JP2022156276A - Device for measuring metal sheet surface temperature, annealing equipment, and method for measuring surface temperature - Google Patents

Device for measuring metal sheet surface temperature, annealing equipment, and method for measuring surface temperature Download PDF

Info

Publication number
JP2022156276A
JP2022156276A JP2021059875A JP2021059875A JP2022156276A JP 2022156276 A JP2022156276 A JP 2022156276A JP 2021059875 A JP2021059875 A JP 2021059875A JP 2021059875 A JP2021059875 A JP 2021059875A JP 2022156276 A JP2022156276 A JP 2022156276A
Authority
JP
Japan
Prior art keywords
temperature
metal plate
radiation
measuring
radiance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021059875A
Other languages
Japanese (ja)
Other versions
JP7444125B2 (en
Inventor
章紀 中村
Akinori Nakamura
紘明 大野
Hiroaki Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2021059875A priority Critical patent/JP7444125B2/en
Publication of JP2022156276A publication Critical patent/JP2022156276A/en
Application granted granted Critical
Publication of JP7444125B2 publication Critical patent/JP7444125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a device for measuring metal sheet surface temperature, annealing equipment, and a method for measuring surface temperature that is capable of simply and accurately measuring the temperature of a metal sheet in a straight pass between rolls where the metal sheet is not wound around the rolls.SOLUTION: A device 1 for measuring metal sheet surface temperature is for measuring metal sheet surface temperature in a straight pass between rolls. The device 1 includes a first radiation measuring mechanism 10 for measuring the radiance or temperature of a surface on a roll 3B side of a metal sheet of a wedge formed by the metal sheet and the roll 3B that changes the orientation of the metal sheet, a second radiation measuring mechanism 11 for measuring the radiance or temperature of a surface on the opposite side of the roll 3B of the metal sheet of the wedge, an emissivity calculation mechanism 12 for calculating emissivity from the radiance or temperature measured by the first radiation measuring mechanism 10 and the radiance or temperature measured by the second radiation measuring mechanism 11, and an emissivity calculation mechanism 13 for measuring the temperature of the surface of the metal sheet by using the calculated emissivity.SELECTED DRAWING: Figure 3

Description

本発明は、ロールを介して連続的に搬送される金属板の表面温度測定装置、焼鈍設備及び表面温度測定方法に関する。 TECHNICAL FIELD The present invention relates to a surface temperature measuring device, annealing equipment, and surface temperature measuring method for a metal plate that is continuously conveyed via rolls.

金属板の製造プロセス、中でも鉄鋼業の薄鋼板製造プロセスにおいては、材質の造りこみの観点から温度管理が非常に重要となる。特に焼鈍工程では薄鋼板が各工程において目標の温度となるような制御を行うために、搬送中の薄鋼板の表面温度測定のニーズがある。代表的な温度測定方法として、対象の放射輝度を計測して温度に換算する放射測温が挙げられる。しかしながら、放射測温では、対象の放射率が既知でないと正しく測温することができず、測定の対象が製造工程にて表面性状が大きく変化する場合には放射率設定において課題が存在している。 In the process of manufacturing metal sheets, especially in the process of manufacturing thin steel sheets in the steel industry, temperature control is very important from the viewpoint of building materials. Especially in the annealing process, there is a need to measure the surface temperature of the steel sheet during transportation in order to control the temperature of the steel sheet so that it reaches the target temperature in each process. A representative temperature measurement method is radiation thermometry, which measures the radiance of an object and converts it into temperature. However, in radiation thermometry, the temperature cannot be measured correctly unless the emissivity of the object is known. If the surface properties of the object to be measured change greatly during the manufacturing process, there is a problem in setting the emissivity. there is

対象の放射率に関わらず測温できる手法として、特許文献1のように、ロール80と鋼板81表面とのわずかな隙間を放射温度計82の視野とすることで疑似的に多重反射条件とし、放射率が1.0に近づいた状態で測温可能な多重反射式放射温度計方式(例えば、図1参照)が開示されている。また、非特許文献1のように、中空のロール83内に熱電対84を埋め込み、鋼板巻き付き部分で熱電対84と鋼板85の温度とが同一となる条件を作り出すことにより測温する測温ロール方式(例えば、図2参照)が開示されている。さらに、特許文献2のように、対象の分光放射と主成分分析による学習を用いた分光主成分放射温度計も開示されている。 As a method that can measure temperature regardless of the emissivity of the object, as in Patent Document 1, a slight gap between the roll 80 and the surface of the steel plate 81 is set as a field of view of the radiation thermometer 82 to simulate multiple reflection conditions. A multi-reflection radiation thermometer system (see, for example, FIG. 1) capable of measuring temperature with an emissivity approaching 1.0 is disclosed. In addition, as in Non-Patent Document 1, a thermocouple 84 is embedded in a hollow roll 83, and a temperature measurement roll that measures the temperature by creating a condition where the temperatures of the thermocouple 84 and the steel plate 85 are the same at the portion where the steel plate is wound. A scheme (see, eg, FIG. 2) is disclosed. Furthermore, as in Patent Document 2, a spectral principal component radiation thermometer using target spectral radiation and learning by principal component analysis is also disclosed.

特開昭60-78327号公報JP-A-60-78327 特開2014-202528号公報JP 2014-202528 A

鉄と鋼79(7), 765-771, 1993Tetsu to Hagane 79(7), 765-771, 1993

特許文献1及び非特許文献1の手法は、対象の鋼板温度を正しく測定するうえで非常に有力な方法であるが、ロール表面と対象板温とが同一でないと使用できず、薄鋼板がロールに十分に巻き付いている必要がある。このため、薄鋼板がロールに巻き付いていないロール間の直線パス条件下では使用できない。また特許文献2の手法は、温度真値を取るために接触式熱電対が必要となり装置が大掛かりになることや、学習のために大量のデータが必要になるなどの課題が存在する。 The methods of Patent Document 1 and Non-Patent Document 1 are very powerful methods for correctly measuring the target steel plate temperature, but cannot be used unless the roll surface and the target plate temperature are the same. should be sufficiently wrapped around the Therefore, it cannot be used under straight pass conditions between rolls in which the thin steel sheet is not wound around the rolls. Moreover, the method of Patent Document 2 has problems such as a need for a contact-type thermocouple in order to obtain the true temperature value, which makes the device large-scale, and a large amount of data required for learning.

しかしながら、ロール間の直線パスにおいても温度が急変する直前など、温度管理上非常に重要な工程もあり、強い測温ニーズが存在する。特に水焼き入れ直前の鋼板温度は材質上極めて重要であるが、設備制約上直前にロールを配置することは困難であり、ロールを用いた測温が適用できない。
従来、直線パスにおける鋼板の測温方法としては、接触式の測温方式や、鋼板の放射率をある値に仮定しての放射測温が用いられてきた。しかし、接触式の測温方式では鋼板表面の疵が避けられず、放射率を仮定しての放射測温では精度に問題があった。
本発明は、以上の状況を鑑み、ロールに巻き付いていないロール間の直線パスにおいて簡易に精度よく測温する手法を提案する。
However, even in the straight pass between rolls, there are processes that are very important for temperature control, such as immediately before a sudden temperature change, and there is a strong need for temperature measurement. In particular, the steel sheet temperature immediately before water quenching is extremely important in terms of quality, but it is difficult to place a roll just before the water quenching due to equipment restrictions, and temperature measurement using rolls cannot be applied.
Conventionally, as a method for measuring the temperature of a steel plate in a straight path, a contact-type temperature measurement method or a radiation temperature measurement method assuming that the emissivity of the steel plate is a certain value has been used. However, the contact-type temperature measurement method cannot avoid scratches on the surface of the steel sheet, and there is a problem in the accuracy of the radiation temperature measurement assuming the emissivity.
In view of the above circumstances, the present invention proposes a method for simply and accurately measuring temperature in a straight path between rolls that are not wound around rolls.

そこで、本発明は、上記の課題に着目してなされたものであり、金属板がロールに巻き付いていないロール間の直線パスにおいて、金属板の温度を簡易に精度よく測温することができる、金属板の表面温度測定装置、焼鈍設備及び表面温度測定方法を提供することを目的としている。 Therefore, the present invention has been made focusing on the above problems, and the temperature of the metal plate can be easily and accurately measured in a straight path between rolls in which the metal plate is not wound around the rolls. An object of the present invention is to provide a surface temperature measuring device, annealing equipment, and surface temperature measuring method for a metal plate.

本発明の一態様によれば、ロール間の直線パスにおける金属板の表面温度を測定する、金属板の表面温度測定装置であって、上記金属板の向きを変えるロールと上記金属板とによって形成されたくさび部の、上記金属板の上記ロール側の面の放射輝度又は温度を計測する第1放射測定機構と、上記くさび部の、上記金属板の上記ロールと反対側の面の放射輝度又は温度を測定する第2放射測定機構と、上記第1放射測定機構によって計測された放射輝度又は温度と、上記第2放射測定機構によって計測された放射輝度又は温度とから、放射率を算出する放射率演算機構と、算出された上記放射率を用いて、上記金属板の表面を測温する放射測温機構と、を備える、金属板の表面温度測定装置が提供される。
本発明の一態様によれば、上記表面温度測定装置を有する、金属板の焼鈍設備が提供される。
According to one aspect of the present invention, there is provided a metal plate surface temperature measuring device for measuring the surface temperature of a metal plate in a linear path between rolls, the device being formed by a roll for changing the orientation of the metal plate and the metal plate. a first radiation measuring mechanism for measuring the radiance or temperature of the roll side surface of the metal plate of the wedge portion, and the radiance or temperature of the wedge portion on the surface opposite to the roll of the metal plate Radiation for calculating emissivity from a second radiation measurement mechanism for measuring temperature, radiance or temperature measured by the first radiation measurement mechanism, and radiance or temperature measured by the second radiation measurement mechanism A surface temperature measuring device for a metal plate is provided, comprising a rate computing mechanism and a radiation temperature measuring mechanism for measuring the temperature of the surface of the metal plate using the calculated emissivity.
According to one aspect of the present invention, there is provided a metal plate annealing facility having the above-described surface temperature measuring device.

本発明の一態様によれば、ロール間の直線パスにおける金属板の表面温度を測定する、金属板の表面温度測定方法であって、上記金属板の向きを変えるロールと上記金属板とによって形成されたくさび部の、上記金属板の上記ロール側の面の放射輝度又は温度を計測し、上記くさび部の、上記金属板の上記ロールと反対側の面の放射輝度又は温度を測定し、計測された上記ロール側の面の放射輝度又は温度と、計測された上記ロールと反対側の面の放射輝度又は温度とから、放射率を算出し、算出された上記放射率を用いて、上記金属板の表面を測温する、金属板の表面温度測定方法が提供される。 According to one aspect of the present invention, there is provided a method for measuring the surface temperature of a metal plate in a linear pass between rolls, the method being formed by rolls that change the orientation of the metal plate and the metal plate. Measure the radiance or temperature of the wedge portion on the surface of the metal plate on the roll side, measure the radiance or temperature of the wedge portion on the surface of the metal plate opposite to the roll, and measure Emissivity is calculated from the measured radiance or temperature of the surface on the roll side and the measured radiance or temperature of the surface opposite to the roll, and using the calculated emissivity, the metal A method for measuring the surface temperature of a metal plate is provided, which measures the temperature of the surface of the plate.

本発明の一態様によれば、金属板がロールに巻き付いていないロール間の直線パスにおいて、金属板の温度を簡易に精度よく測温することができる、金属板の表面温度測定装置、焼鈍設備及び表面温度測定方法が提供される。 ADVANTAGE OF THE INVENTION According to one aspect of the present invention, a surface temperature measuring device for a metal plate and an annealing facility capable of easily and accurately measuring the temperature of the metal plate in a straight pass between rolls in which the metal plate is not wound around the rolls. and a surface temperature measurement method are provided.

多重反射式放射温度計方式による測温手法を示す説明図である。FIG. 4 is an explanatory diagram showing a temperature measurement method using a multiple reflection radiation thermometer system; 測温ロール方式による測温手法を示す説明図である。FIG. 4 is an explanatory diagram showing a temperature measuring method using a temperature measuring roll system; 本発明の一実施形態に係る金属板の表面温度測定装置を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the surface temperature measuring apparatus of the metal plate which concerns on one Embodiment of this invention. 校正結果の一例を示すグラフである。It is a graph which shows an example of a calibration result. 第1放射測定機構及び放射測温機構として、一つの放射温度計を用いる例を示す模式図である。FIG. 4 is a schematic diagram showing an example of using one radiation thermometer as the first radiation measurement mechanism and the radiation temperature measurement mechanism; 温度調整装置を用いた制御機構を示す模式図である。It is a schematic diagram which shows the control mechanism using a temperature adjustment apparatus. 実施例における測温結果を示すグラフである。It is a graph which shows the temperature measurement result in an Example.

以下の詳細な説明では、図面を参照して、本発明の実施形態を説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付し、重複する説明を省略する。各図面は模式的なものであり、現実のものとは異なる場合が含まれる。また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において種々の変更を加えることができる。 The following detailed description describes embodiments of the invention with reference to the drawings. In the description of the drawings, the same or similar parts are denoted by the same or similar reference numerals, and overlapping descriptions are omitted. Each drawing is schematic and may differ from the actual one. In addition, the embodiments shown below are examples of apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is based on the material, structure, arrangement, etc. of component parts. It is not specific to the following. The technical idea of the present invention can be modified in various ways within the technical scope defined by the claims.

<金属板の表面温度測定装置>
本発明の一実施形態に係る金属板の表面温度測定装置1について説明する。なお、本実施形態では、金属板の一例として鋼板である薄鋼板2を用い、表面温度測定装置1の全体概要を薄鋼板2の焼鈍工程の一例である図3を用いて説明する。
薄鋼板2の製造プロセスでは、しばしば焼鈍後に急冷することにより、材質の造りこみを行うが、この急冷前には直線パスしか存在しない。図3に示す焼鈍工程では、ロール3A及びロール3Bを通過した薄鋼板2は、その後、次のロール(不図示)に搬送される間、直線パス(図3の上下方向に平行な搬送経路)を通る。この直線パスでは、熱処理装置4にて薄鋼板2の急加熱又は急加熱が行われる。また、直線パスにおいて、熱処理装置4よりも搬送経路の上流側の領域を、温度変化帯5という。なお、温度変化帯5には、熱処理装置4に搬送される薄鋼板2の温度を調整するための温度調整装置(不図示)が設けられてもよい。
<Surface temperature measuring device for metal plate>
A surface temperature measuring device 1 for a metal plate according to an embodiment of the present invention will be described. In the present embodiment, a thin steel plate 2, which is a steel plate, is used as an example of a metal plate, and the general outline of the surface temperature measuring device 1 will be described with reference to FIG.
In the manufacturing process of the thin steel sheet 2, the material is often refined by quenching after annealing, but there is only a straight path before this quenching. In the annealing process shown in FIG. 3, the thin steel sheet 2 that has passed through the rolls 3A and 3B is then conveyed to the next roll (not shown) in a straight path (conveyance path parallel to the vertical direction in FIG. 3). pass through In this straight pass, the thin steel plate 2 is rapidly heated or rapidly heated in the heat treatment device 4 . Further, in the straight path, the area on the upstream side of the transport path from the heat treatment apparatus 4 is called a temperature change zone 5 . Note that the temperature change zone 5 may be provided with a temperature adjustment device (not shown) for adjusting the temperature of the thin steel plate 2 conveyed to the heat treatment device 4 .

表面温度測定装置1は、薄鋼板2の焼鈍設備に設けられ、第1放射測定機構10と、第2放射測定機構11と、放射率演算機構12と、放射測温機構13と、を備える。
第1放射測定機構10は、直線パスの直前のロール捲き付き位置のロールであり、直線パスの直前に薄鋼板2の向きを変えるロール3Bと、薄鋼板2とによって形成されたくさび部のロール3B側の面の薄鋼板2の放射輝度又は温度を計測する。第1放射測定機構10は、例えば、放射温度計によって構成される。くさび部は、ロール3Bと薄鋼板2とが接触する位置の直前の、ロール3Bと薄鋼板2とが近接するくさび状の領域である。第1放射測定機構10は、このくさび部を望むように、薄鋼板2のロール3B側に設けられる。
A surface temperature measuring device 1 is provided in an annealing facility for thin steel plates 2 and includes a first radiation measuring mechanism 10 , a second radiation measuring mechanism 11 , an emissivity computing mechanism 12 , and a radiation temperature measuring mechanism 13 .
The first radiation measuring mechanism 10 is a roll at a roll winding position immediately before the linear pass, and is a wedge portion roll formed by the thin steel plate 2 and the roll 3B that changes the direction of the thin steel plate 2 immediately before the linear pass. The radiance or temperature of the thin steel plate 2 on the side of 3B is measured. The first radiation measurement mechanism 10 is configured by, for example, a radiation thermometer. The wedge portion is a wedge-shaped region where the roll 3B and the thin steel plate 2 are adjacent to each other, just before the position where the roll 3B and the thin steel plate 2 contact each other. The first radiation measuring mechanism 10 is provided on the roll 3B side of the thin steel plate 2 so as to look at this wedge portion.

第2放射測定機構11は、くさび部の薄鋼板2のロール3Bの反対側の面の放射輝度又は温度を計測する。本実施形態では、第2放射測定機構11は、薄鋼板2のロール3Bと反対側に設けられ、設けられた側の薄鋼板2の面を温度又は輝度を測定する。第2放射測定機構11は、例えば、放射温度計によって構成される。なお、第1放射測定機構10及び第2放射測定機構11による測定では、くさび部の先端側が測定されることが好ましい。
放射率演算機構12は、第1放射測定機構10と第2放射測定機構11とによって計測される放射輝度又は温度に基づいて、放射率を算出する。放射率演算機構12による放射率の算出方法については、後述する。
The second radiation measuring mechanism 11 measures the radiance or temperature of the surface of the thin steel plate 2 of the wedge portion opposite to the roll 3B. In this embodiment, the second radiation measuring mechanism 11 is provided on the side of the thin steel plate 2 opposite to the roll 3B, and measures the temperature or brightness of the surface of the thin steel plate 2 on the side where it is provided. The second radiation measurement mechanism 11 is composed of, for example, a radiation thermometer. In addition, in the measurement by the first radiation measurement mechanism 10 and the second radiation measurement mechanism 11, it is preferable to measure the tip side of the wedge portion.
The emissivity calculation mechanism 12 calculates the emissivity based on the radiance or temperature measured by the first radiation measurement mechanism 10 and the second radiation measurement mechanism 11 . A method of calculating the emissivity by the emissivity calculation mechanism 12 will be described later.

放射測温機構13は、熱処理装置4の直前に設けられ、放射率演算機構12によって算出された放射率を用いて、直線パスを移動する薄鋼板2の表面の温度を測定する。放射測温機構13は、温度変化帯5よりも搬送方向の下流側に設けられる。また、放射測温機構13は、第2放射測定機構11が放射輝度又は温度を測定する側の薄鋼板2の面の温度を測定することが好ましい。放射測温機構13は、例えば、放射温度計によって構成される。
ここで、第2放射測定機構11と放射測温機構13の放射率は、波長依存性を持たせるために、同一波長特性とすることが好ましい。また、第2放射測定機構11の設置位置と放射測温機構13の設置位置とでは、なるべく測定対象である薄鋼板2の表面性状が変化しないことが好ましい。
The radiation temperature measuring mechanism 13 is provided immediately before the heat treatment device 4, and uses the emissivity calculated by the emissivity calculating mechanism 12 to measure the temperature of the surface of the thin steel plate 2 moving in a straight path. The radiation temperature measuring mechanism 13 is provided downstream of the temperature change zone 5 in the conveying direction. Moreover, the radiation temperature measuring mechanism 13 preferably measures the temperature of the surface of the thin steel plate 2 on the side where the second radiation measuring mechanism 11 measures the radiance or temperature. The radiation temperature measuring mechanism 13 is composed of, for example, a radiation thermometer.
Here, the emissivity of the second radiation measuring mechanism 11 and the radiation temperature measuring mechanism 13 preferably have the same wavelength characteristic in order to have wavelength dependence. Moreover, it is preferable that the surface properties of the thin steel plate 2 to be measured do not change as much as possible between the installation position of the second radiation measurement mechanism 11 and the installation position of the radiation temperature measurement mechanism 13 .

<金属板の表面温度測定方法>
このような表面温度測定装置1では、放射率演算機構12が第1放射測定機構10と第2放射測定機構11とで得られた放射輝度又は温度から放射率を算出し、放射測温機構13の測温時に算出された放射率を用いて、放射測温機構13による放射測温が実施される。
そして、第1放射測定機構10と第2放射測定機構11は、その仕様により、測温結果を出力するか、輝度値を出力する。
<Method for measuring surface temperature of metal plate>
In such a surface temperature measuring device 1, the emissivity calculating mechanism 12 calculates the emissivity from the radiance or temperature obtained by the first radiation measuring mechanism 10 and the second radiation measuring mechanism 11, and the radiation temperature measuring mechanism 13 Radiation temperature measurement is performed by the radiation temperature measurement mechanism 13 using the emissivity calculated at the time of temperature measurement.
Then, the first radiation measurement mechanism 10 and the second radiation measurement mechanism 11 output temperature measurement results or luminance values according to their specifications.

(測温結果の出力)
第1放射測定機構10及び第2放射測定機構11が測温結果を出力する場合について説明する。測温結果を出力する場合、第1放射測定機構10及び第2放射測定機構11をある一定の放射率に設定し、測温を実施する。この放射率は既知であればどのような値でも良いが、第1放射測定機構10及び第2放射測定機構11の放射率を便宜上1.0とする。こうして得られた第1放射測定機構10の放射温度をTとし、第2放射測定機構11の放射温度をTとする。放射率を算出するためには、放射率が1.0(黒体条件)の時の放射輝度(黒体放射輝度)と実際の放射輝度とを比較する必要がある。このため、得られた温度値を輝度値に換算する必要があり、換算式は第1放射測定機構10及び第2放射測定機構11を設置する前に校正により予め算出しておく。校正に用いる式は、一般的な多項式などでも良いが、精度を求めるのであればプランクの式をよく近似している佐久間服部の式(下記(1)式)などが望ましく、本説明においても佐久間服部の式を用いる(計測自動制御学会論文集 18(7),704-709,(1982))。温度計の校正方法は、「JIS C 1612 放射測定機構の性能試験方法通則」に記載されており、この校正方法を用いた校正結果の一例を図4に示す。この時、放射測定機構固有のパラメータA,B,Cが得られ、このパラメータを用いて放射率を算出する。なお、(1)式において、Cは第二プランク定数、Vは放射測定機構における出力電圧(V)である。
(Output of temperature measurement results)
A case where the first radiation measurement mechanism 10 and the second radiation measurement mechanism 11 output temperature measurement results will be described. When outputting the temperature measurement result, the first radiation measurement mechanism 10 and the second radiation measurement mechanism 11 are set to have a certain emissivity, and the temperature is measured. This emissivity may be any known value, but the emissivity of the first radiation measuring mechanism 10 and the second radiation measuring mechanism 11 is assumed to be 1.0 for convenience. The radiation temperature of the first radiation measuring mechanism 10 thus obtained is Tr , and the radiation temperature of the second radiation measuring mechanism 11 is TA . In order to calculate the emissivity, it is necessary to compare the actual radiance with the radiance (black body radiance) when the emissivity is 1.0 (blackbody condition). Therefore, it is necessary to convert the obtained temperature value into a luminance value, and the conversion formula is calculated in advance by calibration before installing the first radiation measurement mechanism 10 and the second radiation measurement mechanism 11 . The equation used for calibration may be a general polynomial equation, but if accuracy is to be sought, Sakuma Hattori's equation (equation (1) below), which closely approximates Planck's equation, is preferable. Hattori's formula is used (Transactions of the Society of Instrument and Control Engineers, 18(7), 704-709, (1982)). A method for calibrating a thermometer is described in "JIS C 1612 General Rules for Performance Test Methods for Radiation Measurement Mechanisms", and an example of calibration results using this calibration method is shown in FIG. At this time, parameters A, B, and C unique to the radiation measuring mechanism are obtained, and the emissivity is calculated using these parameters. In equation (1), C2 is the second Planck's constant, and V is the output voltage (V) in the radiation measurement mechanism.

Figure 2022156276000002
Figure 2022156276000002

(1)式を用いてTとTを放射輝度S,Sに換算した結果を(2)式及び(3)式に示す。放射率εは黒体条件の放射輝度Sと実際の放射輝度Sとの比であるので、(4)式で算出することができる。つまり、本実施形態では、予め算出される黒体放射輝度と温度との関係から、第2放射測定機構11によって計測される温度に該当する黒体放射輝度が算出される。そして、温度に応じて算出された黒体放射輝度を第2放射測定機構11で計測される放射輝度として放射率εが算出される。 Equations (2) and (3) show the results of converting T r and T A into radiances S r and S A using Equation (1). Since the emissivity ε is the ratio of the radiance Sr under the black body condition to the actual radiance S A , it can be calculated by the equation (4). That is, in the present embodiment, the blackbody radiance corresponding to the temperature measured by the second radiation measurement mechanism 11 is calculated from the previously calculated relationship between the blackbody radiance and the temperature. Then, the emissivity ε is calculated by using the black body radiance calculated according to the temperature as the radiance measured by the second radiation measurement mechanism 11 .

Figure 2022156276000003
Figure 2022156276000003

なお、本実施形態では、服部佐久間の式を用いて温度と放射輝度との変換を実施したが、他の式を用いても同様の結果が得られる。温度と放射輝度との変換において、どの式を選定するかは計算量、精度及び放射測定機構の波長特性を鑑みて適切なものを選定するとよい。また、上述の温度と放射輝度との変換は、放射率演算機構12で行われてもよく、第1放射測定機構10及び第2放射測定機構11でそれぞれ行われてもよい。 In the present embodiment, conversion between temperature and radiance is performed using Sakuma Hattori's equation, but similar results can be obtained using other equations. Which formula should be selected for the conversion between temperature and radiance should be selected in consideration of the amount of calculation, accuracy, and wavelength characteristics of the radiation measurement mechanism. Further, the conversion between temperature and radiance described above may be performed by the emissivity calculation mechanism 12, or may be performed by the first radiation measurement mechanism 10 and the second radiation measurement mechanism 11, respectively.

(輝度値の出力)
次に、第2放射測定機構11が放射輝度Sを出力する場合について説明する。この場合は(3)式により温度値Tを放射輝度Sに変換する必要がないため、(4)式のSに直接出力結果であるSを代入すれば、同様の結果が得られる。第1放射測定機構10が放射輝度Sを直接出力する場合も同様である。つまり、放射率εは、第1放射測定機構10により計測される放射輝度Sに対する、第2放射測定機構11により計測される放射輝度Sの比(S/S)として算出される。
こうして得られた放射率εを用いて、放射測温機構13で測温を実施し、測定位置での温度Tを得ることが可能となる。
(output of luminance value)
Next, the case where the second radiation measuring mechanism 11 outputs the radiance SA will be described. In this case, since it is not necessary to convert the temperature value T A to the radiance S A by the equation (3), the same result can be obtained by directly substituting the output result S A for S A in the equation (4). be done. The same applies when the first radiation measurement mechanism 10 directly outputs the radiance Sr. That is, the emissivity ε is calculated as the ratio (S A /S r ) of the radiance S A measured by the second radiation measurement mechanism 11 to the radiance S r measured by the first radiation measurement mechanism 10 . .
Using the emissivity ε obtained in this way, the temperature is measured by the radiation temperature measuring mechanism 13, and the temperature Tb at the measurement position can be obtained.

なお、第1放射測定機構10と放射測温機構13に関しては、機材が多く、導入やメンテナンスにコストがかかるといった課題がある。したがって、図5に示すように、第1放射測定機構10及び放射測温機構13として、長手に長い視野を持つ一つの放射温度計14を用いてもよい。この場合、放射温度計14の測温結果のうち、最大輝度あるいは最大温度となる場所(図5の14a)を第1放射測定機構10の測定結果、薄鋼板2の安定した場所(図5の14b)の輝度あるいは温度を放射測温機構13の測定結果とすることにより、機器を簡易化することが可能である。
第1放射測定機構10は、確実にロール3と薄鋼板2との間のくさび部を視野とするために厳密な調整が必要である。しかし、本実施形態では調整が容易で、なおかつアライメントが運用中に変化したとしても、長手方向のいずれかの素子がくさび部となりロバスト性が向上するといった利点も存在する。
Regarding the first radiation measuring mechanism 10 and the radiation temperature measuring mechanism 13, there is a problem that the equipment is large and the introduction and maintenance costs are high. Therefore, as shown in FIG. 5, one radiation thermometer 14 having a long longitudinal field of view may be used as the first radiation measurement mechanism 10 and the radiation temperature measurement mechanism 13 . In this case, among the temperature measurement results of the radiation thermometer 14, the location (14a in FIG. 5) with the maximum brightness or the maximum temperature is the measurement result of the first radiation measurement mechanism 10, and the stable location (14a in FIG. 5) of the thin steel plate 2 is By using the luminance or temperature of 14b) as the measurement result of the radiation thermometry mechanism 13, the equipment can be simplified.
The first radiation measuring mechanism 10 must be precisely adjusted to ensure that the wedge between the roll 3 and the thin steel plate 2 is in the field of view. However, this embodiment also has the advantage that it is easy to adjust, and even if the alignment changes during operation, any element in the longitudinal direction will serve as a wedge, improving robustness.

なお、好ましくは、放射測温機構13の位置と、第2放射測定機構11及び測温されるロール3Bの位置とが異なるため、これらの測定位置に対して位置合わせを実施したほうが良い。例えば、薄鋼板2の搬送速度をv(m/s)とし、両放射測定機構間の距離をL(m)とした場合、薄鋼板2の同一個所が両位置を通過するタイミングにはL/v(s)の遅延が存在する。したがって、放射測温機構13で用いる放射率はL/v(s)前のものを用いるとよい。また、ロール3Bの回転数により薄鋼板2上の位置をトラッキングしている場合は、トラッキング情報から位置合わせを実施しても良い。つまり、この位置合わせでは、第2放射測定機構11と放射測温機構13との位置関係と、金属板の搬送速度又はロールの回転数とに基づいて放射測温機構13の計測に用いられる放射率が決定される。この際、放射率が算出された薄鋼板2の表面位置と、放射測温機構13によって計測される薄鋼板2の表面位置とが同一となるように、放射率の決定がなされる。なお、位置合わせは、放射率演算機構12、放射測温機構13又は不図示の他の演算機構で行うことができる。 Since the position of the radiation temperature measuring mechanism 13 is preferably different from the positions of the second radiation measuring mechanism 11 and the roll 3B whose temperature is to be measured, it is better to align these measurement positions. For example, when the conveying speed of the thin steel plate 2 is v (m/s) and the distance between the two radiation measuring mechanisms is L (m), the timing at which the same point of the thin steel plate 2 passes both positions is L/ There is a delay of v(s). Therefore, it is preferable to use the emissivity before L/v(s) in the radiation temperature measuring mechanism 13 . Further, when the position on the thin steel plate 2 is tracked by the number of revolutions of the roll 3B, alignment may be performed from the tracking information. That is, in this alignment, the radiation used for measurement by the radiation temperature measuring mechanism 13 is determined based on the positional relationship between the second radiation measuring mechanism 11 and the radiation temperature measuring mechanism 13 and the conveying speed of the metal plate or the number of rotations of the rolls. rate is determined. At this time, the emissivity is determined so that the surface position of the thin steel plate 2 whose emissivity is calculated and the surface position of the thin steel plate 2 measured by the radiation temperature measuring mechanism 13 are the same. The alignment can be performed by the emissivity calculation mechanism 12, the radiation temperature measurement mechanism 13, or another calculation mechanism (not shown).

また、本実施形態では、放射測温機構13が第2放射測定機構11及びロールの下流側に存在したが、放射測温機構13が第2放射測定機構11及びロールの上流側に存在しても同様の測温が可能となる。ただし、この場合、放射測温機構13の放射率が得られるタイミングが第2放射測定機構11の通過後となるため、放射測温機構13で仮の放射率で測温しておくか、放射輝度を取得しておき、後から得られる放射率を用いて正しい測温結果に換算するといった工夫が必要となる。この場合も前述の位置合わせを実施することが望ましい。 Further, in the present embodiment, the radiation temperature measuring mechanism 13 exists downstream of the second radiation measuring mechanism 11 and the rolls, but the radiation temperature measuring mechanism 13 exists upstream of the second radiation measuring mechanism 11 and the rolls. A similar temperature measurement is also possible. However, in this case, the emissivity of the radiation temperature measuring mechanism 13 is obtained after passing through the second radiation measuring mechanism 11. It is necessary to devise a method such as acquiring the luminance in advance and then converting it into a correct temperature measurement result using the emissivity obtained later. In this case as well, it is desirable to perform the above-described alignment.

さらに、多くの設備での温度制御は、図6に示す通り、放射測温機構13で薄鋼板2の温度を計測し、目標温度との差異を温度計設置位置の前工程(搬送方向上流側)にある温度調整装置6の出力にフィードバックすることにより制御している。温度調整装置6では、薄鋼板2の加熱又は冷却が行われる。また、放射測温機構13の計測結果に基づいた温度調整装置6の制御は、コントローラ7によって行われる。しかし、フィードバック制御では、実際に板温を測定してからコントローラ7のゲインを操作するため、フィードフォワード制御と比較してどうしても応答性が低下する。温度や板厚などの製造条件が異なる板の前後では、応答性の低下は温度不良領域の増加につながり、歩留まりを低下させる。 Furthermore, as shown in FIG. 6, temperature control in many facilities measures the temperature of the thin steel plate 2 with the radiation temperature measuring mechanism 13, and the difference from the target temperature is measured in the previous process of the thermometer installation position (upstream side in the conveying direction). ) is controlled by feedback to the output of the temperature adjustment device 6 at . The temperature control device 6 heats or cools the thin steel plate 2 . A controller 7 controls the temperature adjustment device 6 based on the measurement result of the radiation temperature measuring mechanism 13 . However, in the feedback control, the gain of the controller 7 is manipulated after actually measuring the plate temperature, so the responsiveness inevitably decreases compared to the feedforward control. A decrease in responsiveness leads to an increase in the temperature failure region before and after the plate having different manufacturing conditions such as temperature and plate thickness, thereby lowering the yield.

応答性を向上させるためには、温度予測によるフィードフォワード制御が必要であるが、高温域では伝熱は(5)式に記すような輻射が支配的であり、放射率が特に重要である。なお、(5)式において、Eは輻射の全エネルギー、cは第一プランク定数、λは波長、σはステファンボルツマン定数である。 In order to improve the responsiveness, feedforward control based on temperature prediction is necessary, but in the high temperature range, radiation as described in equation (5) is dominant in heat transfer, and emissivity is particularly important. In equation (5), E is the total energy of radiation, c1 is the first Planck constant, λ is the wavelength, and σ is the Stefan Boltzmann constant.

Figure 2022156276000004
Figure 2022156276000004

本実施形態では、放射率を正しく推定することにより、伝熱モデルの制御が向上し、フィードフォワード制御を導入することにより、高い応答性で対象板温の制御が可能となる。また、フィードフォワード制御とフィードバック制御を組み合わせて、より高精度な制御を実現しても良い。
さらに、実際に温度を測定する放射測温機構13は幅方向に視野を持っても良い。具体的には、視野を走査させる、ラインスキャンセンサやエリアスキャンセンサなどを用いることができる。ここで述べるラインスキャンセンサ、エリアスキャンセンサとは、受光部が一次元配列、あるいは二次元配列の構造を持ち、1回の撮像で一次元温度分布、二次元温度分布が取得可能なセンサを指す。
In this embodiment, correct estimation of the emissivity improves control of the heat transfer model, and introduction of feedforward control enables control of the target plate temperature with high responsiveness. Also, feedforward control and feedback control may be combined to achieve more precise control.
Furthermore, the radiation thermometry mechanism 13 that actually measures the temperature may have a field of view in the width direction. Specifically, a line scan sensor, an area scan sensor, or the like that scans the field of view can be used. The line scan sensor and area scan sensor described here refer to sensors that have a one-dimensional or two-dimensional arrangement of light receiving sections and can acquire one-dimensional temperature distribution and two-dimensional temperature distribution in a single imaging. .

<変形例>
以上で、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態とともに種々の変形例を含む本発明の別の実施形態も明らかである。従って、特許請求の範囲に記載された発明の実施形態には、本明細書に記載したこれらの変形例を単独または組み合わせて含む実施形態も網羅すると解すべきである。
<Modification>
Although the invention has been described with reference to particular embodiments, it is not intended that the invention be limited by these descriptions. Along with the disclosed embodiments, other embodiments of the invention, including various modifications, will be apparent to persons skilled in the relevant art(s) upon reference to the description of the invention. Therefore, the embodiments of the invention set forth in the claims should be construed to cover the embodiments that include these variations described herein singly or in combination.

例えば、上記実施形態では、金属板の一例として鋼板である薄鋼板2である場合について説明したが、本発明はかかる例に限定されない。金属板は鋼板に限らず、他の金属からなる板であってもよい。
また、上記実施形態では、図3に示す例において、測定が行われるくさび部は、ロール3Bにおける薄鋼板2の搬送方向上流側のくさび部であるとしたが、本発明はかかる例に限定されない。測定が行われるくさび部は、ロール3Bにおける薄鋼板2の搬送方向下流側のくさび部であってもよい。
さらに、上記実施形態では、表面温度装置1が薄鋼板2の焼鈍設備に設けられるとしたが、本発明はかかる例に限定されない。表面温度装置1は、薄鋼板2等の金属板をロール間が直線パスで搬送し、直線パスを形成する一方のロールが金属板の向きを変える設備であれば、他の設備においても適用することができる。
For example, in the above embodiment, the thin steel plate 2, which is a steel plate, is described as an example of the metal plate, but the present invention is not limited to this example. The metal plate is not limited to a steel plate, and may be a plate made of other metals.
Further, in the above embodiment, in the example shown in FIG. 3, the wedge portion to be measured is the wedge portion on the upstream side in the conveying direction of the thin steel plate 2 in the roll 3B, but the present invention is not limited to such an example. . The wedge portion to be measured may be the wedge portion on the downstream side of the roll 3B in the conveying direction of the thin steel plate 2 .
Furthermore, in the above embodiment, the surface temperature device 1 is provided in the annealing equipment for the thin steel plate 2, but the present invention is not limited to such an example. The surface temperature device 1 can be applied to other equipment as long as the metal plate such as the thin steel plate 2 is conveyed in a straight pass between rolls and one of the rolls forming the straight pass changes the direction of the metal plate. be able to.

本発明者らが行った実施例について説明する。実施例では、装置の配置は図3と同様とし、第2放射測定機構11及び放射測温機構13として、InGaAs素子を用いた放射温度計を用いた。まず、事前に第2放射測定機構11の校正を実施した。次に、第2放射測定機構11と第1放射測定機構10の測定結果から放射率を算出した。放射率の算出モデルには佐久間服部の式を用いた。このとき、第2放射測定機構11と放射測温機構13との位置が30m程度離れていたため、搬送速度(通板速度)v(m/s)をロール3から常時取得し、30/v(s)前の放射率を放射測温機構13の温度算出時に使用した。
測温した結果を図7に示す。放射率変動を常時補正することで、金属板がロール3に捲き付いていないロール間においても、金属板の測温が可能となることが確認できた。つまり、本発明の評価技術を利用することで、実施例に記載の通りロール間の垂直パスで正しい放射率で測温することができるようになる。
An example conducted by the present inventors will be described. In the example, the arrangement of the apparatus was the same as that shown in FIG. First, the second radiation measurement mechanism 11 was calibrated in advance. Next, the emissivity was calculated from the measurement results of the second radiation measurement mechanism 11 and the first radiation measurement mechanism 10 . Sakuma-Hattori's formula was used for the emissivity calculation model. At this time, since the positions of the second radiation measuring mechanism 11 and the radiation temperature measuring mechanism 13 were separated by about 30 m, the conveying speed (sheet threading speed) v (m/s) was constantly obtained from the roll 3, and 30/v ( s) The previous emissivity was used when calculating the temperature of the radiation thermometer 13;
FIG. 7 shows the results of temperature measurement. It was confirmed that the temperature of the metal plate can be measured even between the rolls where the metal plate is not wound around the roll 3 by constantly correcting the emissivity fluctuation. That is, by using the evaluation technique of the present invention, it becomes possible to measure temperature with correct emissivity in a vertical pass between rolls as described in the examples.

1 表面温度測定装置
10 第1放射測定機構
11 第2放射測定機構
12 放射率演算機構
13 放射測温機構
14 放射温度計
2 薄鋼板
3,3A,3B ロール
4 熱処理装置
5 温度変化帯
6 温度調整装置
7 コントローラ
80,83 ロール
81,85 鋼板
82 放射温度計
84 熱電対
1 Surface Temperature Measuring Device 10 First Radiation Measuring Mechanism 11 Second Radiation Measuring Mechanism 12 Emissivity Calculating Mechanism 13 Radiation Temperature Measuring Mechanism 14 Radiation Thermometer 2 Thin Steel Plates 3, 3A, 3B Roll 4 Heat Treatment Apparatus 5 Temperature Change Zone 6 Temperature Adjustment Apparatus 7 controller 80, 83 rolls 81, 85 steel plate 82 radiation thermometer 84 thermocouple

Claims (7)

ロール間の直線パスにおける金属板の表面温度を測定する、金属板の表面温度測定装置であって、
前記金属板の向きを変えるロールであると前記金属板とによって形成されたくさび部の、前記金属板の前記ロール側の面の放射輝度又は温度を計測する第1放射測定機構と、
前記くさび部の、前記金属板の前記ロールと反対側の面の放射輝度又は温度を測定する第2放射測定機構と、
前記第1放射測定機構によって計測された放射輝度又は温度と、前記第2放射測定機構によって計測された放射輝度又は温度とから、放射率を算出する放射率演算機構と、
算出された前記放射率を用いて、前記金属板の表面を測温する放射測温機構と、
を備える、金属板の表面温度測定装置。
A metal plate surface temperature measuring device for measuring the surface temperature of a metal plate in a straight path between rolls,
a first radiation measuring mechanism for measuring the radiance or temperature of a surface of the metal plate facing the roll of a wedge formed by the metal plate as a roll for changing the direction of the metal plate;
a second radiation measurement mechanism for measuring the radiance or temperature of the surface of the wedge opposite the roll of the metal plate;
an emissivity calculation mechanism for calculating emissivity from the radiance or temperature measured by the first radiation measurement mechanism and the radiance or temperature measured by the second radiation measurement mechanism;
a radiation temperature measuring mechanism that measures the temperature of the surface of the metal plate using the calculated emissivity;
A surface temperature measuring device for a metal plate.
前記第1放射測定機構及び前記放射測温機構は、前記金属板の長手方向に長い視野を持つ一つの放射温度計で構成される、請求項1に記載の金属板の表面温度測定装置。 2. The apparatus for measuring the surface temperature of a metal plate according to claim 1, wherein said first radiation measuring mechanism and said radiation temperature measuring mechanism are composed of one radiation thermometer having a long field of view in the longitudinal direction of said metal plate. 前記放射測温機構による測温に用いられる放射率は、前記放射率が算出された前記金属板の表面位置と、前記放射測温機構によって測温される前記金属板の表面位置とが同一となるように、前記第2放射測定機構と前記放射測温機構との位置関係と、金属板の搬送速度又は前記ロールの回転数とに基づいて決定される、請求項1又は2に記載の金属板の表面温度測定装置。 The emissivity used for temperature measurement by the radiation temperature measuring mechanism is such that the surface position of the metal plate for which the emissivity is calculated is the same as the surface position of the metal plate for which temperature is measured by the radiation temperature measuring mechanism. The metal according to claim 1 or 2, which is determined based on the positional relationship between the second radiation measurement mechanism and the radiation temperature measurement mechanism and the conveying speed of the metal plate or the rotation speed of the roll so that Plate surface temperature measuring device. 前記放射率演算機構は、前記放射率を、前記第1放射測定機構により測定される放射輝度に対する前記第2放射測定機構により測定される放射輝度の比として算出する、請求項1~3のいずれか1項に記載の金属板の表面温度測定装置。 4. The emissivity calculation mechanism according to any one of claims 1 to 3, wherein the emissivity is calculated as a ratio of the radiance measured by the second radiation measurement mechanism to the radiance measured by the first radiation measurement mechanism. 1. A surface temperature measuring device for a metal plate according to claim 1. 前記第1放射測定機構及び前記第2放射測定機構の少なくとも一方は、前記金属板の温度を計測し、
前記放射率演算機構は、予め算出される黒体放射輝度と温度との関係から、前記第1放射測定機構及び前記第2放射測定機構の少なくとも一方によって計測される前記金属板の温度に応じた黒体放射輝度を算出し、温度に応じて算出された黒体放射輝度を前記第1放射測定機構及び前記第2放射測定機構の少なくとも一方で計測される放射輝度として前記放射率を算出する、請求項4に記載の金属板の表面温度測定装置。
at least one of the first radiation measurement mechanism and the second radiation measurement mechanism measures the temperature of the metal plate;
The emissivity calculation mechanism calculates the temperature of the metal plate measured by at least one of the first radiation measurement mechanism and the second radiation measurement mechanism from the relationship between the black body radiance and the temperature calculated in advance. calculating the blackbody radiance, and calculating the emissivity by using the blackbody radiance calculated according to the temperature as the radiance measured by at least one of the first radiation measurement mechanism and the second radiation measurement mechanism; The surface temperature measuring device for a metal plate according to claim 4.
請求項1~5のいずれか1項に記載の金属板の表面温度測定装置を有する、金属板の焼鈍設備。 A metal plate annealing facility comprising the metal plate surface temperature measuring device according to any one of claims 1 to 5. ロール間の直線パスにおける金属板の表面温度を測定する、金属板の表面温度測定方法であって、
前記金属板の向きを変えるロールと前記金属板とによって形成されたくさび部の、前記金属板の前記ロール側の面の放射輝度又は温度を計測し、
前記くさび部の、前記金属板の前記ロールと反対側の面の放射輝度又は温度を測定し、
計測された前記ロール側の面の放射輝度又は温度と、計測された前記ロールと反対側の面の放射輝度又は温度とから、放射率を算出し、
算出された前記放射率を用いて、前記金属板の表面を測温する、金属板の表面温度測定方法。
A method for measuring the surface temperature of a metal plate, which measures the surface temperature of the metal plate in a straight path between rolls,
measuring the radiance or temperature of the surface of the metal plate on the roll side of the wedge formed by the roll that changes the direction of the metal plate and the metal plate;
measuring the radiance or temperature of the surface of the wedge opposite the roll of the metal plate;
Emissivity is calculated from the measured radiance or temperature of the surface on the roll side and the measured radiance or temperature of the surface opposite to the roll,
A method for measuring the surface temperature of a metal plate, wherein the temperature of the surface of the metal plate is measured using the calculated emissivity.
JP2021059875A 2021-03-31 2021-03-31 Metal plate surface temperature measuring device, annealing equipment, and surface temperature measuring method Active JP7444125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021059875A JP7444125B2 (en) 2021-03-31 2021-03-31 Metal plate surface temperature measuring device, annealing equipment, and surface temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021059875A JP7444125B2 (en) 2021-03-31 2021-03-31 Metal plate surface temperature measuring device, annealing equipment, and surface temperature measuring method

Publications (2)

Publication Number Publication Date
JP2022156276A true JP2022156276A (en) 2022-10-14
JP7444125B2 JP7444125B2 (en) 2024-03-06

Family

ID=83559570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021059875A Active JP7444125B2 (en) 2021-03-31 2021-03-31 Metal plate surface temperature measuring device, annealing equipment, and surface temperature measuring method

Country Status (1)

Country Link
JP (1) JP7444125B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233790A (en) 2004-02-19 2005-09-02 Nippon Steel Corp Method and apparatus for measuring temperature of sheet steel
JP6666740B2 (en) 2015-02-25 2020-03-18 株式会社神戸製鋼所 Grain boundary oxidation detector and grain boundary oxidation detection method
JP6402696B2 (en) 2015-09-15 2018-10-10 Jfeスチール株式会社 High-strength steel plate manufacturing equipment and manufacturing method

Also Published As

Publication number Publication date
JP7444125B2 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
JP2007010476A (en) Method and apparatus for measuring temperature of sheet steel
EP2048485B1 (en) Method of measuring temperature of steel sheet, temperature measuring apparatus and method of controlling temperature of steel sheet
US11249037B2 (en) Device and method for determining the microstructure of a metal product, and metallurgical installation
EP3729026B1 (en) Measurement system for metal strip production line
JP2022156276A (en) Device for measuring metal sheet surface temperature, annealing equipment, and method for measuring surface temperature
CN108698879B (en) Float glass production unit comprising a continuous glass temperature measuring device and method for adjusting the measuring device
Usamentiaga et al. High-speed temperature monitoring for steel strips using infrared line scanners
JP7414044B2 (en) Metal strip temperature measuring method, metal strip temperature measuring device, metal strip manufacturing method, metal strip manufacturing equipment, and metal strip quality control method
JPH08193887A (en) Method for measuring temperature of material in hot rolling line
JP2005233731A (en) Method and apparatus for measuring temperature of sheet steel
JP5768477B2 (en) Method for measuring temperature of workpiece, method for manufacturing workpiece, and heating device for workpiece
JPWO2009013827A1 (en) Steel plate manufacturing method and manufacturing apparatus using the method
Hwang Methodology for the emissivity estimation of radiation-type thermometers using the latent heat generated during the phase transformation of steels
KR102045644B1 (en) Geometry measuring device for hot material
JPS63317208A (en) Control device for cooling hot rolled steel strip
JP3646546B2 (en) Steel rolling method
JPS5863822A (en) Measuring method for temperature distribution of heat radiating substance
JP2005233790A (en) Method and apparatus for measuring temperature of sheet steel
KR20200095454A (en) Method and system for measuring the temperature of a moving strip
JP4878234B2 (en) Steel plate temperature measuring method and temperature measuring device, and steel plate temperature control method
JP2000297330A (en) Method for measuring strip temperature in strip continuous annealing furnace and instrument therefor
KR20240030629A (en) Temperature measuring device for hot-rolled material for electrical steel sheet and method for measuring temperature of hot-rolled material for electrical steel sheet using the same
JP2005134153A (en) Temperature measuring instrument and temperature measuring method
JPH0711454B2 (en) Strip temperature measurement method for strip continuous heat treatment equipment
JP2017075894A (en) Steel plate temperature measurement method, steel plate temperature measurement device, and steel plate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240205

R150 Certificate of patent or registration of utility model

Ref document number: 7444125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150