JPS6047538B2 - How to measure the temperature and emissivity of an object - Google Patents

How to measure the temperature and emissivity of an object

Info

Publication number
JPS6047538B2
JPS6047538B2 JP55027108A JP2710880A JPS6047538B2 JP S6047538 B2 JPS6047538 B2 JP S6047538B2 JP 55027108 A JP55027108 A JP 55027108A JP 2710880 A JP2710880 A JP 2710880A JP S6047538 B2 JPS6047538 B2 JP S6047538B2
Authority
JP
Japan
Prior art keywords
temperature
emissivity
measurement
equation
radiation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55027108A
Other languages
Japanese (ja)
Other versions
JPS56122923A (en
Inventor
徹 井内
国俊 渡辺
俊彦 柴田
哲郎 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP55027108A priority Critical patent/JPS6047538B2/en
Priority to US06/239,727 priority patent/US4465382A/en
Priority to CA000372187A priority patent/CA1166037A/en
Priority to BE0/203992A priority patent/BE887770A/en
Priority to GB8106604A priority patent/GB2074722B/en
Priority to FR8104233A priority patent/FR2477706A1/en
Priority to DE19813108153 priority patent/DE3108153A1/en
Priority to NL8101049A priority patent/NL191447C/en
Publication of JPS56122923A publication Critical patent/JPS56122923A/en
Publication of JPS6047538B2 publication Critical patent/JPS6047538B2/en
Priority to NL9101843A priority patent/NL9101843A/en
Priority to NL9101842A priority patent/NL9101842A/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • G01J5/53Reference sources, e.g. standard lamps; Black bodies
    • G01J5/532Reference sources, e.g. standard lamps; Black bodies using a reference heater of the emissive surface type, e.g. for selectively absorbing materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0074Radiation pyrometry, e.g. infrared or optical thermometry having separate detection of emissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0044Furnaces, ovens, kilns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • G01J5/0805Means for chopping radiation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 本発明は、放射率が変化する銅板等の加熱物体の放射
測温法において、該物体の放射率も同時に測定すること
によつて、該物体の表面温度を正確に測定する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method of measuring the temperature of a heated object such as a copper plate whose emissivity changes by simultaneously measuring the emissivity of the object, thereby accurately determining the surface temperature of the object. It concerns the method of measurement.

より詳細には本発明は、連続焼鈍炉等の工業用炉にお
いて、鋼板その他炉内において加熱される物体や、大気
中において常温付近の金属の放射測温のように、周囲か
らの放射エネルギーすなわち背光雑音が、測定物体から
の放射エネルギーと同等ないしそれ以上放射されている
ような環境や雰 囲気中の放射エネルギー透過係数が変
化するよう な環境において、しかも該測定物体の放射
率が変化している場合のように、通常の放射測温法が適
用不可能なときに、特に有効な放射測温法に関す るも
のである。
More specifically, the present invention uses radiation energy from the surroundings, such as radiation temperature measurement of steel plates and other objects heated in the furnace, or metals at room temperature in the atmosphere, in industrial furnaces such as continuous annealing furnaces. In an environment where backlight noise is emitted equal to or greater than the radiant energy from the measurement object, or in an environment where the radiant energy transmission coefficient in the atmosphere changes, and in addition, the emissivity of the measurement object changes. This article concerns a radiation thermometry method that is particularly effective when ordinary radiation thermometry methods are not applicable, such as when

工業炉内において静止または走行状態の加熱された物
体の表面温度を測定するには、非接触で測温可能な放射
温度計または放射計が好都合であり・実際多くの分野で
使用されている。
To measure the surface temperature of a stationary or moving heated object in an industrial furnace, a radiation thermometer or radiometer that can measure temperature without contact is convenient and is actually used in many fields.

即ち、炉内においては炉壁や熱源からの放射エネルギー
が、該測定物体で反射したのち放射計で検出されるので
大きな外乱、すなわち雑音となり、この外乱エネルギー
を遮蔽しなければ正確な測温は不可能であフる。また、
測定物体の放射率が変動するとき、放射測温は一般に大
きな測温誤差を生じることは公知のことである。炉内に
おける放射測温は上記2つの問題をかかえているために
事実上意味のない測温をしている場合も多くみられると
ころであ5る。特に測定物体が焼鈍炉中の薄板や厚板な
どの鋼板の場合、炉内て加熱されるにつれて該鋼板の表
面は通常酸化が進行し、したがつて該鋼板の放射率はそ
れに伴なつて大きく変化するために、放射測温は大きな
誤差を生じ、実質的に測温不可能となる。同様な事情は
大気中における、常温付近の金属の放射測温の際にも生
じることである。すなわち、測定物体(例えば金属)の
温度が常温付近であるために、その面からの放射エネル
ギーが外乱である周囲からの放射エネルギーより同等以
下であることが多いからである。また、測定系の雰囲気
が使用する放射計の検出波長域において吸収特性をもつ
とき、雰囲気の濃度によつて放射エネルギーの透過係数
が変化する場合にも、放射測温は大きな測温誤差を生じ
ることになる。
In other words, inside the furnace, radiant energy from the furnace wall and heat source is reflected by the measurement object and then detected by the radiometer, creating a large disturbance, or noise, and unless this disturbance energy is shielded, accurate temperature measurement will not be possible. It's impossible. Also,
It is well known that radiation temperature measurement generally produces a large temperature measurement error when the emissivity of the measurement object varies. Radiation temperature measurement inside a furnace has the above two problems, so there are many cases where the temperature measurement is practically meaningless5. In particular, when the measurement object is a steel plate such as a thin plate or a thick plate in an annealing furnace, oxidation usually progresses on the surface of the steel plate as it is heated in the furnace, and the emissivity of the steel plate increases accordingly. Due to this change, radiation temperature measurement causes a large error, making it virtually impossible to measure temperature. A similar situation occurs when measuring the radiation temperature of metals near room temperature in the atmosphere. That is, since the temperature of the object to be measured (for example, metal) is around room temperature, the radiant energy from the surface is often equal to or lower than the radiant energy from the surroundings, which is a disturbance. Furthermore, when the atmosphere of the measurement system has absorption characteristics in the detection wavelength range of the radiometer used, radiation temperature measurement also causes large temperature measurement errors when the transmission coefficient of radiant energy changes depending on the concentration of the atmosphere. It turns out.

本発明の目的は、上記のような環境において生ずる放射
測温の問題点を克服し、常に正確な表面温度を測定する
ことを可能にすることである。
An object of the present invention is to overcome the problems of radiation temperature measurement that occur in the above-mentioned environments and to make it possible to always measure accurate surface temperatures.

本発明者の1人ほ、すでに特願昭52−153447に
おいて上記の放射測温の問題点を克服し、正確な測温を
可能ならしめる方法を提案した。この方法5は、加熱物
体の面法線に対して互いに鏡面対称的な方向に、温度可
変なる黒体放射源と、該加熱物体面が鏡面的な反射特性
を示すように、検出放射線の波長帯を選択した放射計を
それぞれ該加熱物体に向けて配置し、該黒体放射源の温
度を変化さ!せてそれに対応した該放射計の出力を用い
て演算することにより、該加熱物体の放射率を求め、次
いでその表面温度を求めることを特徴とするものであつ
た。したがつて、この方法においては、測定物体面が鏡
面的反射面となるように、放射計の3検出波長を選択す
ることが発明の主たるポイントであつた。これに対して
本発明は、これを更に一般化し測定物体表面が粗面、即
ち非完全鏡面的反射面であつてもまた測定環境に例えば
CO2、H2O等の放射エネルギーの透過を害するもの
が存在し3ていても測定物体の表面温度を高精度で測定
するものである。次に、本発明の構成を前述の特願昭5
2−153447と比較しつつ図面を参照して詳述する
。測定物体面が光学的に滑らかで平担であると4、き、
すなわち完全鏡面的な反射面であるとき、測定物体の法
線Nに対して角度θ方向の放射率をE(θ)、その方向
の反射率をr(0)とすると次式の関係が成り立つ。
One of the inventors of the present invention has already proposed a method for overcoming the above-mentioned problems of radiation temperature measurement and making accurate temperature measurement possible in Japanese Patent Application No. 52-153447. This method 5 uses a black body radiation source whose temperature is variable in a direction that is mirror-symmetrical to the surface normal of the heated object, and a wavelength of the detected radiation so that the surface of the heated object exhibits specular reflection characteristics. Place the radiometers with selected bands facing the heated object, and change the temperature of the blackbody radiation source! The method is characterized in that the emissivity of the heated object is determined by calculating using the corresponding output of the radiometer, and then the surface temperature of the heated object is determined. Therefore, in this method, the main point of the invention was to select the three detection wavelengths of the radiometer so that the measurement object surface was a specular reflection surface. In contrast, the present invention further generalizes this, and even if the surface of the measurement object is a rough surface, that is, a non-perfectly specular reflective surface, there is still something in the measurement environment that impairs the transmission of radiant energy, such as CO2 or H2O. However, the surface temperature of the object to be measured can be measured with high accuracy. Next, the structure of the present invention will be described in the above-mentioned patent application filed in 1973.
2-153447 and will be explained in detail with reference to the drawings. 4. If the measurement object surface is optically smooth and flat,
In other words, when it is a perfectly specular reflective surface, the following equation holds if the emissivity in the direction of angle θ with respect to the normal N of the measuring object is E(θ) and the reflectance in that direction is r(0). .

第1図を参照して本方法の原理を展関する。The principle of the method will be explained with reference to FIG.

放射計1と黒体放射源2を法線Nに対して角度θの方向
に互いに鏡面対称的に配置する。いま、測定物体3の温
度をT1、黒体放射源の温度をT2とすると放射計1に
よつて検出される放射エネルギーE2が、次式で表わす
ことができる。ここで、Eb(T)は温度Tの黒体放射
源からの放射エネルギーである。
A radiometer 1 and a blackbody radiation source 2 are arranged mirror-symmetrically with respect to the normal N at an angle θ. Now, assuming that the temperature of the measuring object 3 is T1 and the temperature of the blackbody radiation source is T2, the radiant energy E2 detected by the radiometer 1 can be expressed by the following equation. Here, Eb(T) is the radiant energy from a blackbody radiation source at temperature T.

(2)式においては、右辺第1項は、測定物体面自体か
ら放射されるエネルギー、第2項は、黒体放射源からの
放射Eb(T2)のうち、測定物体面て鏡面反射する成
分(放射率r(0)=1−ε(0))である。次に、該
黒体放射源2の温度をT3に変更したときの検出値をE
3とすると、同様に次式で示される。(2)式と(3)
式は、求むべき2つの未知数ε(θ)、T1を含む2つ
の本程式てあるから、両者を連立方程式として解けば、
ε (0)とT1を同時に求めることができる。(2)
式から(3)式を辺々差し引くと(4)式を整理すると
、ε(0)が次式のように求められる。
In equation (2), the first term on the right side is the energy radiated from the measurement object surface itself, and the second term is the component of the radiation Eb (T2) from the blackbody radiation source that is specularly reflected by the measurement object surface. (Emissivity r(0) = 1-ε(0)). Next, the detected value when the temperature of the black body radiation source 2 is changed to T3 is E
3, it is similarly expressed by the following equation. (2) and (3)
There are two main equations that include the two unknowns to be found, ε(θ) and T1, so if you solve them as simultaneous equations, you get
ε (0) and T1 can be determined simultaneously. (2)
By subtracting equation (3) from each side and rearranging equation (4), ε(0) can be obtained as shown in the following equation.

?)式?(3)式に代人して整理すると が得られる。? )formula? (3) If you arrange it by proxy in the formula is obtained.

(6)式より、T1が放射計1の出力特性から求めらる
。以上の議論は、測定物体面が完全鏡面的反射面の場合
について成立するもので、これは特願昭52−1534
47によつて実現できる方法である。一方、一般の物体
面はある程度粗面であるから、理想状態からずれてくる
From equation (6), T1 can be found from the output characteristics of the radiometer 1. The above discussion holds true when the measurement object surface is a perfectly specular reflective surface, and this is the case in Japanese Patent Application No. 52-1534.
47. On the other hand, since the general object surface is rough to some extent, it deviates from the ideal state.

この事情は、(1)式の放射率r(0)=1−ε(0)
が拡散反射のために理想状態より小さくなることを意味
している。そこで、r (0)の代りに、O<f〈1な
るfを用いてみかけの放射率をr(0) ・f:(1一
E(0))・fとおいて、(2)式と(3)式を整理す
ると、それぞれ(7)式、(8)式になる。E,=E(
0)・Eb(T,)+(1−E(0))・f −Eb(
T,) ・・・・・(7)E3=E (0) ・Eb(
T1)+(1−E(0))・f −Eb(T(3) ・
・・・(8)fを鏡面反射の割合を表わす「鏡面反射係
数」と名づける。
This situation is based on the emissivity r(0) = 1-ε(0) of equation (1).
This means that it is smaller than the ideal state due to diffuse reflection. Therefore, instead of r (0), we use f such that O<f<1 and set the apparent emissivity as r(0)・f:(1−E(0))・f, and formulate equation (2). When formula (3) is rearranged, it becomes formulas (7) and (8), respectively. E,=E(
0)・Eb(T,)+(1-E(0))・f −Eb(
T,)...(7)E3=E (0) ・Eb(
T1)+(1-E(0))・f −Eb(T(3)・
...(8) f is named "specular reflection coefficient" which represents the ratio of specular reflection.

上記の2式より、演算による放射率は次式で求められる
。このt (0)を用いて、温度が次式から求められる
From the above two equations, the calculated emissivity can be determined by the following equation. Using this t (0), the temperature can be calculated from the following equation.

Eb(T,)=このように、鏡面反射係数fを導入し、
測定物体面の反射特性が非完全鏡面的反射特性、すなわ
ち放射計の検出域の波長に対して粗面の状態に対しても
容易に正確な測定可能ならしめるが本発明の第・lの特
徴である。
Eb(T,) = Thus, introducing the specular reflection coefficient f,
The first feature of the present invention is that the reflection characteristics of the measurement object surface are non-perfect specular reflection characteristics, that is, the wavelength of the detection range of the radiometer makes it possible to easily and accurately measure even rough surfaces. It is.

非完全鏡面的反射面の場合に第1図において周囲壁4が
高温でそこからの放射が無視できないとき、この背光雑
音の処理も必要である。
In the case of a non-perfectly specular reflective surface, when the surrounding wall 4 in FIG. 1 is so hot that the radiation from it cannot be ignored, it is also necessary to deal with this backlight noise.

周囲壁温度をT4とし、その実効放射率E4を1.0と
すると(7)式および(8)式は、それぞれ次のように
書き換えられる。ここで、pは測定面3の拡散的反射の
程度を表わす係数で「拡散反射係数」と名づける。
When the surrounding wall temperature is T4 and the effective emissivity E4 is 1.0, equations (7) and (8) can be rewritten as follows. Here, p is a coefficient representing the degree of diffuse reflection on the measurement surface 3, and is called a "diffuse reflection coefficient."

上述の2式の右辺第3項は、周囲壁4からの放射Eb(
T4)のうち、測定面3で拡散反射して放射計で検出さ
れる放射エネルギーを表わしている。次に、p<5fの
間の間係を求めてる。いま、T,=T,=T3=L=T
,すなわち測温系が完全熱平衡であれば、Eb(T,)
=Eb(T2)=Eb(T3)=Eb(T4)=Eb(
T)であるから、(11)式および(12)式はいずれ
も次式にある。(13)式から結局次の(14)式が得
られる。
The third term on the right side of the above two equations is the radiation Eb(
T4) represents the radiant energy that is diffusely reflected on the measurement surface 3 and detected by the radiometer. Next, we are looking for the interval between p<5f. Now, T,=T,=T3=L=T
, that is, if the temperature measurement system is in perfect thermal equilibrium, Eb(T,)
=Eb(T2)=Eb(T3)=Eb(T4)=Eb(
T), both equations (11) and (12) are in the following equations. The following equation (14) is finally obtained from equation (13).

f +p =1 ・・・・(14)(14)式を(11
)式および(12)式に代人すると、検出値E2、E3
はそれぞれ次のように表わすことができる。
f + p = 1 ... (14) Expression (14) is changed to (11
) and (12), the detected values E2, E3
can be expressed as follows.

この両式の辺々を差し引いて整理すれば、E(0)が、
(9)式と全く同様に得られる。
If we subtract and rearrange the sides of both equations, E(0) becomes
It is obtained in exactly the same way as equation (9).

t (0)=1このE (0)を(16)式に代人して
、T,が次式から求められる。
t (0)=1 By substituting this E (0) into equation (16), T can be obtained from the following equation.

(\U !C\vノ (17)式および(18)式が本発明の測定原理式であ
る。
(\U!C\v) Equations (17) and (18) are the measurement principle equations of the present invention.

すなわち、被測定物体面3の法線Nに対し、黒体放射源
2と放射計1とを互いに鏡面対称的な角度に配置し、前
記黒体放射源2からの放射エネルギーを変化させて、該
変化に対応する2種類の放射エネルギーEb(T,)ま
たはEb(T3)のうち、被測定物体面3で反射される
放射エネルギー(1上(0)) (1−p)・Eb(T
2)または(1上(0)) (1−p)・Eb(T3)
と被測定物体面3自体からの放射エネルギーE (0)
Eb(T,)および周囲壁4の温度T,により外乱成分
(1−E(0))・d −Eb(T4)の和を前記放射
計で検知し、前記被測定物体3に対応する拡散[反射係
数pを用いて、放射率E (0)を(17)式で、次い
でこのE(0)を用いて、温度T,を(18)式によつ
て求めるものである。本発明の方法を効果的に実現する
演算ブロックダイヤグラムを第2図に示す。
That is, the blackbody radiation source 2 and the radiometer 1 are arranged at mirror-symmetrical angles with respect to the normal N of the object surface 3 to be measured, and the radiation energy from the blackbody radiation source 2 is varied. Of the two types of radiant energy Eb(T,) or Eb(T3) corresponding to this change, the radiant energy reflected on the measured object surface 3 (1 on (0)) (1-p)・Eb(T
2) or (1 above (0)) (1-p)・Eb(T3)
and the radiant energy E (0) from the measured object surface 3 itself
Eb(T,) and the temperature T of the surrounding wall 4, the radiometer detects the sum of disturbance components (1-E(0))·d-Eb(T4), and detects the diffusion corresponding to the measured object 3. [Using the reflection coefficient p, emissivity E(0) is determined by equation (17), and then using this E(0), temperature T, is determined by equation (18). An operational block diagram for effectively implementing the method of the present invention is shown in FIG.

第2図の演算を実施するためには、黒体放射源の温度を
異なる2つの値、T2およびT3に設定する必要がある
。これを実現する1つの方式は、第3図に示すように2
つの黒体放射源2″,2″を用意し、それぞれを温度T
2およびT3に設定し、1つの放射計1に交互に導く2
光束光学システムが考えられる。第3図aにこのシステ
ムの構成を示す。各黒体放射源2″,2″からの放射束
は、測定物体面3の1点Aで交叉し、そこで反射して一
方はミラーM2、他方はミラーM3を介して回転ミラー
M1に導かれ、M1の回転に応じて交互に放射計1に入
射する。また第3図bに示すように、測定地点A″,A
″は若干異なるが、2つのミラー、M2,M3を必要と
せず、1つの回転ミラーM1でけで2光束システムを実
現することができる。もちろん、この場合、測定物体3
が移動しているか、ある面積にわたつて一様な温度、放
射率になつていることが必要てある。2つの黒体放射源
2″,2″を使用する代りに、第4図に示すように1つ
の黒体放射源2と、その開口直前にセクター5をモータ
MTで回転させて2光束と同等のシステムを実現できる
In order to implement the operation of FIG. 2, it is necessary to set the temperature of the blackbody radiation source to two different values, T2 and T3. One method for achieving this is as shown in Figure 3.
Two blackbody radiation sources 2'', 2'' are prepared, each at a temperature T
2 and T3 and lead alternately to one radiometer 1 2
A beam optical system is considered. Figure 3a shows the configuration of this system. The radiant flux from each blackbody radiation source 2'', 2'' intersects at one point A on the measurement object surface 3, is reflected there, and one is guided to the rotating mirror M1 via the mirror M2 and the other via the mirror M3. , M1 are alternately incident on the radiometer 1 according to the rotation. In addition, as shown in Figure 3b, measurement points A'', A
'' is slightly different, but the two mirrors M2 and M3 are not required, and a two-beam system can be realized with just one rotating mirror M1.Of course, in this case, the measurement object 3
It is necessary that the surface area is moving or that the temperature and emissivity are uniform over a certain area. Instead of using two blackbody radiation sources 2'', 2'', as shown in Fig. 4, one blackbody radiation source 2 and the sector 5 rotated by a motor MT just before its aperture can be used to obtain the equivalent of two luminous fluxes. system can be realized.

黒体放射源2の温度をT2に設定する。一方、回転セク
ター5の表面5−1を充分に黒化吸収面にして、近似黒
体面とし、かつ水冷等の処理で上記表面の温,度を測定
物体表面温度T1および前記温度T2に比較して充分に
低くする。したがつてEb(T1)およびEb(T2)
に比べて、そこからの放射を無視できる。黒体開口面2
−1を回転セクター5が覆つている状態と覆つていない
状態のときに対応して、放射計1で、交互に2つの放射
エネルギーが検出される。前者の状態における検出値E
1とすれば、(16)式の代りに次式が得られる。
\VlPlν \A4ノ
一 (1υノ .二後者の状態における検出値E
2は、(15)式で与えられるから、この両式より、ε
(θ)が次式のように求められる。
The temperature of the blackbody radiation source 2 is set to T2. On the other hand, the surface 5-1 of the rotating sector 5 is made into a sufficiently black absorbing surface to approximate a blackbody surface, and the temperature and degrees of the surface are compared with the measured object surface temperature T1 and the temperature T2 by water cooling or other treatment. low enough. Therefore Eb(T1) and Eb(T2)
Compared to , the radiation from it can be ignored. Blackbody aperture surface 2
The radiometer 1 alternately detects two types of radiant energy, corresponding to when the rotating sector 5 covers and does not cover -1. Detection value E in the former state
1, the following equation is obtained instead of equation (16).
\VlPlν \A4ノ
1 (1υノ .2 Detection value E in the latter state
2 is given by equation (15), so from both equations, ε
(θ) is obtained as shown in the following equation.

このε(θ)を(19)式に代人して、次式よりT1が
得られる。
By substituting this ε(θ) into equation (19), T1 can be obtained from the following equation.

(20)式および(21)式は、先に得た(17)式お
よび(18)式より演算が簡単になる。
Equations (20) and (21) are easier to calculate than the previously obtained equations (17) and (18).

この演算は、前述の2光束システムにおいても、T,を
T1およびT2に比較して、その放射が無視できるほど
低くすれば全く同様に得られる。第3図および第4図の
構成に、いずれも、本発明者らによる実願昭53−80
108に提示するものであつて、本発明)において、演
算において拡散反射係数pを導入し、被測定物体面が必
ずしも完全鏡面的反射面である必要はなく、より現実的
な測定法を提供するところに特徴がある。次に、本発明
の効果を適確に実証する実施例お−よびその実験結果を
示す。
This calculation can be obtained in exactly the same way in the two-beam system described above if T, is compared to T1 and T2 and its radiation is negligibly low. Both the configurations of FIGS.
108, and in the present invention), a diffuse reflection coefficient p is introduced in the calculation, and the object surface to be measured does not necessarily have to be a perfectly specular reflective surface, thereby providing a more realistic measurement method. The place has its characteristics. Next, examples and experimental results will be shown that accurately demonstrate the effects of the present invention.

第5図は、背光の影響のない大気中での実験装置の概略
を示すものである。第5図に示すように、100Trf
mφの測定試料3を加熱炉6の上に置いて加熱した。角
度0=56定の方向に、放射計1と黒体放射源2を互い
に鏡面対称的に配置した。黒体放射源2は、開口径D=
5hφ、長さL=125?の黒鉛製円筒キャビティであ
り、その内壁温度T2は底面にとりつけたCA熱電対2
−2によつて検出し、PID温度制御装置で±1℃の精
度でT2=368℃に設定した。測定面3−1から開口
を見込む立体角dΩは0.05πSter.である。放
射計1として検出素子の異なる3種類の放射計を用いた
。その仕様は次の通じである。実験の手順は次の通りで
ある。まず、黒体放射源2の温度T2に対する各放射計
1により検出値Eb(T2)を求めた。次にT2を36
8℃に制御した。各種試料3を加熱炉6の上でヒータ7
で加熱し、試料面3に点溶接したCA熱電対8で表面温
度を測定し、200℃〜450℃までの任意の温度T1
に設定した。各温度T1における放射率ε (θ)を直
接求めるために、表面を黒化した水冷セクター5″を黒
体放射源2の開口2−1直前に設けた。そのときの放射
計1により検出値E1から、 L八へA1ノが
求められる。
FIG. 5 schematically shows an experimental setup in the atmosphere without the influence of backlight. As shown in Figure 5, 100Trf
A sample 3 for measuring mφ was placed on a heating furnace 6 and heated. The radiometer 1 and the blackbody radiation source 2 were arranged mirror-symmetrically with respect to each other in a direction with an angle of 0=56 constant. The blackbody radiation source 2 has an aperture diameter D=
5hφ, length L=125? It is a cylindrical cavity made of graphite, and its inner wall temperature T2 is measured by a CA thermocouple 2 attached to the bottom.
-2, and set T2 = 368°C with an accuracy of ±1°C using a PID temperature controller. The solid angle dΩ looking into the aperture from the measurement surface 3-1 is 0.05πSter. It is. Three types of radiometers with different detection elements were used as the radiometer 1. Its specifications are as follows. The experimental procedure is as follows. First, the detection value Eb(T2) was determined by each radiometer 1 for the temperature T2 of the blackbody radiation source 2. Next, set T2 to 36
The temperature was controlled at 8°C. Various samples 3 are heated to a heater 7 on a heating furnace 6.
The surface temperature was measured with a CA thermocouple 8 spot welded to the sample surface 3, and an arbitrary temperature T1 from 200°C to 450°C was measured.
It was set to In order to directly determine the emissivity ε (θ) at each temperature T1, a water-cooled sector 5'' with a blackened surface was installed just in front of the opening 2-1 of the blackbody radiation source 2.The value detected by the radiometer 1 at that time was From E1, A1 is required to L8.

ここで、Eb(T1)は、T1がCA熱電対8によつて
求められており、その温度に対応する黒体放射の検出値
てあるからEb(T2)と同様にあらかじめ得られてい
る。(22)式のE (θ)は試料3の真の放射率であ
る。E1は形式的に次式で書くことができる。
Here, Eb(T1) is obtained in advance in the same way as Eb(T2) because T1 is determined by the CA thermocouple 8 and there is a detected value of blackbody radiation corresponding to that temperature. E (θ) in equation (22) is the true emissivity of sample 3. E1 can be formally written as the following equation.

次に、本発明方法の原理に基づき、上述の黒化した水冷
セクター5″をはずしたときの検出値E2は(7)式で
表わされる。
Next, based on the principle of the method of the present invention, the detected value E2 when the above-mentioned blackened water cooling sector 5'' is removed is expressed by equation (7).

ここに再び書いておく。−ε (Uノf −〜
( ・一ーー(23)式と(2
4)式より、本方法の演算よる放射率と温度は、それぞ
れ次の(25)式および(26)式で求められる。とこ
ろで本発明方法の測定精度は真の放射率(22)式と、
本発明方法の演算によつて得られる放射率(25)式を
比較することによつて見積ることができる。
I'll write it here again. −ε (U no f −〜
( ・1--Equation (23) and (2
From equation 4), the emissivity and temperature calculated by this method can be obtained by the following equations (25) and (26), respectively. By the way, the measurement accuracy of the method of the present invention is based on the true emissivity equation (22),
It can be estimated by comparing the emissivity equation (25) obtained by the calculation of the method of the present invention.

表1は、冷延鋼板、ステンレス鋼板および粗面化したア
ルミニウム板を試料として本発明方法によつて得た測定
結果である。
Table 1 shows the measurement results obtained by the method of the present invention using cold-rolled steel sheets, stainless steel sheets, and roughened aluminum sheets as samples.

表1において、fは各試料を任意の温度T1に設定し、
(22)式および(25)式に基づいて得れる放射率ε
(θ)の値が等しくなるように求めたものである。ま
たfの平・均値〒とその変動Δfを求め、〒を用いて(
25)式、および(26)式に基づいて演算した場合の
放射率、温度の相対誤差をも記載している。なお、後者
については、T1=400℃で評価している。(25)
式をfについて次式のように整理する。fがΔfだけ変
動するときのε (θ)の変動をΔEとする。(27)
式の両辺の対数をとり、微分すると(28)式より (29)式より、放射率の相対誤差はfの相対誤差と放
射率の値そのものに依存することがわかる。
In Table 1, f is set for each sample at an arbitrary temperature T1,
Emissivity ε obtained based on equations (22) and (25)
The values of (θ) are determined to be equal. Also, find the average value 〒 of f and its variation Δf, and use 〒 to find (
Relative errors in emissivity and temperature when calculated based on equations 25) and 26 are also listed. Note that the latter was evaluated at T1=400°C. (25)
The equation can be rearranged for f as shown below. Let ΔE be the variation in ε (θ) when f varies by Δf. (27)
By taking the logarithm of both sides of the equation and differentiating it, it can be seen from equations (28) and (29) that the relative error in emissivity depends on the relative error in f and the value of the emissivity itself.

温度の相対誤差ΔT/T1は、よく知られた公式から導
くことができる。
The relative temperature error ΔT/T1 can be derived from a well-known formula.

(30)式に(29)式を代人して次式を得るただし、
C2=14388μm−K表1のΔE/E(θ)、ΔT
/T1は、(29)式および(31)式においてf=〒
とし、E(θ)に(22)式によるE(0)を用いて求
めたものである。
Substituting equation (29) into equation (30) to obtain the following equation, however,
C2=14388μm-K ΔE/E(θ), ΔT in Table 1
/T1 is f=〒 in equations (29) and (31).
It is obtained by using E(0) according to equation (22) as E(θ).

表1から明らかなように、fは同じ試料に対して波長λ
の長いほど1に近づく。すなわち試料面は鏡面的反射面
に近づく。また、fの相対変動Δf/fも、λの長いほ
ど小さくなる。しかるに、本発明の演算による放射率解
と温度解は、(29)式と(31)式に示されるように
、Δf/f以外にε(θ)とλに依存するので、測定精
度は必すしも長波長がすぐれているとはいえない。表1
から、放射率解の相対誤差は、λ=8μmが最も小さい
が、温度解の相対誤差は、λ=2.2μmが最も小さい
。第6図は、冷延鋼板の多くの試料について、λ=2.
2μmの楊合に電熱対によつて直接得られた放射率((
22)式)と、本発明方法によつて得られた演算放射率
解((25)式)を比較図示したものである。
As is clear from Table 1, f is the wavelength λ for the same sample.
The longer it gets, the closer it gets to 1. In other words, the sample surface approaches a specular reflection surface. Further, the relative variation Δf/f of f also becomes smaller as λ becomes longer. However, as shown in equations (29) and (31), the emissivity solution and temperature solution calculated by the calculations of the present invention depend on ε(θ) and λ in addition to Δf/f, so measurement accuracy is not necessary. Sushi cannot be said to be superior in long wavelengths either. Table 1
Therefore, the relative error of the emissivity solution is the smallest when λ=8 μm, but the relative error of the temperature solution is the smallest when λ=2.2 μm. FIG. 6 shows that for many samples of cold-rolled steel sheets, λ=2.
The emissivity ((
22)) and the calculated emissivity solution (formula (25)) obtained by the method of the present invention.

fとして平均値了=0.92を用いた。同図より加熱に
よつて生ずる銅板面の酸化膜生成に伴う放射率の大幅な
変化にもかかわらず両者はよく一致している。第7図は
同様に熱電対による温度指示と、本発明の演算による演
算を比較したものである。両者の差は、ほとんど±5゜
C以内にある。表1、第6図および第7図より、同鋼種
であれば、放射率が大幅に変化しても、fを一定値に設
定して非常によい精度で温度と放射率を同時測定できる
ことが明らかになつた。本発明方法は、鏡面的な反射を
利用するために、特に背光雑音の除去にすぐれている。
An average value of 0.92 was used as f. As can be seen from the figure, the two agree well despite the large change in emissivity associated with the formation of an oxide film on the surface of the copper plate caused by heating. FIG. 7 similarly compares temperature indication by a thermocouple and calculation by the calculation of the present invention. The difference between the two is almost within ±5°C. From Table 1, Figures 6 and 7, it is clear that if the steel type is the same, temperature and emissivity can be measured simultaneously with very good accuracy by setting f to a constant value even if the emissivity changes significantly. It became clear. Since the method of the present invention utilizes specular reflection, it is particularly excellent in eliminating backlight noise.

したがつて、炉内における測温にきわめて有効と考えら
れる。シミュレーション炉を製作して、本発明方法によ
る炉内での測定実験を実施した。第8図に実験装置の概
略を示す。シミュレーション炉は内壁4は薄い銅板て箱
型である。内壁4の全面は黒化塗料(テツゾールを塗布
して放射率を0.95にした。この内壁4と外壁4″の
間の天井部および側壁部に3つの独立したヒーター9が
設置されており、内壁4を放射加熱している。内壁温度
T4は、銅表面に埋め込んだCAシース熱電対(天井、
側壁23ケ所)によつてそれぞれ独立に制御でき、内壁
4全体をほぼ一様な温度T4にすることができる。炉の
一対の側壁には、幅50Wr1n1長さ100TmIf
Lの開口10が設けられており、その一方の黒体放射源
2を挿入し、他方から放射計1で炉内11を覗くことが
できる。炉の下側からは、試料3と試料加熱炉6が挿入
できる。試料3は、この加熱炉6上で独立に加熱、温度
制御できる。ま,“た、試料3を下側から加熱する代り
に水冷却して常温に保つことができる。黒体放射源2の
開口面2−1の前面には黒体化した水冷セクター5があ
り、モーター12駆動によつて一定時間毎に開口面2−
1を覆うことができる。このような炉構成において、シ
ミュレーション炉の内壁温度T,が一様になつたとき、
周囲壁4は、ほぼその温度の黒体とみなしてよく、炉内
測温における最も厳しい状態にあると考えられる。原理
の有効性についてはすでに大気中での実験によつて確認
したので、ここでは炉内において内壁4からの放射エネ
ルギーが測定面3−1で反射して放射計1で検出される
割合、すなち背光雑音の割合を定量化する実験を実施し
た。図9に示すように、シミュレーション炉の内壁温度
T4が390゜Cになるように温度調節した。
Therefore, it is considered to be extremely effective for temperature measurement inside a furnace. A simulation furnace was manufactured and a measurement experiment was carried out in the furnace using the method of the present invention. Figure 8 shows an outline of the experimental apparatus. The simulation furnace has a box-like inner wall 4 made of a thin copper plate. The entire surface of the inner wall 4 was coated with black paint (Tetsol) to give an emissivity of 0.95. Three independent heaters 9 were installed on the ceiling and side walls between the inner wall 4 and the outer wall 4''. , the inner wall 4 is heated by radiation.The inner wall temperature T4 is determined by a CA sheath thermocouple embedded in the copper surface (ceiling,
The inner wall 4 can be controlled independently by the 23 side walls (23 locations), and the entire inner wall 4 can be kept at a substantially uniform temperature T4. A pair of side walls of the furnace have a width of 50Wr1n1 and a length of 100TmIf.
An L-shaped opening 10 is provided, one of which allows the blackbody radiation source 2 to be inserted and the inside of the reactor 11 to be viewed with the radiometer 1 from the other. A sample 3 and a sample heating furnace 6 can be inserted from the bottom of the furnace. The sample 3 can be heated and temperature controlled independently on this heating furnace 6. Also, instead of heating the sample 3 from below, it can be kept at room temperature by cooling it with water. In front of the aperture surface 2-1 of the blackbody radiation source 2, there is a water cooling sector 5 that is a blackbody. , the opening surface 2- is driven at regular intervals by the motor 12.
1 can be covered. In such a furnace configuration, when the inner wall temperature T of the simulation furnace becomes uniform,
The surrounding wall 4 may be regarded as a black body at approximately that temperature, and is considered to be in the most severe condition in temperature measurement inside the furnace. The validity of the principle has already been confirmed through experiments in the atmosphere, so here we will calculate the proportion of the radiant energy from the inner wall 4 in the reactor reflected by the measurement surface 3-1 and detected by the radiometer 1. In other words, we conducted an experiment to quantify the proportion of backlight noise. As shown in FIG. 9, the temperature was adjusted so that the inner wall temperature T4 of the simulation furnace was 390°C.

黒体放射源2の開放面2−1を黒化した水冷セクター5
″が覆つた状態にしたのち、各種試料3を下側から炉内
に挿入した。試料3の下面は常時水冷されているために
、炉内でも常温に保たれている。この状態において、放
射計1で放射エネルギーEsを検出した。この検出値の
大部分は、黒体空洞となつている炉内壁4から放射され
るエネルギーEb(T4)のうち、測定面3−1で反射
して放射計1の方向に来る量であるから背光雑音の量を
定量化できる。?光率ηは次式で定義される。
Water cooling sector 5 with blackened open surface 2-1 of black body radiation source 2
'' was covered, then various samples 3 were inserted into the furnace from below.The bottom surface of the samples 3 was constantly water-cooled, so it was kept at room temperature inside the furnace.In this state, the radiation Radiant energy Es was detected in total 1. Most of this detected value is the energy Eb (T4) radiated from the furnace inner wall 4, which is a black body cavity, which is reflected by the measurement surface 3-1 and radiated. The amount of backlight noise can be quantified because the amount comes in one direction in total.The light rate η is defined by the following equation.

70..、′ 試料3の放射率はあらかじめ測
定してあるので、(33)式から拡散反射係数pが計算
できる。なお、本実験においては、θ=67がに設定し
、測定点から黒化した水冷セクター5″を見込む立体角
dΩを変化させるために、セクターと測定点7の距離を
変化させた。表2に実験結果を示す。
70. .. ,' Since the emissivity of sample 3 has been measured in advance, the diffuse reflection coefficient p can be calculated from equation (33). In this experiment, θ = 67 was set, and the distance between the sector and measurement point 7 was changed in order to change the solid angle dΩ looking into the blackened water-cooled sector 5'' from the measurement point.Table 2 shows the experimental results.

試料として酸化の進行と共に放射率が変化する冷延鋼板
およびステンレス鋼板を用いた。試料の測定点からセク
ター面5″−1までの距離zを変えて、セクター面を見
込む立体角dΩ=27r(1−COs(Ta『1D/2
2′))に対する背光率ηを(32)式に従つて求め、
このηから各試料の放射率ε (θ)を用いて、(33
)式からpとその変動Δpを計算した。
Cold-rolled steel sheets and stainless steel sheets whose emissivity changes as oxidation progresses were used as samples. By changing the distance z from the measurement point of the sample to the sector plane 5''-1, the solid angle looking into the sector plane dΩ = 27r (1-COs (Ta ``1D/2
Find the backlight ratio η for 2')) according to equation (32),
Using the emissivity ε (θ) of each sample from this η, (33
) p and its variation Δp were calculated from the equation.

第10図にpとdΩの関係を図示した。表2または第1
0図から、各試料についてpは波長λが長くなるについ
れOに近づく。すなわち、試料は鏡面的反射に近づく、
また、dΩが大きくなるにつれて反射の拡散分は、セク
ター面の存在によつて減少するので、pを小さくする。
P.l!:.fの間には、(14)式の関係がある。実
際、表1のfの実測値を表2にも記載したが、両者の間
にほぼ(14)式が成り立つことがわかる。以上により
本発明方法が炉内でも有効であることが明らかとなつた
。次に黒体放射源の開口3部の寸法を決定する方法を述
べる。大気中でも炉内においても、放射率は(20)式
で与えられる。
FIG. 10 illustrates the relationship between p and dΩ. Table 2 or 1st
From Figure 0, p approaches O for each sample as the wavelength λ becomes longer. That is, the sample approaches specular reflection,
Furthermore, as dΩ increases, the diffusion of reflection decreases due to the presence of the sector plane, so p is made smaller.
P. l! :. There is a relationship between f and equation (14). In fact, the actual measured values of f in Table 1 are also listed in Table 2, and it can be seen that equation (14) approximately holds true between the two. From the above, it has become clear that the method of the present invention is effective even in a furnace. Next, a method for determining the dimensions of the aperture 3 of the blackbody radiation source will be described. Emissivity is given by equation (20) both in the atmosphere and in the furnace.

測温誤差は、大気中の場合(30)式で示される。した
がつて、大気中では、試料のfの変動が放射率ε(θ)
の変動に置き換えられ・る(29)式だけを基本にして
誤差解析すればよかつた。一方、炉内の場合では、pの
変動による放射率の変動と、炉内壁温度T4の変動も考
慮せねlばならない。そこで、誤差が許容範囲内に収ま
るためには、立体角dΩをどの程度の大きさにすればよ
いか、次のようなステップで検討した。みかけの測定温
度をTaとすると、(19)式において次式が満足され
る。E(θ)の変動範囲をあらかじめ実験によつて予想
し、ε(θ)の最小値を想定してε(θ)=ε而nとお
く。
The temperature measurement error is expressed by equation (30) in the atmosphere. Therefore, in the atmosphere, the variation in f of the sample increases the emissivity ε(θ)
It would have been sufficient to perform error analysis based only on equation (29), which can be replaced by the fluctuation of . On the other hand, in the case of inside a furnace, it is also necessary to take into account fluctuations in emissivity due to fluctuations in p and fluctuations in the furnace inner wall temperature T4. Therefore, the following steps were taken to consider how large the solid angle dΩ should be in order for the error to fall within the allowable range. When the apparent measured temperature is Ta, the following equation is satisfied in equation (19). The range of variation of E(θ) is predicted in advance through experiments, and the minimum value of ε(θ) is assumed, and ε(θ)=εθn.

これを(33)式に代人すると次式を得る。

一 (Oυノこの式を(34)式に代
人し、Eb(T)としてウィーンの公式、Eb(T)=
C1・λ−5・Exp(−C2/λ・T)を使用すれば
、次式が成り立つ。
Substituting this into equation (33) yields the following equation.
de
(Oυ) Substituting this equation into equation (34) and using Eb(T) as Vienna's formula, Eb(T)=
If C1·λ−5·Exp(−C2/λ·T) is used, the following equation holds true.

゜ (36
ノいま、許容測温誤差をΔTa<−Ta−T1℃とすれ
ば、(36)式の左辺においてであるから(゜.゜ΔT
a/T1<1)、この式を(36)式に代人して整理す
ると、拡散反射係数pの許容ャ゜最大値Pmaxが次式
で得られる。
゜ (36
Now, if the allowable temperature measurement error is ΔTa<-Ta-T1℃, then on the left side of equation (36), (゜.゜ΔT
a/T1<1), and when this equation is substituted into equation (36) and rearranged, the maximum allowable value Pmax of the diffuse reflection coefficient p is obtained by the following equation.

(38)式において、測温領域におけるT1、Lを与え
、λを選択すれば、測温誤差を±ΔTa/2゜C内にす
るPmaxの定量値が得られる。
In equation (38), if T1 and L in the temperature measurement region are given and λ is selected, a quantitative value of Pmax that brings the temperature measurement error within ±ΔTa/2°C can be obtained.

そこで、このp=Pmaxを与える立体角DOmaxを
第10図から求められばよい。冷延鋼板とステンレス鋼
板について具体的に計算する。
Therefore, the solid angle DOmax that gives this p=Pmax can be found from FIG. Specific calculations will be made for cold-rolled steel sheets and stainless steel sheets.

表3にT1=7000C..T4=6000C1700
℃、800℃の場合に、ΔTa=10℃の誤差内に抑え
るのに必要なPmaxおよびdΩMaxの計算結果を示
している。第10図から、pはλが長くなるほど小さく
なり、それだけ背光雑音は少なくなるが、同じ測温誤差
ΔTaを抑えるために必要なDOmaxは表3から明ら
からように、逆にλの小さい方が小さくてよい。Dfl
maxを小さくできることは、技術上の観点から非常に
重要なことである。ステンレス鋼板の場合、非常に小さ
な立体角で充分である。次に測定物体面の粗度をもとに
したpの決定方法について述べる。pは試料面法線に対
して角度をもつ方向の遮蔽状態における拡散的反射の度
合を表わしている。そのために、pと試料面の表面粗度
を表わす平均傾斜角θaの間に相関のあることが考えら
れる。実際、表2の結果を用いて、dΩ=0.2πRa
dの場合についてpと0aの関係を第11図に図示した
。ここで、θaは第12図に示したように、相面の傾斜
角をθc(7)市/淑とするときを中心線として で定義される。
Table 3 shows T1=7000C. .. T4=6000C1700
800° C., calculation results of Pmax and dΩMax necessary to suppress the error within ΔTa=10° C. are shown. From Fig. 10, p becomes smaller as λ becomes longer, and the backlight noise decreases accordingly, but as is clear from Table 3, the DOmax required to suppress the same temperature measurement error ΔTa is conversely the smaller λ is. Small is good. Dfl
Being able to reduce max is very important from a technical standpoint. In the case of stainless steel plates, a very small solid angle is sufficient. Next, a method for determining p based on the roughness of the surface of the object to be measured will be described. p represents the degree of diffuse reflection in a shielded state in a direction at an angle to the normal to the sample surface. Therefore, it is considered that there is a correlation between p and the average inclination angle θa representing the surface roughness of the sample surface. In fact, using the results in Table 2, dΩ=0.2πRa
The relationship between p and 0a for the case of d is illustrated in FIG. Here, as shown in FIG. 12, θa is defined as the center line when the inclination angle of the phase surface is θc(7).

以上詳述したように、炉内において試料面の表面粗度に
応じて必要な立体角を決定して、黒体放射源の開口の寸
法およびその測定面までの距離zを設定すれば、所定の
精度で温度と放射率の測定が可能である。
As detailed above, if the necessary solid angle is determined in the furnace according to the surface roughness of the sample surface, and the dimensions of the aperture of the blackbody radiation source and the distance z to the measurement surface are set, the predetermined It is possible to measure temperature and emissivity with an accuracy of .

なおその際粗度以外に測定物体の形状や搬送時の形状変
化または加熱による形状変化を考慮すればより測定精度
を高めることができる。本発明は、測定物体面が一般的
に粗面で非完全鏡面的反射特性を有する場合に、場合と
放射率を測定する必要のある対象に対して特に有効であ
る。
Note that, in addition to the roughness, the measurement accuracy can be further improved by considering the shape of the object to be measured, changes in shape during transportation, or changes in shape due to heating. The present invention is particularly useful in cases where the measurement object surface is generally rough and has non-perfect specular reflection properties and for objects whose emissivity needs to be measured.

しかも同時に背光雑音も消去できるので、放射率が酸化
の進行によつて大幅に変化する炉内における鋼板の放射
測温に著しい効果を発揮すると考えられる。近年、連続
焼鈍炉の新たな建設が進められている。
Furthermore, since backlight noise can be eliminated at the same time, it is thought that this method will have a remarkable effect on the radiation temperature measurement of steel plates in furnaces, where the emissivity changes significantly as oxidation progresses. In recent years, new construction of continuous annealing furnaces has been underway.

これは従来のものと異なり、時代の要求に応じ省エネル
ギー的な見解を徹底させ、熱効率向上によるコストダウ
ンを追及している。そのために、炉内は還元雰囲気では
なく、直火バーナーによる急速加熱方式を焼鈍炉の一部
に適応している。この加熱方式を有する炉をNOE(N
On木Kが常時変化するような場合には、前記黒体放射
源または第3の基準黒体放射源を新たに設置し、前記放
射計または第2の新たな放射計で一定jの光路を介して
該基準黒体放射源からの放射を、前記被測定物体面を経
由せず直接検出し、その変化からKを求め、この値を(
43)式および(44)式に代人することによつてKは
変動しても精度よく放射率ε(θ)および温度T1を求
めることが・できる。なお、設定場所環境条件によつて
は光路中の雰囲気気吸収による透過系数Kの変化をなく
する方法も考えられる。
This differs from conventional models in that it takes a thorough approach to energy conservation in response to the demands of the times, and pursues cost reductions by improving thermal efficiency. For this reason, instead of using a reducing atmosphere inside the furnace, a part of the annealing furnace uses a rapid heating method using direct burners. A furnace with this heating method is NOE (N
If the On tree K constantly changes, install a new blackbody radiation source or a third reference blackbody radiation source, and use the radiometer or a second new radiometer to create an optical path of constant j. The radiation from the reference blackbody radiation source is directly detected without passing through the measured object surface, K is determined from the change, and this value is expressed as (
By substituting equations 43) and 44, it is possible to accurately determine the emissivity ε(θ) and the temperature T1 even if K varies. Note that depending on the environmental conditions of the setting location, a method of eliminating changes in the transmission coefficient K due to atmospheric absorption in the optical path may also be considered.

即ち使用する放射計の検出波長r+[;1,1二Eテ1
10/.:FOZミ木0xidizingFumace
)と称する。このため、炉内鋼板は走行中に炉内弱酸化
性雰囲気により酸化され、その放射率が大幅に変化する
。本発明は、背光雑音と放射率の問題を一挙に解決する
ものであつて、上訃べ0Fにおける測温にきわめて有効
なものである。さらにNOFは微量の未燃02が鋼板酸
化膜形成に微妙な作用をするので、放射率測定さら逆に
酸化膜ないし酸化の状態に関して有益な情報を得ること
もできる。ノ 本発明はさらに放射計の検出波長に対し
て吸収特性を有する雰囲気やシールガラスなどが測定系
の光路に存在する場合にも、その雰囲気などに対する透
過係数を測定して、正確な測温を可能ならしめることが
できる。
That is, the detection wavelength r+[;1,12Ete1 of the radiometer used
10/. :FOZ みき0xidizingFumace
). Therefore, the steel plate in the furnace is oxidized by the weakly oxidizing atmosphere in the furnace during running, and its emissivity changes significantly. The present invention solves the problems of backlight noise and emissivity all at once, and is extremely effective for temperature measurement at 0F. Furthermore, in NOF, a small amount of unburned 02 has a subtle effect on the formation of an oxide film on a steel sheet, so in addition to emissivity measurement, it is also possible to obtain useful information regarding the oxide film or the state of oxidation. Furthermore, even if there is an atmosphere or a seal glass in the optical path of the measurement system that has absorption characteristics for the detection wavelength of the radiometer, the present invention measures the transmission coefficient for the atmosphere to ensure accurate temperature measurement. I can make it seem possible.

たとえば、(15)式および(16)式において、放射
計によつて検出されるエネルギーE2,E3が光路中の
吸収によつて、透過係数K(イ)〈Kく1)だけ小さく
すると、両式に対応してそれぞれ次式が得られる。(4
1)式と(42)式より放射率ε(0)力;−″このE
(θ)を(42)式に代人してT1が次式から求められ
る。
For example, in equations (15) and (16), if the energies E2 and E3 detected by the radiometer are reduced by the transmission coefficient K (a) <K * 1) due to absorption in the optical path, both The following equations are obtained corresponding to the equations. (4
From equations 1) and (42), the emissivity ε(0) force;-″this E
(θ) is substituted into equation (42) and T1 is obtained from the following equation.

に対して透明なガス体(例えば不活性ガス)を光路中に
流出させればよい。
What is necessary is to cause a transparent gas (for example, an inert gas) to flow into the optical path.

こうすることによつて、透過系数Kに大幅な変動がある
ような環境においても、安定した既知のKに設定するこ
とができ、したがつて正確な測定が可能である。以上本
発明は放射計と黒体放射源を測定面法線に対して、互い
に拡散反射的に配置し、黒体放射源から異なる2つの放
射量を交互に放射させることによつて、測定物体の表面
温度と放射率を測定する放射測温法において本来、測定
物体が完全鏡面的反射面の場合に成立する方法を拡散反
射係数pを導入して適用範囲をM一般的に非完全拡散的
r+口し1二E1)0/.;トqζ反射面にまで拡
張したものである。
By doing so, even in an environment where the transmission coefficient K varies significantly, it is possible to set a stable known value K, and therefore accurate measurement is possible. As described above, the present invention arranges a radiometer and a blackbody radiation source in a diffuse-reflective manner with respect to the normal to the measurement surface, and alternately emits two different amounts of radiation from the blackbody radiation source. In the radiation thermometry method, which measures the surface temperature and emissivity of a surface, a method that originally works when the measurement object is a perfectly specular reflective surface is introduced by introducing the diffuse reflection coefficient p, and the applicable range is generally non-perfectly diffusive. r+mouth 12E1) 0/. ;This is extended to the tqζ reflecting surface.

pと測定面の表面粗度の間の密度な関係を明らかにし、
さらにpと検出波長、および黒体放射源の開口径を測定
面から見込む立体角の間の関件を測定誤差に関連させて
測定評価する手順を導き、さらに透過係数Kの変動にも
対応できるものであつて、従来存在しなかつた全く新規
な測温法を提供するものである。
Clarifying the density relationship between p and the surface roughness of the measurement surface,
Furthermore, a procedure for measuring and evaluating the relationship between p, the detection wavelength, and the solid angle from which the aperture diameter of the blackbody radiation source is viewed from the measurement surface is derived in relation to the measurement error, and it is also possible to deal with variations in the transmission coefficient K. It provides a completely new temperature measurement method that did not exist before.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概念略図、第2図は本発明の演算ブロ
ックダイアグラム図、第3図A,bは本発明の平面概略
図、第4図は本発明の側面概略図、第5図は本発明の大
気中ての一実施例側面図、第6図は真の放射率値と本発
明による放射率測定値の比較図、第7図は真の温度と本
発明による温度測定値の比較図、第8図は本発明を炉内
で実施した例の側面図、第9図は背光雑音の定量化実験
の概略図、第10図はPI:.dΩの関係実験値図、第
11図はpとθaの関係実験値図、第12図は平均傾斜
角θaの定義図である。 ) 図面で1は放射計、2は黒体放射源、3は測定物体
、4は炉壁である。
FIG. 1 is a conceptual diagram of the present invention, FIG. 2 is an operational block diagram of the present invention, FIG. 3 A and b are plan schematic diagrams of the present invention, FIG. 4 is a side schematic diagram of the present invention, and FIG. 5 is a schematic diagram of the present invention. 6 is a side view of one embodiment of the present invention in the atmosphere, FIG. 6 is a comparison diagram of the true emissivity value and the emissivity measurement value according to the present invention, and FIG. 7 is a comparison diagram of the true emissivity value and the temperature measurement value according to the present invention. 8 is a side view of an example in which the present invention was implemented in a reactor, FIG. 9 is a schematic diagram of a backlight noise quantification experiment, and FIG. 10 is a PI:. FIG. 11 is a diagram of the experimental values of the relationship between dΩ, FIG. 11 is a diagram of the experimental values of the relationship between p and θa, and FIG. 12 is a diagram of the definition of the average inclination angle θa. ) In the drawing, 1 is a radiometer, 2 is a blackbody radiation source, 3 is a measurement object, and 4 is a furnace wall.

Claims (1)

【特許請求の範囲】 1 放射計と黒体放射源を測定面法線に対して、互に鏡
面対称的に配置し、黒体放射源から異なる2つの放射量
を交互に放射させることによつて、測定物体の表面温度
と放射率を測定する放射測温法において、上記放射計で
検知された測定値と上記黒体放射源自体の温度と前記被
測定物体に対応する拡散反射係数により被測定物体の放
射率を求め、次にこれから被測定物体の表面温度を測定
することを特徴とする物体の温度と放射率の測定方法。 2 放射計と黒体放射源を測定面法線に対して互に鏡面
対称的に配置し、黒体放射源から異なる2つの放射量を
交互に放射させることによつて、測定物体の表面温度と
放射率を測定する放射測温法において、上記放射計で検
知された測定値と上記黒体放射源自体の温度と前記被測
定物体に対応した拡散反射係数と更に測定系の光路の透
過係数とにより被測定物体の放射率を求め次にこれから
被測定物体の表面温度を測定することを特徴とする物体
の温度と放射率の測定方法。
[Claims] 1. A radiometer and a blackbody radiation source are arranged mirror-symmetrically with respect to the normal to the measurement surface, and two different amounts of radiation are alternately emitted from the blackbody radiation source. In the radiation thermometry method that measures the surface temperature and emissivity of a measurement object, the measured value detected by the radiometer, the temperature of the blackbody radiation source itself, and the diffuse reflection coefficient corresponding to the measurement object are used. A method for measuring the temperature and emissivity of an object, characterized by determining the emissivity of the object to be measured and then measuring the surface temperature of the object. 2. By arranging the radiometer and the blackbody radiation source mirror-symmetrically with respect to the normal to the measurement surface, and by alternately emitting two different amounts of radiation from the blackbody radiation source, the surface temperature of the measurement object can be determined. In the radiation thermometry method that measures emissivity, the measured value detected by the radiometer, the temperature of the blackbody radiation source itself, the diffuse reflection coefficient corresponding to the object to be measured, and the transmission coefficient of the optical path of the measurement system. A method for measuring the temperature and emissivity of an object, characterized by determining the emissivity of the object to be measured and then measuring the surface temperature of the object.
JP55027108A 1980-03-04 1980-03-04 How to measure the temperature and emissivity of an object Expired JPS6047538B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP55027108A JPS6047538B2 (en) 1980-03-04 1980-03-04 How to measure the temperature and emissivity of an object
US06/239,727 US4465382A (en) 1980-03-04 1981-03-02 Method of and an apparatus for measuring surface temperature and emmissivity of a heated material
FR8104233A FR2477706A1 (en) 1980-03-04 1981-03-03 METHOD AND APPARATUS FOR MEASURING THE SURFACE TEMPERATURE AND THE EMISSIVE POWER OF A HEATED MATERIAL
BE0/203992A BE887770A (en) 1980-03-04 1981-03-03 METHOD AND APPARATUS FOR MEASURING THE SURFACE TEMPERATURE AND EMISSIVITY OF A HEATED MATERIAL
GB8106604A GB2074722B (en) 1980-03-04 1981-03-03 Measuring surface temperature and emmissivity of a heated sample
CA000372187A CA1166037A (en) 1980-03-04 1981-03-03 Method of and an apparatus for measuring surface temperature and emmissivity of a heated material
DE19813108153 DE3108153A1 (en) 1980-03-04 1981-03-04 METHOD AND DEVICE FOR MEASURING THE SURFACE TEMPERATURE AND THE EMISSION CAPACITY OF HEATED MATERIAL
NL8101049A NL191447C (en) 1980-03-04 1981-03-04 Device for measuring the surface temperature and the emissivity of a heated object.
NL9101843A NL9101843A (en) 1980-03-04 1991-11-04 Device for measuring the surface temperature and emissivity of a heated object
NL9101842A NL9101842A (en) 1980-03-04 1991-11-04 Device for measuring the surface temperature and emissivity of a object heated in an oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55027108A JPS6047538B2 (en) 1980-03-04 1980-03-04 How to measure the temperature and emissivity of an object

Publications (2)

Publication Number Publication Date
JPS56122923A JPS56122923A (en) 1981-09-26
JPS6047538B2 true JPS6047538B2 (en) 1985-10-22

Family

ID=12211880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55027108A Expired JPS6047538B2 (en) 1980-03-04 1980-03-04 How to measure the temperature and emissivity of an object

Country Status (2)

Country Link
JP (1) JPS6047538B2 (en)
BE (1) BE887770A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239488A (en) * 1990-04-23 1993-08-24 On-Line Technologies, Inc. Apparatus and method for determining high temperature surface emissivity through reflectance and radiance measurements
US5094544A (en) * 1990-10-19 1992-03-10 Square D Company Scanning infrared thermometer with DC offset and emissivity correction
US5326172A (en) * 1992-12-14 1994-07-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multiwavelength pyrometer for gray and non-gray surfaces in the presence of interfering radiation
JP6539578B2 (en) 2015-12-22 2019-07-03 株式会社Screenホールディングス Heat treatment apparatus and heat treatment method
JP6720033B2 (en) * 2016-09-14 2020-07-08 株式会社Screenホールディングス Heat treatment equipment
CN114485959B (en) * 2022-01-20 2023-12-01 北京市计量检测科学研究院(北京市能源计量监测中心) Human body temperature measuring method free from influence of ambient temperature
CN115165967B (en) * 2022-06-30 2024-06-14 华中科技大学 Differential irradiation-based millimeter wave emissivity measurement method and system for material sample
CN115265825B (en) * 2022-07-06 2024-04-16 东北大学 Method and device for measuring temperature of inner surface, storage medium and terminal

Also Published As

Publication number Publication date
BE887770A (en) 1981-07-01
JPS56122923A (en) 1981-09-26

Similar Documents

Publication Publication Date Title
US4465382A (en) Method of and an apparatus for measuring surface temperature and emmissivity of a heated material
US4435092A (en) Surface temperature measuring apparatus for object within furnace
DeWitt Inferring temperature from optical radiation measurements
Ren et al. Apparatus for measuring spectral emissivity of solid materials at elevated temperatures
JPS6047538B2 (en) How to measure the temperature and emissivity of an object
JP4217255B2 (en) Steel plate temperature measuring method and temperature measuring device, and steel plate temperature control method
US9805993B2 (en) Device for determining the temperature of a substrate
JP2015225034A (en) Measurement method of thermal diffusivity of translucent material
JPS6139604B2 (en)
CN114034394A (en) Infrared polarization detection system for measuring metal temperature and emissivity in high-temperature furnace
JP4878234B2 (en) Steel plate temperature measuring method and temperature measuring device, and steel plate temperature control method
ES2713268T3 (en) Procedure for the simultaneous measurement of the thickness and temperature of an oxide layer
JPH04132944A (en) Device for measuring thermal coefficient of expansion
Saunders et al. A theory of reflections for traceable radiation thermometry
JPS6049851B2 (en) Calibration method for steel plate surface temperature
JPS634651B2 (en)
CN116759339A (en) Heat treatment device and temperature regulation method for semiconductor workpiece
JPH0427496B2 (en)
JPS6014192Y2 (en) Surface temperature measuring device for objects inside the furnace
JPH0310128A (en) Method for simultaneously measuring temperature and emissivity in high temperature furnace
JPH05203497A (en) Measuring method for temperature of steel plate
JPS6014193Y2 (en) Simultaneous measurement device for metal surface temperature and emissivity
JPS6221953Y2 (en)
JPS6033379Y2 (en) Radiation temperature measurement test device
JPH05223632A (en) Calibrating system for light power meter