JPS6049851B2 - Calibration method for steel plate surface temperature - Google Patents

Calibration method for steel plate surface temperature

Info

Publication number
JPS6049851B2
JPS6049851B2 JP55178558A JP17855880A JPS6049851B2 JP S6049851 B2 JPS6049851 B2 JP S6049851B2 JP 55178558 A JP55178558 A JP 55178558A JP 17855880 A JP17855880 A JP 17855880A JP S6049851 B2 JPS6049851 B2 JP S6049851B2
Authority
JP
Japan
Prior art keywords
steel plate
temperature
radiant energy
radiometer
thermocouple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55178558A
Other languages
Japanese (ja)
Other versions
JPS57101727A (en
Inventor
徹 井内
富三男 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP55178558A priority Critical patent/JPS6049851B2/en
Publication of JPS57101727A publication Critical patent/JPS57101727A/en
Publication of JPS6049851B2 publication Critical patent/JPS6049851B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 本発明は、熱電対て測定した鋼板表面温度の校正法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for calibrating the surface temperature of a steel plate measured with a thermocouple.

鋼板表面温度の測定には熱電対が広く用いられている
Thermocouples are widely used to measure the surface temperature of steel plates.

熱電対による測温は勿論接触式であり、移動鋼板表面の
測温には放射測温などの非接触型が好ましいが、放射測
温計の校正には熱電対を使用するのが普通である。とこ
ろでかゝる熱電対であるが、これで測定した加熱鋼板表
面温度は真温度よりや)低い温度を示し、該測定温度て
放射温度計を校正すると誤つた校正が行なわれてしまう
。 熱電対による鋼板表面温度測定結果が真温度より低
い値を示す理由には鋼板表面より熱電対温度計への熱の
流失が考えられるが、これを避けるには非接触測温が好
ましい。
Temperature measurement using a thermocouple is of course a contact type, and non-contact types such as radiation thermometry are preferred for temperature measurement on the surface of a moving steel plate, but thermocouples are usually used to calibrate radiation thermometers. . By the way, the surface temperature of the heated steel plate measured by such a thermocouple is lower than the true temperature, and if the radiation thermometer is calibrated using the measured temperature, an incorrect calibration will be performed. The reason why the steel plate surface temperature measurement result using a thermocouple shows a value lower than the true temperature is thought to be the loss of heat from the steel plate surface to the thermocouple thermometer, but non-contact temperature measurement is preferable to avoid this.

温度Tの物体はE、=EEb(T)なる放射エネルギE
、を放出するからこれを測定し、例えばウィーンの公式
Eb(T)=C、λ−゜exp(−Co/λ・ T)を
使用すれは物体温度Tが求まり、これが放射測温の原理
であるが、被測温物体表面の放射率εは一般には未知で
あるという問題がある。この未知の放射率Eは黒体炉を
使用して、被測温物体表面からの放射エネルギE、と、
黒体炉からの放射エネルギを該物体表面に当てその反射
した放射エネルギと前記放射エネルギE、との和E。を
測定してこれらより該εを求め、延いては物体温度Tを
求めるという方法を本発明者等が開発したが、この方法
ても厳密には、黒体炉からの放射エネルギが物体表面で
反射する割合を表わす拡散反射係数が未知てある(従つ
て推定値使用)という問題がある。 本発明は適当な操
作により放射率εを除去し得てEb(T)を測定てき、
これにより真の温度Tを求めて熱電対測温値を校正でき
る方法を提案するものである。
An object at temperature T has radiant energy E, =EEb(T)
, so if we measure this and use the Wien formula Eb(T)=C, λ-゜exp(-Co/λ・T), we can find the object temperature T, which is the principle of radiation thermometry. However, there is a problem in that the emissivity ε of the surface of the temperature-measuring object is generally unknown. This unknown emissivity E is calculated using a blackbody furnace, and the radiant energy E from the surface of the object to be measured is
The sum E of the radiant energy reflected by the radiant energy from the blackbody furnace applied to the surface of the object and the radiant energy E. The present inventors have developed a method in which ε is determined by measuring ε, and then the temperature T of the object is determined, but strictly speaking, even with this method, the radiant energy from the blackbody furnace does not reach the surface of the object. There is a problem in that the diffuse reflection coefficient representing the rate of reflection is unknown (therefore, an estimated value is used). The present invention can remove emissivity ε through appropriate operations and measure Eb(T),
This proposes a method that can determine the true temperature T and calibrate the thermocouple temperature value.

この方法によると前記の拡散反射係数も同時に測定する
ことができる。次に実施例を参照しながらこれを説明す
る。 第1図で10は被測温物体、具体的には加熱鋼板
であり、12は放射計、14は反射鏡、16は回転セク
タ、18、20は炉壁22の放射線通路に設けた透過窓
(フィルタ)である。これらの部材14,16,18と
20,12は測温点0に立てた法線Nに関して等角度に
、つまり鏡面反射の入射光および反射光の通路上に配置
される。24は測温点0の近傍に取付けた熱電対、26
はヒータてある。
According to this method, the above-mentioned diffuse reflection coefficient can also be measured at the same time. Next, this will be explained with reference to examples. In FIG. 1, 10 is an object to be measured, specifically a heated steel plate, 12 is a radiometer, 14 is a reflector, 16 is a rotating sector, and 18 and 20 are transmission windows provided in the radiation passage of the furnace wall 22. (filter). These members 14, 16, 18 and 20, 12 are arranged at equal angles with respect to the normal N to the temperature measuring point 0, that is, on the path of specularly reflected incident light and reflected light. 24 is a thermocouple installed near temperature measurement point 0, 26
There is a heater.

この測温系では鋼板10から放出された放射エネルギが
フィルタ20を通つて放射計12に入り、またフィルタ
18を通つて反射鏡14へ入り、こ)て反射されて同じ
路を戻り、鋼板表面で反射してフィルタ20経由で放射
計12へ入る。
In this temperature measurement system, the radiant energy emitted from the steel plate 10 passes through the filter 20, enters the radiometer 12, passes through the filter 18, enters the reflector 14, and is reflected and returns along the same path. and enters the radiometer 12 via the filter 20.

これらの放射エネルギの通路11,12は鏡面反射関係
にある、つまり法線Nとなす角θが等しい。放射エネル
ギも反射に関しては光と同様な特性を持つので放射計1
2に入る放射エネルギは通路11,12を通るもののみ
であり、これはノイズ遮蔽に有効である。即ち炉壁22
は温度が高いと無視できない放射エネルギを放出し、こ
れが鋼板10で反射して放射計12に入る恐れがあるの
で、測定鋼板に比べて充分低温にして、炉壁からの放射
エネルギーが無視できるようにしておく。勿論、反射鏡
14が放出する放射エネルギは放射計12で入り得るか
ら、該反射鏡14も充分低温にしてそれよりの放射エネ
ルギは無視できるようにしておく。回転セクタ16は放
射エネルギを通過させる部分例えば開口と、該放射エネ
ルギを通さない部.分例えば放射エネルギ完全吸収面と
を持つており、これらが交互に通路12上に来るように
回転する。この回転セクタも、それ自身は放射エネルギ
を放出しないように充分低温にしておく。か)る測定系
においては鋼板表面の真温度を!T、放射率をE、拡散
反射係数をP1反射鏡14の反射率をRalフィルタ1
8,20の透過率をγ、回転セクタ16が光路を閉じた
ときの放射計12の受光エネルギをE1、光路を開いた
ときのそ連をE2とする力、次式が成立する。
These radiant energy paths 11 and 12 are in a specular reflection relationship, that is, the angles θ with respect to the normal N are equal. Since radiant energy has the same characteristics as light in terms of reflection, radiometer 1
The only radiant energy that enters 2 is through the passages 11 and 12, which is effective for noise shielding. That is, the furnace wall 22
If the temperature is high, it will emit radiant energy that cannot be ignored, and there is a risk that this will be reflected by the steel plate 10 and enter the radiometer 12. Therefore, the temperature should be kept sufficiently low compared to the steel plate to be measured so that the radiant energy from the furnace wall can be ignored. Keep it. Of course, since the radiant energy emitted by the reflecting mirror 14 can be received by the radiometer 12, the reflecting mirror 14 should also be kept at a sufficiently low temperature so that the radiant energy beyond that point can be ignored. The rotating sector 16 has a portion that allows radiant energy to pass through, such as an opening, and a portion that does not allow the radiant energy to pass through. For example, the radiant energy-absorbing surfaces are rotated so that they alternately lie on the passageway 12. This rotating sector is also kept sufficiently cool that it does not itself emit radiant energy. ) measurement system, the true temperature of the steel plate surface! T, emissivity is E, diffuse reflection coefficient is P1, reflectance of reflector 14 is Ral filter 1
The following equation holds true, where γ is the transmittance of 8 and 20, E1 is the received light energy of the radiometer 12 when the rotating sector 16 closes the optical path, and E2 is the transmission when the optical path is opened.

この(1),(2)て未知数はE,Eb(T)、および
pてあり、従つてこのま)ては(1),(2)式は解け
なりい。
The unknowns in equations (1) and (2) are E, Eb(T), and p, so equations (1) and (2) cannot be solved at this point.

そこて、今、両式の差をΔEとすると、となり、この(
3)式は温度Tが一定ならE1=τ・Eb(T)/2に
おいて最大となる。このときのEl,ΔEの値をE休,
ΔE*とすれば、であり、これらの(4),(5)式か
ら次式が求まる。この(6)式を用いてE*1,τから
Eb(T)を知り、延いては鋼板表面温度Tを求めるこ
とができる。また(7)式を用いてΔE*,E休,τ,
Raより拡散反射係数pを求めることができる。ΔEの
最大値は比較的簡単に実施てきる。
Now, if we let the difference between the two equations be ΔE, we get this (
If the temperature T is constant, the equation 3) becomes maximum at E1=τ·Eb(T)/2. The values of El and ΔE at this time are
If ΔE*, then the following equation is obtained from these equations (4) and (5). Using Equation (6), Eb(T) can be determined from E*1,τ, and the steel plate surface temperature T can be determined. Also, using equation (7), ΔE*, E rest, τ,
The diffuse reflection coefficient p can be determined from Ra. The maximum value of ΔE can be achieved relatively easily.

即ち鋼板周囲の雰囲気を還元性にしておくと冷延鋼板な
どは鏡面を保ち、次いて酸化性雰囲気に変えてゆくと該
鋼板表面は酸化してブルーイングし(青くなり)、放射
率は0.25〜0.85程度の範囲て変る。これに伴つ
て放射計の受光エネルギEl,E2は第2図に示すよう
に変化する。炉内雰囲気を適当な速さで還元性から酸化
性に変え、この間に回転セクタ16を回転させて多数の
El,E2を求めてそれらをプロットすると第2図が画
け、これよりΔE=E2上1の最大値は容易に求まる。
この最大値をε=0.5のときに生じる。即ち前述のΔ
Eを最大にする条件E1=τ・Eb(T)/2とは(1
)式から明らかなようにE=0.5ということに外なら
ない。測定値を多数求めれば第2図のグラフから可成り
正確にΔEの最大値を求めることがてきるが、測定値は
比較的少数にして演算処理により最大値を求めるように
してもよい。
In other words, if the atmosphere around the steel plate is made reducing, the cold rolled steel plate will maintain its mirror surface, but if the atmosphere is then changed to an oxidizing atmosphere, the surface of the steel plate will oxidize and bluish (become blue), with an emissivity of 0. It varies from about .25 to 0.85. Along with this, the received light energies El and E2 of the radiometer change as shown in FIG. If the atmosphere in the furnace is changed from reducing to oxidizing at an appropriate speed, and during this time the rotary sector 16 is rotated to obtain a large number of El and E2 and plot them, Figure 2 is drawn, from which ΔE=E2 The maximum value of the upper one is easily found.
This maximum value occurs when ε=0.5. That is, the aforementioned Δ
The condition E1=τ・Eb(T)/2 that maximizes E is (1
) As is clear from the equation, E=0.5. If a large number of measured values are obtained, the maximum value of ΔE can be obtained fairly accurately from the graph of FIG. 2, but it is also possible to use a relatively small number of measured values and obtain the maximum value through arithmetic processing.

第3図は第2図をE1−ΔEの関係に置き換え、ΔEの
変化を分り易く示したものてある。
FIG. 3 replaces FIG. 2 with the relationship of E1-ΔE to clearly show the change in ΔE.

この測定中は鋼板温度一定にする必要があるが、これは
熱電対の指示温度Taを指標としてこれが一定になるよ
うにヒータ26を通電制御することて実行てきる。ちな
みに該温度Taは真の温度ではないが、このことは鋼板
温度一定制御に何ら支障を与えるものではない。第4図
は(7)式で求めたEb(T)よりTを求める要領を示
す。
During this measurement, it is necessary to keep the steel plate temperature constant, and this can be accomplished by controlling the energization of the heater 26 so that the temperature Ta indicated by the thermocouple is used as an index and becomes constant. Incidentally, although the temperature Ta is not the true temperature, this does not pose any problem in controlling the steel plate temperature to be constant. FIG. 4 shows the procedure for determining T from Eb(T) determined by equation (7).

これは前述の公式を解いてもよいが、煩雑てあるから、
一般には予めE(b)−T曲線C1を作成しておき、こ
れにより真温度Tを求める。第5図は校正要領を示す。
This can be done by solving the above formula, but it is complicated, so
Generally, an E(b)-T curve C1 is created in advance, and the true temperature T is determined from this. Figure 5 shows the calibration procedure.

前述の真温度Tの測温を、鋼板温度を変えて種々実行し
、Ta−Tの曲線C2を求める。若しTa=Tならばこ
の曲線C2は452斜線C3になるが、一般には曲線C
2は斜線C3の上に来る。つまりT>Taである。この
曲線C2は求める校正曲線であり、この曲線を利用して
熱電対温値Taより真温度Tを求める。こうして校正さ
れる熱電対はまた実炉における放射計の校正に使用され
る。但し、この校正曲線は鋼板の厚み測温部(熱容量)
によつて変ることがあるので、対象鋼板に合せた何種類
かの校正曲線を用意しておく。以上説明したように本発
明によれば、放射率、拡散反射係数などに患わされずに
正確な銅板表面温度を放射測温でき、これにより熱電対
の指示値を校正して該熱電対による正確な鋼板表面温度
測定が可能になる利点が得られる。
The measurement of the true temperature T described above is carried out in various ways while changing the steel plate temperature, and a Ta-T curve C2 is obtained. If Ta=T, this curve C2 becomes a 452 diagonal line C3, but generally the curve C
2 is above diagonal line C3. That is, T>Ta. This curve C2 is a calibration curve to be determined, and using this curve, the true temperature T is determined from the thermocouple temperature value Ta. Thermocouples thus calibrated are also used to calibrate radiometers in real reactors. However, this calibration curve is based on the thickness of the steel plate (heat capacity).
Since it may change depending on the steel plate, prepare several types of calibration curves to match the target steel plate. As explained above, according to the present invention, it is possible to accurately measure the copper plate surface temperature by radiation without being affected by emissivity, diffuse reflection coefficient, etc., and thereby calibrate the indicated value of the thermocouple and The advantage is that accurate steel sheet surface temperature measurement is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を説明する図、第2図〜第5図は
各種変数間の関係を示すグラフである。
FIG. 1 is a diagram explaining the principle of the present invention, and FIGS. 2 to 5 are graphs showing relationships between various variables.

Claims (1)

【特許請求の範囲】[Claims] 1 加熱鋼板上に放射計と反射鏡を、該鋼板から放出さ
れる放射エネルギが直接、及び該反射鏡と物体表面で鏡
面反射したのち該放射計に入射するように配置して、前
記直接入射する放射エネルギE_1および反射後入射す
る放射エネルギと前記放射エネルギE_1との和E_2
を測定し、該鋼板の温度を一定にしたまゝ鋼板表面の放
射率を変えて差ΔE=E_2−E_1が最大になるとき
の放射エネルギE_1を求め、その値E_1*と黒体放
射エネルギとの関係式Eb(T)=2/γ−E_1*を
用いて該鋼板の表面温度Tを求め、また熱電対を該鋼板
測温部近傍に設置してその指示温度Taを得、該温度T
aを前記温度Tで校正することを特徴とした、熱電対で
測定した鋼板表面温度の校正法。
1. A radiometer and a reflector are arranged on a heated steel plate so that the radiant energy emitted from the steel plate is directly incident on the radiometer after being specularly reflected on the reflector and the object surface, and the direct incident energy is incident on the radiometer. radiant energy E_1 and the sum E_2 of the radiant energy incident after reflection and the radiant energy E_1.
is measured, the emissivity of the surface of the steel plate is changed while the temperature of the steel plate is kept constant, the radiant energy E_1 is determined when the difference ΔE=E_2−E_1 becomes the maximum, and the value E_1* and the black body radiant energy are calculated. The surface temperature T of the steel plate is determined using the relational expression Eb(T)=2/γ−E_1*, and the indicated temperature Ta is obtained by installing a thermocouple near the temperature measuring part of the steel plate, and the temperature T
A method for calibrating a steel plate surface temperature measured with a thermocouple, the method comprising calibrating a at the temperature T.
JP55178558A 1980-12-17 1980-12-17 Calibration method for steel plate surface temperature Expired JPS6049851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55178558A JPS6049851B2 (en) 1980-12-17 1980-12-17 Calibration method for steel plate surface temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55178558A JPS6049851B2 (en) 1980-12-17 1980-12-17 Calibration method for steel plate surface temperature

Publications (2)

Publication Number Publication Date
JPS57101727A JPS57101727A (en) 1982-06-24
JPS6049851B2 true JPS6049851B2 (en) 1985-11-05

Family

ID=16050580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55178558A Expired JPS6049851B2 (en) 1980-12-17 1980-12-17 Calibration method for steel plate surface temperature

Country Status (1)

Country Link
JP (1) JPS6049851B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029623A (en) * 1983-07-27 1985-02-15 Yokogawa Hokushin Electric Corp Radiation thermometer
US6742925B2 (en) * 2001-11-19 2004-06-01 Cole-Parmer Instrument Company Method and apparatus for verifying accuracy of an infrared thermometer

Also Published As

Publication number Publication date
JPS57101727A (en) 1982-06-24

Similar Documents

Publication Publication Date Title
US4172383A (en) Method and an apparatus for simultaneous measurement of both temperature and emissivity of a heated material
EP0335224B1 (en) Radiation thermometry
US4465382A (en) Method of and an apparatus for measuring surface temperature and emmissivity of a heated material
Ng et al. Use of a multiwavelength pyrometer in several elevated temperature aerospace applications
US5114242A (en) Bichannel radiation detection method
US5848842A (en) Method of calibrating a temperature measurement system
NL8103499A (en) DEVICE FOR MEASURING SURFACE TEMPERATURE.
US5874711A (en) Apparatus and method for determining the temperature of a radiating surface
US4823291A (en) Radiometric measurement of wafer temperatures during deposition
JP6114762B2 (en) Equipment for measuring substrate temperature
US6786634B2 (en) Temperature measuring method and apparatus
He et al. Analysis of multi-factor on measurement improvement of an infrared imager in low-temperature environments
JPS6049851B2 (en) Calibration method for steel plate surface temperature
Ballico A simple technique for measuring the infrared emissivity of black-body radiators
JPS6047538B2 (en) How to measure the temperature and emissivity of an object
CN114034394A (en) Infrared polarization detection system for measuring metal temperature and emissivity in high-temperature furnace
Saunders et al. A theory of reflections for traceable radiation thermometry
JPH0310128A (en) Method for simultaneously measuring temperature and emissivity in high temperature furnace
JPS6221953Y2 (en)
De Witt Advances and Challenges in Radiation Thermometry
JPS6033379Y2 (en) Radiation temperature measurement test device
JP2002303551A (en) Method and device for measuring temperature of in- furnace metallic material
JPH06213728A (en) Method and device for remotely monitoring temperature of body
JPH05203497A (en) Measuring method for temperature of steel plate
JPS6014193Y2 (en) Simultaneous measurement device for metal surface temperature and emissivity