような鋼板の放射率変動の影響を極力排除した測定方法として、多重反射を行うと見かけ放射率が高くなるという知見に基づき、多重反射を利用した測定方法が種々提案されている。 Therefore, various measurement methods using multiple reflection have been proposed as a measurement method that eliminates the influence of the emissivity fluctuation of the steel plate as much as possible based on the knowledge that the apparent emissivity increases when multiple reflection is performed. .
例えば、特許文献1に記載のキャビティ法は、内面が鏡面に近く反射率の高い2種類の筒状のキャビティを被測定鋼板に近接して設置し、第1のキャビティ内を多重反射して通過した放射エネルギーと、第2のキャビティ内を多重反射することなく単に通過した放射エネルギーとを比較することにより、鋼板温度および放射率を求める方法である。しかしながら、この方法では、筒状のキャビティを2個設置する必要があるため、大きなスペースの確保が問題となる。 For example, in the cavity method described in Patent Document 1, two types of cylindrical cavities whose inner surface is close to a mirror surface and have high reflectivity are installed close to the steel plate to be measured, and multiple reflections pass through the first cavity. This is a method of obtaining the steel sheet temperature and emissivity by comparing the radiated energy with the radiant energy that has simply passed through the second cavity without multiple reflection. However, in this method, since it is necessary to install two cylindrical cavities, securing a large space becomes a problem.
これに対して、上記キャビティ法に比べて大きなスペースを必要としない方法として、被測定鋼板と反射板との間の多重反射を利用した方法が提案されている。 On the other hand, as a method that does not require a large space compared with the cavity method, a method using multiple reflection between the steel plate to be measured and the reflecting plate has been proposed.
例えば、特許文献2に記載の測定方法では、鋼板に対向して傾斜させて反射板を設け、鋼板と反射板との間で生じる多重反射による放射エネルギーを黒体放射エネルギーとみなして得られる放射温度計の指示温度を鋼板温度としている。
For example, in the measurement method described in
また、特許文献3に記載の測定方法では、特許文献2と同様な測定により得られた放射エネルギーより鋼板の放射率を決定する方法が開示されている。
Moreover, in the measuring method of patent document 3, the method of determining the emissivity of a steel plate from the radiation energy obtained by the same measurement as
上記特許文献2,3に記載の測定方法(上記特許文献1に記載のキャビティ法も含めて)は、いずれも、反射板を常温もしくは低温化することで反射板自体の放射エネルギーが被測定鋼板の放射エネルギーより十分小さくなること、および反射板の反射率が高い場合(すなわち、キルヒホッフの法則より、放射率が低い)、もしくは、反射板の反射率(放射率)が既知である場合に多重反射による放射エネルギーに対して鋼板の放射率変動の影響を無視しうることに基づいている。したがって、上記特許文献2,3に記載の測定方法(上記特許文献1に記載のキャビティ法も含めて)では、反射板の反射率を常に高い状態(すなわち、鏡面状態)に維持すること、または、反射板の既知の放射率を長期間維持することが必要となるが、反射板の表面が酸化するなどして反射率(放射率)が変化するため長期間にわたって安定した精度を維持することが困難である。後述の特許文献5にも同様のことが記載されている。
In the measurement methods described in
このような問題を改善する方法として、特許文献4に記載の測定方法では、被測定鋼板間で多重反射を行うことにより、被測定鋼板の放射率の影響に関係なく鋼板の温度測定が可能としている。この測定方法は、被測定対象物内で多重反射を行うと見かけ放射率が高くなるという基本的な物理現象を利用し、また、反射板を用いないため反射板の反射率(放射率)の影響も受けないことから、被測定鋼板の放射率が変動しても見かけ放射率がほぼ1に等しくなるので、測定誤差が少なく経時変化の影響もない測定方法である。しかしながら、被測定鋼板間の多重反射を利用することから、測定場所としては竪型炉の上下ハースロールなどにより鋼板が対向して走行するようなごく限られた部位でしか適用できない問題がある。 As a method for improving such a problem, in the measuring method described in Patent Document 4, by performing multiple reflections between the steel plates to be measured, the temperature of the steel plates can be measured regardless of the influence of the emissivity of the steel plates to be measured. Yes. This measurement method uses the basic physical phenomenon that the apparent emissivity increases when multiple reflections are made within the object to be measured, and the reflectivity (emissivity) of the reflector is not used because the reflector is not used. Since there is no influence, even if the emissivity of the steel sheet to be measured varies, the apparent emissivity becomes substantially equal to 1, so that the measurement method has little measurement error and is not affected by changes over time. However, since multiple reflections between the steel plates to be measured are used, there is a problem that the measurement location can be applied only to a very limited part where the steel plates run opposite to each other by vertical hearth rolls of a vertical furnace.
一方、特許文献3に記載の測定方法の改善策として、特許文献5に記載の測定方法では、反射板の温度を一定に保つ機能を付与することで、反射板の反射率(放射率)が経時変化をしても、測定精度を向上できるとしている。 On the other hand, as a measure for improving the measurement method described in Patent Document 3, in the measurement method described in Patent Document 5, the reflectance (emissivity) of the reflector is increased by providing a function of keeping the temperature of the reflector constant. It is said that measurement accuracy can be improved even if it changes with time.
しかしながら、特許文献5に記載の測定方法によっても、鋼板温度を目標温度に精度良く制御するためには、被測定鋼板の放射率および温度、反射板の放射率等に応じて反射板を適正温度に設定する必要があり、長期間にわたって安定して鋼板を目標温度に高精度で制御することは困難である。
そこで、本発明は、多重反射を利用した測定方法において、被測定鋼板の放射率の変動および反射板の放射率の経時変化にも影響を受けることなく、長期間にわたって鋼板温度を高精度に測定しうる方法およびその装置、ならびにこの測定方法を用いた、より高精度な鋼板の温度制御方法を提供することを目的とする。 Therefore, the present invention is a measurement method using multiple reflections, which measures the steel plate temperature with high accuracy over a long period of time without being affected by fluctuations in the emissivity of the steel plate to be measured and changes in the emissivity of the reflector plate over time. An object of the present invention is to provide a more accurate method and apparatus therefor, and a more accurate temperature control method for a steel sheet using this measurement method.
発明者らは、上記課題を解決するために、鋼板と反射板の間の多重反射を利用した測定方法について、以下のような理論的検討を行った。 In order to solve the above-mentioned problems, the inventors have conducted the following theoretical investigation on a measuring method using multiple reflection between a steel plate and a reflecting plate.
すなわち、鋼板と反射板の間を多重反射する放射エネルギーEmは、下記式(11)のように表される。
上記式(11)より、F=[1−(1−ε1)n(1−ε2)n]とおき、Eb(T1)を求める式に変形すると、下記式(12)が得られる。
ここで、0<ε1<1,0<ε2<1であることから、nが十分大きい場合は、
となり、上記式(12)は、下記式(13)に簡略化される。
ここで、放射温度計で測定した多重反射エネルギーEmと等価なエネルギーを放射する黒体の温度(以下、「多重反射温度」または「放射温度計指示温度」という。)をTmとすると、Em=σTm 4より、下記式(15)が得られる。
しかしながら、上記式(14)に示したように、補正係数Kは鋼板および反射板の放射率ε1、ε2の関数であることから、上記式(16)の右辺は依然として鋼板および反射板の放射率を含む関数であり、Tm≠T2の場合には、この式(15)で算出された鋼板温度T1には測定誤差が含まれることとなる。 However, since the correction coefficient K is a function of the emissivities ε 1 and ε 2 of the steel plate and the reflector as shown in the equation (14), the right side of the equation (16) is still the value of the steel plate and the reflector. In the case of a function including emissivity, and T m ≠ T 2 , the steel sheet temperature T 1 calculated by the equation (15) includes a measurement error.
そこで、発明者らは、上記測定誤差をできるだけ小さくする手段をさらに検討した結果、下記の第1〜第3の手段を開発するに至った。 Therefore, the inventors have further studied means for reducing the measurement error as much as possible, and as a result, have developed the following first to third means.
[第1の手段]
第1の手段は、反射板を温度制御装置により加熱ないし冷却して反射板温度T2を多重反射温度Tmに一致させるように制御を行うものである。これにより、上記式(15)の右辺第2項のK(Tm 4−T2 4)の値は0に近づいていく。この結果、上記式(15)はT1 4=Tm 4、すなわち、T1=Tmとなり、補正係数Kの精度に関係なく鋼板温度T1が求まることとなる。
[First means]
The first means is for controlling the reflection plate heated to cooling by the temperature control device a reflector temperature T 2 to match the multiple reflections temperature T m. As a result, the value of K (T m 4 −T 2 4 ) in the second term on the right side of the equation (15) approaches 0. As a result, the above equation (15) becomes T 1 4 = T m 4 , that is, T 1 = T m , and the steel plate temperature T 1 is obtained regardless of the accuracy of the correction coefficient K.
[第2の手段]
第2の手段は、上記第1の手段と同様、反射板温度T2の制御を行うが、反射板温度T2を、多重反射温度Tmにではなく、上記式(15)をさらに簡略化した、後記式1(式(1))を用いて算出した鋼板温度T1の近似値T1’に一致させるように制御を行うものである。これにより、反射板温度T2はさらに迅速に実際の鋼板温度T1に近づくことになり、より早期に高精度の鋼板温度が測定できることとなる。
[Second means]
Second means, similarly to the first means, performs the control of the reflector temperature T 2, the reflection plate temperature T 2, rather than the multiple reflections temperature T m, further simplifying the above formula (15) The control is performed so as to match the approximate value T 1 ′ of the steel plate temperature T 1 calculated using the following formula 1 (formula (1)). Thus, the reflecting plate temperature T 2 will be closer to the more rapidly the actual steel sheet temperature T 1, the steel sheet temperature of the high accuracy and thus be measured earlier.
[第3の手段]
第3の手段は、上記第1および第2の手段とは異なり、反射板温度T2を、多重反射温度Tmまたは鋼板温度の推定値T1’に一致させるように制御するのではなく、鋼板目標温度T0に設定するものである。これにより、反射板温度T2をあらかじめ鋼板目標温度T0に設定しておくことが可能となり、多重反射温度Tm等に一致させるための制御に要する時間が不要となることから、さらに早期に高精度の鋼板温度が測定できることとなる。そして、この手段により測定された鋼板温度を鋼板目標温度T0に一致させるように鋼板の加熱装置または冷却装置を制御することにより、より高精度な鋼板の温度制御が実現できることとなる。
[Third means]
Unlike the first and second means, the third means does not control the reflector temperature T 2 so as to coincide with the multiple reflection temperature T m or the estimated value T 1 ′ of the steel sheet temperature. it is for setting the steel target temperature T 0. As a result, it is possible to set the reflector temperature T 2 in advance to the steel plate target temperature T 0 , which eliminates the time required for the control to match the multiple reflection temperature T m and the like. A highly accurate steel plate temperature can be measured. Then, by controlling the steel plate heating device or cooling device so that the steel plate temperature measured by this means coincides with the steel plate target temperature T 0 , more accurate temperature control of the steel plate can be realized.
上記知見に基づいて完成した発明は以下を要旨とする。 The invention completed based on the above findings is summarized as follows.
請求項1に記載の発明は、温度制御装置を備えた反射板を被測定鋼板に対向して設置し、前記反射板の温度(以下、「反射板温度」という。)T2を後記放射温度計とは別の温度計で直接測定するとともに、前記反射板と前記被測定鋼板との間を多重反射する放射エネルギーを放射温度計で測定し、この放射エネルギーと等価なエネルギーを放射する黒体の温度に換算して求めた温度を多重反射温度Tmとし、前記温度制御装置にて前記反射板温度T2を前記多重反射温度Tmに一致させるように制御を行い、前記多重反射温度Tgを前記被測定鋼板の温度(以下、「鋼板温度」という。)とすることを特徴とする鋼板の温度測定方法である。 According to the first aspect of the present invention, a reflector equipped with a temperature control device is installed opposite to a steel plate to be measured, and the temperature of the reflector (hereinafter referred to as “reflector temperature”) T 2 is the radiation temperature described later. A black body that directly measures with a thermometer different from the meter, measures the radiant energy reflected multiple times between the reflector and the steel plate to be measured, and radiates energy equivalent to this radiant energy. the temperature obtained in terms of temperature and multiple reflection temperature T m, the reflection plate temperature T 2 at the temperature control unit performs control so as to coincide with the multiple reflection temperature T m, the multiple reflection temperature T g is a temperature of the steel plate to be measured (hereinafter referred to as “steel plate temperature”).
請求項2に記載の発明は、温度制御装置を備えた反射板を被測定鋼板に対向して設置し、反射板温度T2を後記放射温度計とは別の温度計で直接測定するとともに、前記反射板と前記被測定鋼板との間を多重反射する放射エネルギーを放射温度計で測定し、この放射エネルギーと等価なエネルギーを放射する黒体の温度に換算して求めた温度を多重反射温度Tmとし、下記式1で鋼板温度の近似値T1’を算出し、前記温度制御装置にて前記反射板温度T2を前記鋼板温度の近似値T1’に一致させるように制御を行い、前記鋼板温度の近似値T1’を鋼板温度とすることを特徴とする鋼板の温度測定方法である。
式1 T1’=Tm+K(Tm−T2)
ここに、Kは、別途の測定または文献値から求めた前記反射板および前記被測定鋼板の各放射率の推定値に基づく補正係数である。
The invention according to
Formula 1 T 1 ′ = T m + K (T m −T 2 )
Here, K is a correction coefficient based on estimated values of the emissivities of the reflector and the steel plate to be measured, which are obtained from separate measurements or literature values.
請求項3に記載の発明は、温度制御装置を備えた反射板を被測定鋼板に対向して設置し、後記放射温度計とは別の温度計で直接測定した反射板温度T2が鋼板目標温度T0に一致するように前記温度制御装置にて制御するとともに、前記反射板と前記被測定鋼板との間を多重反射する放射エネルギーを放射温度計で測定し、この放射エネルギーと等価なエネルギーを放射する黒体の温度に換算して求めた温度を多重反射温度Tmとし、この多重反射温度Tmを鋼板温度とすることを特徴とする鋼板の温度測定方法である。 According to a third aspect of the invention, a reflector having a temperature control device is installed to face the measured steel plate, the reflection plate temperature T 2 is steel target was measured directly in a separate thermometer and later radiation thermometer The temperature is controlled by the temperature control device so as to coincide with the temperature T 0 , and the radiant energy that is multiply reflected between the reflector and the steel plate to be measured is measured with a radiation thermometer, and the energy equivalent to this radiant energy is measured. Is a temperature obtained by converting the temperature of a black body that emits light into a multiple reflection temperature Tm , and the multiple reflection temperature Tm is set as a steel plate temperature.
請求項4に記載の発明は、温度制御装置を備えた反射板を被測定鋼板に対向して設置し、後記放射温度計とは別の温度計で直接測定した反射板温度T2が鋼板目標温度T0に一致するように前記温度制御装置にて制御するとともに、前記反射板と前記被測定鋼板との間を多重反射する放射エネルギーを放射温度計で測定し、この放射エネルギーと等価なエネルギーを放射する黒体の温度に換算して求めた温度を多重反射温度Tmとし、下記式1で算出した鋼板温度の近似値T1’を鋼板温度とすることを特徴とする鋼板の温度測定方法である。
式1 T1’=Tm+K(Tm−T2)
ここに、Kは、別途の測定または文献値から求めた前記反射板および前記被測定鋼板の各放射率の推定値に基づく補正係数である。
The invention according to claim 4, the reflection plate having a temperature control device is installed to face the measured steel plate, the reflection plate temperature T 2 is steel target was measured directly in a separate thermometer and later radiation thermometer The temperature is controlled by the temperature control device so as to coincide with the temperature T 0 , and the radiant energy that is multiply reflected between the reflector and the steel plate to be measured is measured with a radiation thermometer, and the energy equivalent to this radiant energy is measured. The temperature obtained by converting to the temperature of a black body that emits light is defined as the multiple reflection temperature T m, and the approximate value T 1 ′ of the steel sheet temperature calculated by the following equation 1 is defined as the steel sheet temperature. Is the method.
Formula 1 T 1 ′ = T m + K (T m −T 2 )
Here, K is a correction coefficient based on estimated values of the emissivities of the reflector and the steel plate to be measured, which are obtained from separate measurements or literature values.
請求項5に記載の発明は、被測定鋼板に対向して設置された反射板と、前記反射板の温度を制御する温度制御装置と、前記反射板温度T2を直接測定する、後記放射温度計とは別の温度計と、前記反射板と前記被測定鋼板との間を多重反射する放射エネルギーを測定し、この放射エネルギーと等価なエネルギーを放射する黒体の温度である多重反射温度Tmに換算する放射温度計と、下記式1より鋼板温度の近似値T1’を算出する鋼板温度演算回路と、を備えたことを特徴とする鋼板の温度測定装置である。
式1 T1’=Tm+K(Tm−T2)
ここに、Kは、別途の測定または文献値から求めた前記反射板および前記被測定鋼板の各放射率の推定値に基づく補正係数である。
Invention of claim 5, measuring a reflection plate disposed opposite to a measured steel plate, a temperature control device for controlling the temperature of the reflector, the reflector plate temperature T 2 directly below the radiation temperature A thermometer different from a meter, and a radiant energy that multi-reflects between the reflector and the steel plate to be measured, and a multi-reflective temperature T that is the temperature of a black body that radiates energy equivalent to this radiant energy. A steel plate temperature measuring device comprising a radiation thermometer converted into m and a steel plate temperature calculation circuit for calculating an approximate value T 1 ′ of the steel plate temperature from the following formula 1.
Formula 1 T 1 ′ = T m + K (T m −T 2 )
Here, K is a correction coefficient based on estimated values of the emissivities of the reflector and the steel plate to be measured, which are obtained from separate measurements or literature values.
請求項6に記載の発明は、前記反射板、前記温度制御装置および前記温度計からなる組合せを複数組備え、各反射板温度を独立に制御できるように構成した請求項5に記載の鋼板の温度測定装置である。 The invention according to claim 6 is the steel sheet according to claim 5, wherein a plurality of combinations of the reflector, the temperature control device, and the thermometer are provided, and each reflector temperature can be controlled independently. It is a temperature measuring device.
請求項7に記載の発明は、請求項3または4に記載の方法にて測定した鋼板温度を鋼板目標温度T0に一致させるように、鋼板の加熱装置または冷却装置を制御することを特徴とする鋼板の温度制御方法である。 The invention according to claim 7 is characterized in that the heating device or the cooling device for the steel sheet is controlled so that the steel sheet temperature measured by the method according to claim 3 or 4 matches the steel sheet target temperature T 0. It is the temperature control method of the steel plate to perform.
本発明によれば、反射板温度を、放射温度計にて測定した多重反射の放射エネルギーを温度換算して求めた温度(多重反射温度)または鋼板目標温度に一致するように制御するとともに、前記多重反射温度に基づいて鋼板温度を推定するように構成したことにより、上記従来の多重反射を利用した測定方法と異なり、被測定鋼板の放射率の変動および反射板(上記従来技術では反射板)の放射率の経時変化にも影響を受けることなく、長期間にわたって鋼板温度を高精度に測定できるようになった。また、このようにして測定した高精度の鋼板温度を用いて鋼板の加熱または冷却制御を行うことにより、より高精度の鋼板温度制御が実現できるようになった。 According to the present invention, the reflector temperature is controlled so as to coincide with the temperature (multiple reflection temperature) obtained by converting the radiant energy of the multiple reflection measured with a radiation thermometer into the temperature or the steel plate target temperature, and Unlike the conventional measurement method using multiple reflections, the variation in the emissivity of the steel sheet to be measured and the reflection plate (the reflection plate in the above-mentioned conventional technology) are configured by estimating the steel plate temperature based on the multiple reflection temperature. The steel sheet temperature can be measured with high accuracy over a long period of time without being affected by the change in emissivity over time. Further, by performing the heating or cooling control of the steel plate using the highly accurate steel plate temperature measured in this way, it has become possible to realize more accurate steel plate temperature control.
以下、図面を参照しつつ、本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to the drawings.
〔実施形態1〕
図1は、上記第1の手段を用いた実施形態に係る鋼板の温度測定装置の概略構成を説明するための図であり、通板方向断面および制御フローを示す。
Embodiment 1
FIG. 1 is a view for explaining a schematic configuration of a temperature measuring apparatus for a steel plate according to an embodiment using the first means, and shows a cross section in the plate passing direction and a control flow.
図に示すように、上記特許文献2、3および5に記載の発明と同様、十分な多重反射回数を確保するために、反射板2は、鋼板1に対向し鋼板に対して傾斜させて設置されている。
As shown in the figure, in the same way as the inventions described in
そして、この反射板2は、それ自体の温度が制御できるように、ヒータ3が内蔵され、このヒータ3は温度制御装置5を備えたヒータ電源4にて加熱できるように構成されている。
The
また、反射板2の温度を直接測定するための、後記放射温度計7とは別の温度計として例えば熱電対などの接触式温度計6が反射板2に接するように設けられ、この接触式温度計6で測定した反射板温度T2に基づいて温度制御装置5にてヒータ電源4の出力が調整され、反射板温度T2が所定の温度(後述)に制御される。なお、反射板温度T2の初期設定温度は、例えば鋼板目標温度T0とすればよい。また、反射板2の温度を測定する接触式温度計6は、反射板2に複数個設置し、各温度計の測定値を平均して反射板温度T2とすることが望ましい。
Further, a contact-type thermometer 6 such as a thermocouple is provided so as to be in contact with the
一方、反射板2と鋼板1の間を多重反射する放射エネルギーを受光するように、放射温度計7を反射板2と鋼板1との隙間から鋼板1の表面に向けて設置する。鋼板1に対する放射温度計7の設置角度θは、上記特許文献2、3および5に記載の発明と同様、60〜70°の範囲で調整するのが望ましい。
On the other hand, the radiation thermometer 7 is installed from the gap between the reflecting
そして、放射温度計7で放射率を1.0に設定することにより、多重反射の放射エネルギーと等価なエネルギーを放射する黒体の温度である多重反射温度(放射温度計指示温度)Tmを測定する。 Then, by setting the emissivity to 1.0 with the radiation thermometer 7, the multiple reflection temperature (radiation thermometer indicated temperature) T m is the temperature of a black body that emits radiant energy equivalent energy multiple reflections taking measurement.
そして、放射温度計7で測定された放射温度計指示温度(多重反射温度)Tmが温度制御装置5に反射板温度T2の設定温度として入力され、反射板温度T2がTmに一致する方向にヒータ電源4の出力が調整される。この結果、T2とTmとの差ΔTが次第に小さくなり0に近づくことから、Tmを鋼板温度T1とみなす測定方法により、鋼板温度が精度良く測定できる。また、このようにして測定された鋼板温度T1を鋼板目標温度T0に一致させるように、鋼板の加熱装置または冷却装置を制御することにより、高精度の鋼板温度制御が実現できる。 Then, it is input as the set temperature of the reflector temperature T 2 in the radiation thermometer indicated temperature (multiple reflection temperature) T m is the temperature control device 5 measured by a radiation thermometer 7, the reflecting plate temperature T 2 is matching T m The output of the heater power supply 4 is adjusted in the direction to perform. As a result, the difference ΔT between T 2 and T m gradually decreases and approaches 0, so that the steel plate temperature can be measured with high accuracy by a measuring method in which T m is regarded as the steel plate temperature T 1 . Moreover, such a steel sheet temperature T 1 of which is measured as the match to the steel target temperature T 0, by controlling the heating device or cooling device of the steel plate, the steel plate temperature control with high accuracy can be realized.
〔実施形態2〕
図2は、上記第2の手段を用いた実施形態に係る鋼板の温度測定装置の概略構成を説明するための図であり、通板方向断面および制御フローを示す。
[Embodiment 2]
FIG. 2 is a view for explaining a schematic configuration of a temperature measuring apparatus for a steel sheet according to an embodiment using the second means, and shows a cross section in the plate passing direction and a control flow.
図2に示すように、本実施形態は、上記実施形態1(図1)の構成に、さらに、鋼板温度演算回路(以下、単に「演算回路」ともいう。)8を追加したものである。 As shown in FIG. 2, the present embodiment is obtained by adding a steel plate temperature calculation circuit (hereinafter also simply referred to as “calculation circuit”) 8 to the configuration of the first embodiment (FIG. 1).
反射板温度T2および放射温度計指示温度(多重反射温度)Tmの測定までは、上記実施形態と全く同様であるので説明を省略する。 Until measurement of the reflection plate temperature T 2 and a radiation thermometer indicated temperature (multiple reflection temperature) T m, because it is exactly the same as the above embodiments it will not be described.
そして、放射温度計指示温度Tmと接触式温度計6で測定した反射板温度T2とを、演算回路8に入力し、この演算回路8にて上記式(15)をさらに簡略化した下記式(1)により鋼板温度T1の近似値T1’を算出する。
Below and, a reflective plate temperature T 2 measured by a contact thermometer 6 and the radiation thermometer indicated temperature T m, and input to the
T1’=Tm+K(Tm−T2) …式(1) T 1 '= T m + K (T m -T 2) ... Equation (1)
ここで、式(15)を直接用いずに、これを簡略化した式(1)を用いる理由は、式(15)のような4次式を用いて鋼板温度を求めることは煩雑であり、通常の計算機では計算時間を要するため応答性が劣るいっぽう、応答性を確保するために計算時間を短縮しようとすると高速演算可能な計算機を要することから、単純な1次式である式(1)を用いることで、通常の計算機でも計算時間を短縮して応答性を確保するためである。以下に式(15)から式(1)を導出する過程を説明する。 Here, the reason for using the simplified formula (1) without directly using the formula (15) is that it is complicated to obtain the steel plate temperature using a quaternary formula such as the formula (15), A normal computer requires a calculation time, so the responsiveness is inferior. On the other hand, an attempt to reduce the calculation time in order to ensure the responsiveness requires a computer capable of high-speed calculation. Therefore, a simple linear expression (1) This is to reduce the calculation time and secure the responsiveness even with a normal computer. The process of deriving equation (1) from equation (15) will be described below.
上記式(15)より、
T1 4=(1+K)Tm 4−KT2 4
=Tm 4+K(Tm 4−T2 4)
=Tm 4[1+K(1−(T2/Tm)4)]
となり、さらに、T2/Tm=aとおくと、
T1 4=Tm 4[1+K(1−a4)]
=Tm 4[1+K(1−a)(1+a)(1+a2)]
となり、a≒1の場合は、
T1 4≒Tm 4[1+4K(1−a)]
となる。
From the above equation (15),
T 1 4 = (1 + K) T m 4 −KT 2 4
= T m 4 + K (T m 4 -
= T m 4 [1 + K (1− (T 2 / T m ) 4 )]
Furthermore, if T 2 / T m = a,
T 1 4 = T m 4 [1 + K (1-a 4 )]
= T m 4 [1 + K (1-a) (1 + a) (1 + a 2 )]
If a ≒ 1, then
T 1 4 ≈T m 4 [1 + 4K (1-a)]
It becomes.
したがって、
T1≒Tm[1+4K(1−a)]1/4
となる。
Therefore,
T 1 ≈T m [1 + 4K (1-a)] 1/4
It becomes.
ここで、b≒0の場合、(1−b)4=(1−4b+6b2−4b3+b4)≒(1−4b)であるから、1−b≒(1−4b)1/4となる。 Here, when b≈0, (1−b) 4 = (1−4b + 6b 2 −4b 3 + b 4 ) ≈ (1−4b), so that 1−b≈ (1−4b) 1/4 Become.
したがって、
T1≒Tm[1+K(1−a)]
=Tm[1+K(1−T2/Tm)]
=Tm+K(T2−Tm)
となり、T1をT1’と置き換えることにより、式(1)が導かれる。
Therefore,
T 1 ≈T m [1 + K (1-a)]
= T m [1 + K ( 1-
= T m + K (T 2 -T m)
Thus, replacing T 1 with T 1 ′ yields equation (1).
ここに、Kは、上記式(14)で示したように、鋼板1および反射板2の放射率ε1、ε2のみの関数からなる補正係数である。このため、補正係数K自体は、鋼板1および反射板2の放射率変動の影響を受けることになるが、反射板温度T2を多重反射温度Tmに一致するように制御するので、補正係数Kによる誤差が除外され高精度の鋼板温度の測定が可能となる。
Here, K is a correction coefficient composed of a function of only the emissivities ε 1 and ε 2 of the steel plate 1 and the reflecting
したがって、補正係数Kは、厳密な設定を要しないが、測定された鋼板温度が所定の精度に達するのに要する時間には影響があるので、ある程度の精度は必要である。このため、鋼板1および反射板2の放射率ε1、ε2の推定値として、例えば別途オフラインで測定した値または文献値から想定される変動の範囲における平均的な値を採用し、これらの値を上記式(14)に代入して算出したものを補正係数Kとして用いればよい。
Therefore, the correction coefficient K does not need to be set strictly, but has a certain degree of accuracy because it affects the time required for the measured steel plate temperature to reach a predetermined accuracy. For this reason, as the estimated values of the emissivities ε 1 and ε 2 of the steel plate 1 and the reflecting
そして、演算回路8で算出された鋼板温度の近似値T1’が反射板温度T2の設定温度として温度制御装置5に入力され、反射板温度T2がT1’に一致する方向にヒータ電源4の出力が調整される。この結果、T2とTmとの差ΔTが次第に小さくなり0に近づくことから、T1’を鋼板温度T1とみなす測定方法により、鋼板温度が精度良く測定できる。
Then, the approximate value T 1 of the steel sheet temperature calculated by the
本実施形態は、上記実施形態1に比べて、演算回路8を余分に必要とするものの、反射板温度T2を直接、鋼板温度の近似値T1’に近づけるように制御することにより、上記実施形態1の方法よりもさらに早期に高精度の鋼板温度測定の実現が期待できる。また、鋼板温度の近似値T1’を算出する式として簡単な1次式である上記式(1)を採用したことにより、演算回路8に高速演算可能な計算機を用いずとも、応答性を犠牲にすることなく、高精度の鋼板温度の測定が可能となる。
Although the present embodiment requires an extra
〔実施形態3〕
図3は、上記第3の手段を用いた実施形態に係る鋼板の温度測定装置の概略構成を説明するための図であり、通板方向断面および制御フローを示す。
[Embodiment 3]
FIG. 3 is a view for explaining a schematic configuration of a temperature measuring apparatus for a steel sheet according to an embodiment using the third means, and shows a cross section in the plate passing direction and a control flow.
図3に示すように、本実施形態は、上記実施形態1(図1)の構成において、温度制御装置5に入力される設定温度を、放射温度計指示温度(多重反射温度)Tmに代えて、一定値である鋼板目標温度T0とし、制御を行うことなく、放射温度計指示温度(多重反射温度)Tmを直ちに鋼板温度T1とするものである。本実施形態によれば、上記式(15)からわかるように、多重反射温度Tmと反射板温度T2との間に差が存在する場合は、鋼板温度T1には測定誤差が含まれることになるが、反射板温度T2は鋼板目標温度T0に設定されるとともに、実際の鋼板温度T1自体も当然に鋼板目標温度T0に制御されることから、多重反射温度Tmも鋼板目標温度T0に近づき、前記測定誤差はそれほど大きなものとはならない。しかも、反射板温度T2の制御を行う必要がないことから、通板前に予め反射板温度T2を鋼板目標温度T0に設定しておくことも可能であり、より早期に鋼板温度T1の測定値を得ることができる。 As shown in FIG. 3, this embodiment, in the configuration of the first embodiment (FIG. 1), the set temperature inputted to the temperature control device 5, instead of the radiation thermometer indicated temperature (multiple reflection temperature) T m Thus, the steel plate target temperature T 0 which is a constant value is set, and the radiation thermometer command temperature (multiple reflection temperature) T m is immediately set to the steel plate temperature T 1 without performing control. According to this embodiment, as can be seen from the above equation (15), if there is a difference between the multiple reflection temperature T m and the reflector temperature T 2 includes a measurement error in the steel sheet temperature T 1 of However, the reflector temperature T 2 is set to the steel plate target temperature T 0 , and the actual steel plate temperature T 1 itself is naturally controlled to the steel plate target temperature T 0 , so that the multiple reflection temperature T m is also set. As the steel plate approaches the target temperature T 0 , the measurement error is not so large. Moreover, the reflective plate since it is not necessary to control the temperature T 2, it is also possible to set in advance reflector temperature T 2 in the passing plate front steel plate target temperature T 0, steel sheet temperature T 1 of the earlier Can be obtained.
〔実施形態4〕
図4は、上記第3の手段を用いた別の実施形態に係る鋼板の温度測定装置の概略構成を説明するための図であり、通板方向断面および制御フローを示す。
[Embodiment 4]
FIG. 4 is a view for explaining a schematic configuration of a temperature measuring apparatus for a steel plate according to another embodiment using the third means, and shows a cross section in the plate passing direction and a control flow.
図4に示すように、本実施形態は、上記実施形態3(図3)の構成に、さらに、鋼板温度演算回路8を追加したものである。
As shown in FIG. 4, the present embodiment is obtained by adding a steel plate
そして、上記実施形態3と同様に反射板温度T2を鋼板目標温度T0に設定するとともに、上記実施形態2と同様に、放射温度計指示温度Tgと接触式温度計6で測定した反射板温度T2とを、演算回路8に入力し、この演算回路8にて上記式(1)により鋼板温度T1の近似値T1’を算出し、このT1’を鋼板温度T1とするようにしてもよい。
Then, the reflection plate temperature T 2 is set to the steel plate target temperature T 0 as in the third embodiment, and the reflection thermometer indicated temperature T g and the reflection measured by the contact thermometer 6 as in the second embodiment. The plate temperature T 2 is input to the
本実施形態は、上記実施形態3に比べて、演算回路8を余分に必要とするものの、実際の鋼板温度T1が鋼板目標温度T0よりずれている場合であっても、上記式(1)を用いることでより高精度の鋼板温度を得ることができる。
Although the present embodiment requires an extra
〔実施形態5〕
鋼板1を連続的に熱処理する連続焼鈍設備や溶融亜鉛メッキ設備では、鋼種ごとに異なる機械的特性(強度・伸びなど)やメッキ特性(合金化度など)を得るために、加熱または冷却を伴う熱処理プロセスにおける鋼板の目標温度をステップ的に変更している(図5参照)。このため、本発明をこれらの設備に適用する場合、反射板温度T2も鋼板の目標温度T0の変更に応じて変更する必要があるが、同図に示すように、必ず応答遅れが生じる。さらには、鋼板を目標温度に維持する期間が短い場合、反射板温度T2が鋼板の目標温度に到達する前に次の鋼板の目標温度に変更するための制御を行うこととなる。この結果、放射温度計指示温度(多重反射温度)Tmおよび上記式(15)を用いて算出される鋼板温度T1も鋼板の目標温度T0に到達するのに時間がかかり、目標温度T0に到達しないまま次の鋼板目標温度に変更されてしまう場合が生じ、鋼板温度の測定精度が低下してしまうこととなる。
[Embodiment 5]
In continuous annealing equipment or hot-dip galvanizing equipment that continuously heat treats steel plate 1, heating or cooling is required to obtain different mechanical properties (strength, elongation, etc.) and plating properties (degree of alloying, etc.) for each steel type. The target temperature of the steel plate in the heat treatment process is changed stepwise (see FIG. 5). For this reason, when the present invention is applied to these facilities, it is necessary to change the reflecting plate temperature T 2 in accordance with the change of the target temperature T 0 of the steel plate. However, as shown in FIG. . Furthermore, if a short period of maintaining the steel sheet at the target temperature, and performing control for changing the target temperature of the next steel plate before reflecting plate temperature T 2 reaches the target temperature of the steel sheet. As a result, the steel plate temperature T 1 calculated using the radiation thermometer instruction temperature (multiple reflection temperature) T m and the above equation (15) also takes time to reach the target temperature T 0 of the steel plate, and the target temperature T There is a case where the temperature is changed to the next steel plate target temperature without reaching 0, and the measurement accuracy of the steel plate temperature is lowered.
そこで、図6に示すように、炉に2つの反射板2a,2bを設置し、温度制御装置5a,5b、接触式温度計6a,6bおよび放射温度計7a,7bをそれぞれ設けるとともに、鋼板温度演算回路8を1つ設け、各反射板2a,2bおよび放射温度計7a,7bで計測された反射板温度T2a,T2bおよび多重反射温度Tma,Tmbを相互に切り替えて鋼板温度演算回路8に入力しうる選択回路9を設ける。そして、現在通板中の鋼板1aとは目標温度が異なる次の鋼板1bを連続して通板する場合には、現在使用中の反射板2aとは別の反射板2bを予め鋼板1bの目標温度となるように設定しておき、次の鋼板1bを通板する際には、選択回路9により反射板2bおよび放射温度計7b側に切り替えて用いるのが推奨される。
Therefore, as shown in FIG. 6, two
(変形例)
上記実施形態1〜5では、反射板2は鋼板1に対して傾斜させて設置する例を示したが、鋼板1に対して平行に設置してもよい。ただし、平行に設置する場合、反射回数を確保するため、傾斜して設置する場合よりも、反射板2の長さを長くする必要がある。
(Modification)
In the said Embodiment 1-5, although the reflecting
また、上記実施形態1〜5では、反射板を通板方向に対して傾斜させて設置する例を示したが、板幅方向に対して傾斜させて設置してもよいし、通板方向および板幅方向の両方に対して傾斜させて設置してもよい。 Moreover, in the said Embodiment 1-5, although the example which inclines with respect to the plate | board direction with respect to the reflecting plate was shown, it may be installed to incline with respect to the plate width direction. You may incline and install with respect to both the board width directions.
また、上記実施形態1〜5では、反射板2の温度制御のために、加熱手段としてのヒータ3を例示したが、加熱手段に加えて、例えば空冷装置や水例装置などの冷却手段を設けてもよい。これにより、反射板温度T2をさらに迅速に制御できる。
In the first to fifth embodiments, the heater 3 as the heating unit is illustrated for controlling the temperature of the
また、上記実施形態1〜5では、反射板2の温度を直接測定するための温度計として、熱電対などの接触式温度計を例示したが、これに限定されるものではなく、例えばキャビティ内に熱電対を配した非接触式温度計を用いることもできる。
Moreover, in the said Embodiment 1-5, although the contact-type thermometers, such as a thermocouple, were illustrated as a thermometer for directly measuring the temperature of the reflecting
また、上記実施形態1および2では、反射板温度T2を制御している間において、常時TmまたはT1’を鋼板温度とみなす例を示したが、T2とTmまたはT1’との差ΔTが所定値(例えば5℃)より小さくなったときに、初めてTmまたはT1’を鋼板温度とみなすような収束制御を行ってもよい。 In the first and second embodiments, the example in which T m or T 1 ′ is always regarded as the steel plate temperature while the reflector temperature T 2 is being controlled is shown, but T 2 and T m or T 1 ′ are shown. Convergence control may be performed for the first time when T m or T 1 ′ is regarded as the steel plate temperature when the difference ΔT with respect to becomes smaller than a predetermined value (for example, 5 ° C.).
また、上記実施形態5では、2つの反射板2a,2bは、鋼板1を挟んで対向させて配置した例を示したが、通板方向に並べて配置してもよい。
In the fifth embodiment, the two
また、反射板2は2つ設けた例を示したが、3つ以上設けて、順次切り替えて用いるようにしてもよい。
Moreover, although the example which provided two reflecting
また、放射温度計7を2つの反射板2a,2bにそれぞれ設ける例を示したが、1台の放射温度計7を2つの反射板2a,2bの間で交互に移動させて使用するようにしてもよい。
Moreover, although the example which each provides the radiation thermometer 7 in two
また、鋼板温度演算回路8は1つのみ設置し、選択回路9で反射板2と放射温度計7の組合せを切り替えて使用する例を示したが、もちろん、選択回路9を用いることなく、反射板2と放射温度計7の組合せごとに鋼板温度演算回路8を設置してもよい。
In addition, an example in which only one steel plate
1:鋼板
2:反射板
3:ヒータ
4:ヒータ電源
5:温度制御装置
6:温度計(接触式温度計)
7:放射温度計
8:鋼板温度演算回路
9:選択回路
1: Steel plate 2: Reflecting plate 3: Heater 4: Heater power supply 5: Temperature controller 6: Thermometer (contact thermometer)
7: Radiation thermometer 8: Steel plate temperature calculation circuit 9: Selection circuit
Claims (7)
式1 T1’=Tm+K(Tm−T2)
ここに、Kは、別途の測定または文献値から求めた前記反射板および前記被測定鋼板の各放射率の推定値に基づく補正係数である。 A reflector provided with a temperature control device is installed to face the measured steel plate, the reflecting plate as well as directly measured in a different thermometer and temperature T 2, infra radiation thermometer, and the reflecting plate and the object to be measured steel plate between the radiant energy to multiple reflection was measured by a radiation thermometer, a temperature obtained by converting the temperature of a black body that emits the radiant energy equivalent energy and multiple reflections temperature T m, the steel sheet by the following formula 1 An approximate value T 1 ′ of temperature is calculated, and the temperature control device controls the reflector plate temperature T 2 so as to match the approximate value T 1 ′ of the steel plate temperature, and the approximate value T 1 of the steel plate temperature. A method for measuring the temperature of a steel sheet, characterized in that 'is the steel sheet temperature.
Formula 1 T 1 ′ = T m + K (T m −T 2 )
Here, K is a correction coefficient based on estimated values of the emissivities of the reflector and the steel plate to be measured, which are obtained from separate measurements or literature values.
式1 T1’=Tm+K(Tm−T2)
ここに、Kは、別途の測定または文献値から求めた前記反射板および前記被測定鋼板の各放射率の推定値に基づく補正係数である。 A reflector provided with a temperature control device placed opposite to the measured steel plate such that said reflective plate temperature T 2 measured directly in a separate thermometer matches the steel target temperature T 0 and the later radiation thermometer While controlling with a temperature control device, measure the radiant energy reflected multiple times between the reflector and the steel plate to be measured with a radiation thermometer, and convert it to the temperature of a black body that radiates energy equivalent to this radiant energy. A temperature measurement method for a steel sheet, characterized in that the temperature obtained in this way is defined as a multiple reflection temperature T m and an approximate value T 1 ′ of the steel sheet temperature calculated by the following formula 1 is used as the steel sheet temperature.
Formula 1 T 1 ′ = T m + K (T m −T 2 )
Here, K is a correction coefficient based on estimated values of the emissivities of the reflector and the steel plate to be measured, which are obtained from separate measurements or literature values.
式1 T1’=Tm+K(Tm−T2)
ここに、Kは、別途の測定または文献値から求めた前記反射板および前記被測定鋼板の各放射率の推定値に基づく補正係数である。 A reflector disposed opposite to a measured steel plate, a temperature control device for controlling the temperature of the reflection plate, measuring the reflection plate temperature T 2 directly, and another thermometer and later radiation thermometer, between the measured steel plate and the reflective plate to measure the radiant energy to multiple reflection, the radiation thermometer to be converted to multiple reflections temperature T m is the temperature of a black body that emits the radiant energy equivalent energy, A steel plate temperature measurement circuit comprising: a steel plate temperature calculation circuit that calculates an approximate value T 1 ′ of the steel plate temperature from the following formula 1.
Formula 1 T 1 ′ = T m + K (T m −T 2 )
Here, K is a correction coefficient based on estimated values of the emissivities of the reflector and the steel plate to be measured, which are obtained from separate measurements or literature values.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006205031A JP4878234B2 (en) | 2006-07-27 | 2006-07-27 | Steel plate temperature measuring method and temperature measuring device, and steel plate temperature control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006205031A JP4878234B2 (en) | 2006-07-27 | 2006-07-27 | Steel plate temperature measuring method and temperature measuring device, and steel plate temperature control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008032486A true JP2008032486A (en) | 2008-02-14 |
JP4878234B2 JP4878234B2 (en) | 2012-02-15 |
Family
ID=39122078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006205031A Active JP4878234B2 (en) | 2006-07-27 | 2006-07-27 | Steel plate temperature measuring method and temperature measuring device, and steel plate temperature control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4878234B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010038562A (en) * | 2008-07-31 | 2010-02-18 | Kobe Steel Ltd | Apparatus for measuring temperature in steel plate |
JP2016156811A (en) * | 2015-02-25 | 2016-09-01 | 株式会社神戸製鋼所 | Intergranular oxidation detecting apparatus and intergranular oxidation detecting method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5750631A (en) * | 1980-09-12 | 1982-03-25 | Kawasaki Steel Corp | Method and device for measuring surface temperature emissivity |
JPH0367137A (en) * | 1989-08-04 | 1991-03-22 | Chino Corp | Surface temperatude controller |
JPH05203498A (en) * | 1992-01-28 | 1993-08-10 | Sumitomo Metal Ind Ltd | Temperature meter utilizing auxiliary heat source |
JPH05203497A (en) * | 1992-01-29 | 1993-08-10 | Nkk Corp | Measuring method for temperature of steel plate |
JP2001304968A (en) * | 2000-04-20 | 2001-10-31 | Tokai Carbon Co Ltd | Method and device for measuring temperature of heated object |
-
2006
- 2006-07-27 JP JP2006205031A patent/JP4878234B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5750631A (en) * | 1980-09-12 | 1982-03-25 | Kawasaki Steel Corp | Method and device for measuring surface temperature emissivity |
JPH0367137A (en) * | 1989-08-04 | 1991-03-22 | Chino Corp | Surface temperatude controller |
JPH05203498A (en) * | 1992-01-28 | 1993-08-10 | Sumitomo Metal Ind Ltd | Temperature meter utilizing auxiliary heat source |
JPH05203497A (en) * | 1992-01-29 | 1993-08-10 | Nkk Corp | Measuring method for temperature of steel plate |
JP2001304968A (en) * | 2000-04-20 | 2001-10-31 | Tokai Carbon Co Ltd | Method and device for measuring temperature of heated object |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010038562A (en) * | 2008-07-31 | 2010-02-18 | Kobe Steel Ltd | Apparatus for measuring temperature in steel plate |
JP2016156811A (en) * | 2015-02-25 | 2016-09-01 | 株式会社神戸製鋼所 | Intergranular oxidation detecting apparatus and intergranular oxidation detecting method |
Also Published As
Publication number | Publication date |
---|---|
JP4878234B2 (en) | 2012-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4217255B2 (en) | Steel plate temperature measuring method and temperature measuring device, and steel plate temperature control method | |
KR101983326B1 (en) | Substrate treatment method and substrate treatment apparatus | |
US4634840A (en) | Method of heating thermoplastic resin sheet or film | |
JP2014153168A (en) | Emissivity measuring apparatus and emissivity measuring method | |
JP4878234B2 (en) | Steel plate temperature measuring method and temperature measuring device, and steel plate temperature control method | |
JP2011214980A (en) | Temperature measurement device of metal plate | |
JP7414044B2 (en) | Metal strip temperature measuring method, metal strip temperature measuring device, metal strip manufacturing method, metal strip manufacturing equipment, and metal strip quality control method | |
JPS6047538B2 (en) | How to measure the temperature and emissivity of an object | |
RU2447414C2 (en) | Apparatus for measuring temperature of tape in furnace for annealing plane glass and method for operating annealing furnace | |
JP2014215084A (en) | Method for measuring temperature of heated object | |
JP6245208B2 (en) | Temperature measuring device, plated steel plate heating device, plated steel plate pressing device, temperature measuring method, plated steel plate heating method, and plated steel plate pressing method | |
McGuinness et al. | Strip temperature in a metal coating line annealing furnace | |
JP2006170616A (en) | Method and device for measuring temperature, and semiconductor heat treating device | |
JP5421840B2 (en) | Temperature control method for reference plate in metal plate temperature measuring device | |
JP6959211B2 (en) | Oxidation film thickness measuring device and the method | |
JP5134466B2 (en) | Steel plate temperature measuring device | |
JP6245209B2 (en) | Temperature measuring device, plated steel plate heating device, plated steel plate press device, plated steel plate heating method, and plated steel plate press method | |
JP2009174958A (en) | Temperature-measuring device of steel plate | |
US3791635A (en) | Detection of radiant energy emitting from a moving web of metal | |
JP2000297330A (en) | Method for measuring strip temperature in strip continuous annealing furnace and instrument therefor | |
JPH0427496B2 (en) | ||
JPH05203497A (en) | Measuring method for temperature of steel plate | |
JP2022156276A (en) | Device for measuring metal sheet surface temperature, annealing equipment, and method for measuring surface temperature | |
KR100411282B1 (en) | Method and apparatus for measuring temperature of body in heating furnace | |
KR20210052546A (en) | Oxide film thickness measuring apparatus and method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110405 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110407 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110407 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110408 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110518 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111122 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111125 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4878234 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141209 Year of fee payment: 3 |