JPS6221953Y2 - - Google Patents

Info

Publication number
JPS6221953Y2
JPS6221953Y2 JP1981100440U JP10044081U JPS6221953Y2 JP S6221953 Y2 JPS6221953 Y2 JP S6221953Y2 JP 1981100440 U JP1981100440 U JP 1981100440U JP 10044081 U JP10044081 U JP 10044081U JP S6221953 Y2 JPS6221953 Y2 JP S6221953Y2
Authority
JP
Japan
Prior art keywords
radiometer
temperature
measured
mirror
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981100440U
Other languages
Japanese (ja)
Other versions
JPS586239U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981100440U priority Critical patent/JPS586239U/en
Publication of JPS586239U publication Critical patent/JPS586239U/en
Application granted granted Critical
Publication of JPS6221953Y2 publication Critical patent/JPS6221953Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、物体特に工業炉内を移動する物体の
温度を測定する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for measuring the temperature of an object, particularly an object moving in an industrial furnace.

工業炉内において静止または走行状態の加熱さ
れた物体の表面温度を測定するには非接触で測定
可能な放射温度計または放射計が好都合であり、
現実に多くの分野で使用されている。しかしなが
ら従来一般に使用されている方法は必ずしも適切
な方法とは云い難かつた。そこで本考案者の一人
は放射温度計と反射鏡とを使用することにより物
体の表面温度を正確に測定する方法および装置を
発明した(特願昭55−94594号)。この方法は測温
法としては非常に有効であるが実用上は別の問題
がある。すなわち一般に工業炉内の雰囲気は塵埃
等により汚染されていることが多く、しかもこの
塵埃が炉壁に設ける透過窓に付着して透過率を変
化させ、測定誤差の原因を惹起するので、通常は
該透過窓の透過率を一定に保持するために透過窓
を清浄な気体でパージする事が行われているが、
この際透過窓の面積が大きいとパージが完全に行
われない可能性があるのである。
In order to measure the surface temperature of a heated object that is stationary or running in an industrial furnace, a radiation thermometer or radiometer that can be measured without contact is convenient.
It is actually used in many fields. However, the methods commonly used in the past cannot necessarily be said to be appropriate methods. Therefore, one of the inventors of the present invention invented a method and apparatus for accurately measuring the surface temperature of an object by using a radiation thermometer and a reflecting mirror (Japanese Patent Application No. 55-94594). Although this method is very effective as a temperature measurement method, there are other problems in practical use. In other words, the atmosphere inside an industrial furnace is often contaminated with dust, etc., and this dust adheres to the transmission window installed on the furnace wall and changes the transmittance, causing measurement errors. In order to maintain the transmittance of the transmission window constant, the transmission window is purged with clean gas.
At this time, if the area of the transmission window is large, there is a possibility that purging may not be completed completely.

本考案はこの問題を解決しようとするもので、
被測温物体から放出される放射エネルギーと、被
測温物体から放出され凹面鏡により反射し、さら
に被測温物体により反射したエネルギーとを受け
る放射温度計と、前記凹面鏡およびその前面に設
けた開閉機構とからなり、かつ放射温度計と凹面
鏡とを被測温物体表面の法線に対して鏡面対称の
位置に設けたことを特徴とする放射測温装置であ
る。すなわち本考案は前記先願発明における反射
鏡を凹面鏡とすることにより被測定物体と反射鏡
との間の光路を狭くし、その結果前記透過窓の面
積を少くしようとするものである。以下図面によ
り本考案を説明する。
This invention attempts to solve this problem,
A radiation thermometer that receives radiant energy emitted from a temperature-measuring object, energy emitted from the temperature-measuring object, reflected by a concave mirror, and further reflected by the temperature-measuring object, and an opening/closing device provided on the concave mirror and its front surface. This radiation temperature measurement device is characterized in that the radiation thermometer and the concave mirror are provided in mirror-symmetrical positions with respect to the normal to the surface of the object to be measured. That is, the present invention attempts to narrow the optical path between the object to be measured and the reflecting mirror by using a concave mirror as the reflecting mirror in the prior invention, thereby reducing the area of the transmission window. The present invention will be explained below with reference to the drawings.

第1図は本考案の原理を示すもので、10は被
測温物体、12は反射鏡、14は開閉機構として
使用する回転セクター、16は放射計である。被
測温物体10は例えば炉内を走行する加熱ストリ
ツプである。この場合反射鏡12および回転セク
タ14は炉外に置かれ、窓18を通して物体10
を覗くことになる。放射計16は炉内、炉外いず
れでもよい。反射鏡12と放射計16は物体表面
に立てた法線N−Oの両側に同じ角θをなして配
置され、反射鏡12は平面鏡であつて図示の如く
点Oと反射鏡を結ぶ直線に対して直交する。この
ため次の様な放射エネルギー経路がある。即ち、
温度Tの物体10はθ方向の放射率をεθとして
εθ・Eb(T)の放射線エネルギーをほぼ全方
向に放出する。ただしEb(T)は温度Tの黒体
放射エネルギーである。このうち放射計16へ向
つた放射エネルギーはそのまゝ該放射計へ入り、
また反射鏡12へ向つた放射エネルギーは該反射
鏡で反射し、点Oで鏡面反射して放射計16へ入
る。反射鏡12の前面つまり物体10側には回転
セクタがあり、この回転セクタは第2図aに示す
如く表面が吸収面となつている羽根部分14a
と、それらの間の空間14bまたは第2図bに示
すように吸収面14aと反射面14cからなり、
図示しないモータにより回転するので、羽根部分
14aが直線12−0と交叉するとき物体10か
らの放射エネルギーを吸収しまた反射鏡12から
の放射エネルギーも遮断する。なおこの反射鏡1
2、それに回転セクタ14は物体10の温度に対
して充分低温にしておくので、これから放出され
る放射エネルギは無視できる。セクタ14が放射
エネルギーを吸収、遮断するとき放射計16へ入
る放射エネルギは物体10から放出されたものの
みとなる。即ち炉壁などからの放射線も物体表面
で反射して放射計16へ入射する可能性がある
が、その可能性のある鏡面反射経路はセクタ14
で遮蔽されるので、かゝる背光雑音が放射計16
に入ることはない。この点が鏡面反射利用の放射
測温方式の利点である。なおこの鏡面反射性は角
θが大なる程強い。放射計16へ入る放射エネル
ギは上記の通りであるので、下式が成立する。
FIG. 1 shows the principle of the present invention, in which 10 is an object to be measured, 12 is a reflecting mirror, 14 is a rotating sector used as an opening/closing mechanism, and 16 is a radiometer. The temperature-measuring object 10 is, for example, a heating strip running in a furnace. In this case the reflector 12 and the rotating sector 14 are placed outside the furnace and the object 10 can be seen through the window 18.
I will take a look at it. The radiometer 16 may be placed either inside the furnace or outside the furnace. The reflecting mirror 12 and the radiometer 16 are arranged at the same angle θ on both sides of the normal line N-O to the object surface, and the reflecting mirror 12 is a plane mirror and is connected to a straight line connecting the point O and the reflecting mirror as shown in the figure. perpendicular to Therefore, there are the following radiant energy paths. That is,
The object 10 at temperature T emits radiation energy of εθ·Eb(T) in almost all directions, with emissivity in the θ direction being εθ. However, Eb(T) is the blackbody radiant energy at temperature T. Of this, the radiant energy directed towards the radiometer 16 enters the radiometer as it is,
Further, the radiant energy directed toward the reflecting mirror 12 is reflected by the reflecting mirror, specularly reflected at point O, and enters the radiometer 16. There is a rotating sector on the front side of the reflecting mirror 12, that is, on the object 10 side, and this rotating sector has a blade portion 14a whose surface is an absorbing surface as shown in FIG. 2a.
and a space 14b between them, or an absorbing surface 14a and a reflective surface 14c as shown in FIG. 2b,
Since it is rotated by a motor (not shown), when the blade portion 14a intersects the straight line 12-0, it absorbs the radiant energy from the object 10 and also blocks the radiant energy from the reflecting mirror 12. Furthermore, this reflector 1
2. Also, since the rotating sector 14 is kept sufficiently cold relative to the temperature of the object 10, the radiant energy emitted from it is negligible. When the sector 14 absorbs or blocks radiant energy, the only radiant energy that enters the radiometer 16 is that emitted by the object 10. In other words, there is a possibility that radiation from the reactor wall or the like is reflected by the object surface and enters the radiometer 16, but the possible specular reflection path is the sector 14.
Since the backlight noise is shielded by the radiometer 16,
It never enters. This point is an advantage of the radiation temperature measurement method that uses specular reflection. Note that this specular reflection becomes stronger as the angle θ becomes larger. Since the radiant energy entering the radiometer 16 is as described above, the following formula holds true.

E1=τ・εθ・Eb(T) ……(1) E2=τ・〔εθ・Eb(T)+ra ・τ・εθ(1−εθ)(1−p)Eb
(T) ……(2) ここでE1,E2はセクタ14で遮蔽した、しな
い各場合の放射計16への入射エネルギ、τはフ
イルタ本例では炉壁に設けた窓18の放射線透過
率、raは反射鏡12の実効反射率、pは物体表
面の拡散反射係数である。(1),(2)より E/E=1+ra・τ(1−εθ)(1−p) ∴εθ=1−1/rτ(1−p)(E/E
−1)……(3) ≡1−K(G−1) ……(4) また(1)式より Eb(T)=E/τ・εθ ……(5) これらの(3)または(4)と(5)式から物体の放射率ε
θおよび温度Tが求まる。なおこの測温において
G=E/Eは実測し、K=1/r・τ(1−p
)は定数として 扱う。ra,τは保守管理を充分すれば一定値に
維持される。pは測定鋼板の拡散反射係数である
からその都度実測するのは厄介であり、予め測定
して求めた値を使用する。従つて実際値が予測値
から大きく外れないことが、本測温方式を誤差少
なく行なう条件となる。Kが一定ならεθは第3
図の直線関係になる。(2)式において右辺第2項
は、反射鏡によつて反射された放射エネルギーが
測温物体表面で再び反射されて放射計に検出され
る信号成分である。(3)式では、この信号成分と測
温物体からの直接放射エネルギとの比(E2/E1
−1)を用いて放射率を求め、更にこの放射率よ
り(5)式で温度を求めている。すなわち(2)式右辺第
2項は放射率と温度を求めるための重要な信号成
分である。この信号成分を有意な大きさを持つた
信号とするためには(2)式でわかるように拡散反射
係数pを小さくする必要がある。拡散反射係数
は、測温物体の測定点が反射鏡を見込む立体角と
関係があり、拡散反射係数を小さくするめには立
体角を大きくする必要がある。第4図a,bは反
射鏡として平面鏡を用いた場合、第5図a,b,
cは反射鏡として凹面鏡を用いた場合(本考案)
のそれぞれ光路を示す説明図および反射鏡と透過
窓部分を示す説明図で18は透過窓、21は該透
過窓の内側に設置した保護筒、22は該保護筒に
設けたガス噴出孔である。
E 1 = τ・εθ・E b (T) ...(1) E 2 = τ・[εθ・E b (T)+r a・τ 2・εθ (1−εθ) (1−p) E b
(T) ...(2) Here, E 1 and E 2 are the energy incident on the radiometer 16 with and without shielding with the sector 14, and τ is the radiation transmission through the window 18 provided in the filter wall in this example. r a is the effective reflectance of the reflecting mirror 12, and p is the diffuse reflection coefficient of the object surface. From (1) and (2), E 2 /E 1 =1+ ra・τ 2 (1−εθ)(1−p) ∴εθ=1−1/ ra τ 2 (1−p)(E 2 /E 1
-1)...(3) ≡1-K(G-1)...(4) Also, from equation (1), E b (T)=E 1 /τ・εθ...(5) These (3) Or, from equations (4) and (5), the emissivity ε of the object
θ and temperature T are determined. In addition, in this temperature measurement, G=E 2 /E 1 was actually measured, and K=1/ ra・τ 2 (1-p
) is treated as a constant. r a and τ can be maintained at constant values with sufficient maintenance and management. Since p is the diffuse reflection coefficient of the steel plate to be measured, it is troublesome to actually measure it each time, so a value determined by measurement in advance is used. Therefore, the condition for performing this temperature measurement method with few errors is that the actual value does not deviate greatly from the predicted value. If K is constant, εθ is the third
The relationship becomes a straight line as shown in the figure. In equation (2), the second term on the right side is a signal component that is detected by the radiometer when the radiant energy reflected by the reflecting mirror is reflected again on the surface of the temperature measuring object. In equation (3), the ratio of this signal component to the direct radiant energy from the temperature measuring object (E 2 /E 1
-1) to find the emissivity, and then use this emissivity to find the temperature using equation (5). That is, the second term on the right side of equation (2) is an important signal component for determining emissivity and temperature. In order to make this signal component a signal with a significant magnitude, it is necessary to reduce the diffuse reflection coefficient p, as seen from equation (2). The diffuse reflection coefficient is related to the solid angle at which the measuring point of the temperature measuring object looks into the reflecting mirror, and in order to reduce the diffuse reflection coefficient, it is necessary to increase the solid angle. Fig. 4 a, b shows the case where a plane mirror is used as a reflecting mirror, Fig. 5 a, b,
c is when a concave mirror is used as a reflecting mirror (this invention)
18 is a transparent window, 21 is a protective tube installed inside the transparent window, and 22 is a gas ejection hole provided in the protective tube. .

本考案は前記のように反射鏡として凹面鏡1
2′を用いているので、第5図aに示すように、
第4図aに示した平面鏡の場合に比較して同じ立
体角の反射エネルギを得るための光路を小さくす
ることができる。
The present invention uses a concave mirror 1 as a reflecting mirror as described above.
2', as shown in Figure 5a,
Compared to the case of the plane mirror shown in FIG. 4a, the optical path for obtaining reflected energy of the same solid angle can be made smaller.

前述のように一般の工業炉内の雰囲気はある程
度汚染されていることが多く、例えば鉄鋼業にお
ける連続焼鈍炉内の鋼板の表面温度の測定のよう
な場合、前記のように放射エネルギが透過する透
過窓が汚染されるので該透過窓にガスを吹き付
け、付着した塵埃その他を排除しているが、この
場合、本考案においては凹面鏡を用い光路を小さ
くしているので透過窓のガスパージを容易に行う
ことができ、常に透過率を一定範囲に保持するこ
とができ測温を正確に行い得る。
As mentioned above, the atmosphere inside general industrial furnaces is often contaminated to some extent. For example, when measuring the surface temperature of a steel plate in a continuous annealing furnace in the steel industry, radiant energy is transmitted as described above. Since the transmission window becomes contaminated, gas is blown onto the transmission window to remove the attached dust and other particles.In this case, in this case, the present invention uses a concave mirror to make the optical path small, making it easy to purge the transmission window with gas. The transmittance can always be maintained within a certain range, and temperature measurement can be performed accurately.

なお第5図cは保護筒21の内部に塵埃防止用
フイン23を設けた場合を示すもので、この場合
もフインを大きく出来、条件によつてはガスパー
ジを省略することも可能である。
FIG. 5c shows a case in which dust prevention fins 23 are provided inside the protective tube 21, and in this case as well, the fins can be made large and gas purge can be omitted depending on the conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の測定原理の説明図、第2図
a,bは回転セクタの説明図、第3図はGとεp
の関係を示すグラフ、第4図a,bおよび第5図
a,b,cは反射鏡として平面鏡を使用した場合
および、凹面鏡を使用した場合の光路および透過
窓保護筒を示す説明図、ならびに本考案の他の実
例を示す説明図である。 図面で10は被測温物体、12′は凹面鏡、1
4は回転セクタ、16は放射計、O−Nは法線で
ある。
Fig. 1 is an explanatory diagram of the measurement principle of the present invention, Fig. 2 a and b are explanatory diagrams of the rotating sector, and Fig. 3 is an illustration of G and ε p
4a, b and 5a, b, c are explanatory diagrams showing the optical path and the transmission window protection tube when a plane mirror is used as a reflecting mirror and when a concave mirror is used, and It is an explanatory view showing other examples of the present invention. In the drawing, 10 is the temperature measured object, 12' is a concave mirror, 1
4 is a rotating sector, 16 is a radiometer, and O-N is a normal line.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 被測温物体から放出される放射エネルギーと、
被測温物体から放出され凹面鏡により反射しさら
に被測温物体により反射したエネルギーとを受け
る放射計と、前記凹面鏡およびその前面かつ透過
窓の後面に設けた開閉機構とからなり、かつ放射
計と凹面鏡とを被測温物体表面の法線に対して鏡
面対称の位置に設けたことを特徴とする放射測温
装置。
Radiant energy emitted from the object to be measured,
The radiometer comprises a radiometer that receives energy emitted from the object to be measured, reflected by a concave mirror, and further reflected by the object to be measured, and an opening/closing mechanism provided on the concave mirror and the front surface thereof and the rear surface of the transmission window, and the radiometer and A radiation temperature measuring device characterized in that a concave mirror is provided at a mirror-symmetrical position with respect to the normal to the surface of an object to be temperature measured.
JP1981100440U 1981-07-06 1981-07-06 Radiation thermometer Granted JPS586239U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981100440U JPS586239U (en) 1981-07-06 1981-07-06 Radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981100440U JPS586239U (en) 1981-07-06 1981-07-06 Radiation thermometer

Publications (2)

Publication Number Publication Date
JPS586239U JPS586239U (en) 1983-01-14
JPS6221953Y2 true JPS6221953Y2 (en) 1987-06-04

Family

ID=29895130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981100440U Granted JPS586239U (en) 1981-07-06 1981-07-06 Radiation thermometer

Country Status (1)

Country Link
JP (1) JPS586239U (en)

Also Published As

Publication number Publication date
JPS586239U (en) 1983-01-14

Similar Documents

Publication Publication Date Title
US4435092A (en) Surface temperature measuring apparatus for object within furnace
US4465382A (en) Method of and an apparatus for measuring surface temperature and emmissivity of a heated material
US4172383A (en) Method and an apparatus for simultaneous measurement of both temperature and emissivity of a heated material
EP0458388B1 (en) Method and device for measuring temperature radiation using a pyrometer wherein compensation lamps are used
JPS6049849B2 (en) Device for measuring surface temperature and emissivity of objects
JPS6221953Y2 (en)
JPS6047538B2 (en) How to measure the temperature and emissivity of an object
JPS5485078A (en) Surface temperature measuring method of in-furnace objects
JPS6133539Y2 (en)
Seban et al. Thermal radiation properties of materials
Saunders et al. A theory of reflections for traceable radiation thermometry
JPH0310128A (en) Method for simultaneously measuring temperature and emissivity in high temperature furnace
JPS6059511B2 (en) Surface temperature measuring device for objects inside the furnace
JPS6049850B2 (en) radiation thermometer
CA1319832C (en) Infrared radiation probe for measuring the temperature of low-emissivity materials in a production line
JPS5987329A (en) Method for measuring temperature of steel
EP0083100B1 (en) Method of measuring pipe temperature
JPS6049851B2 (en) Calibration method for steel plate surface temperature
JPH0636923B2 (en) Method for cold rolling metastable austenitic stainless steel and apparatus for measuring surface temperature of steel strip during cold rolling
JP2007107939A (en) Method and device of measuring temperature of steel plate
JPS6135490B2 (en)
JPS6014193Y2 (en) Simultaneous measurement device for metal surface temperature and emissivity
SU453564A1 (en) METHOD OF MEASURING THE THICKNESS OF A LAYER OF A SEMI-TRANSPARENT MATERIAL
JPS6014192Y2 (en) Surface temperature measuring device for objects inside the furnace
Nutter Radiation thermometry: The measurement problem