JP2007107939A - Method and device of measuring temperature of steel plate - Google Patents

Method and device of measuring temperature of steel plate Download PDF

Info

Publication number
JP2007107939A
JP2007107939A JP2005297085A JP2005297085A JP2007107939A JP 2007107939 A JP2007107939 A JP 2007107939A JP 2005297085 A JP2005297085 A JP 2005297085A JP 2005297085 A JP2005297085 A JP 2005297085A JP 2007107939 A JP2007107939 A JP 2007107939A
Authority
JP
Japan
Prior art keywords
steel sheet
temperature
back light
steel plate
radiation thermometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005297085A
Other languages
Japanese (ja)
Inventor
Yasuo Kunikata
康生 國方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2005297085A priority Critical patent/JP2007107939A/en
Publication of JP2007107939A publication Critical patent/JP2007107939A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of measuring the temperature a steel plate for performing highly accurate temperature measurement, even when a spectral radiance on the steel plate surface measured by a radiation thermometer is influenced by back light. <P>SOLUTION: An influence of the back light is compensated by using two spectral radiances L<SB>1</SB>, L<SB>2</SB>of the steel plate 1 wherein two different polarization components are measured by the radiation thermometer 4, and emissivities ε<SB>1t</SB>, ε<SB>2t</SB>in the two different polarization components of the steel plate 1 measured in the state where the back light is not received off-line, to thereby determine the temperature T(K) of the running steel plate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鋼種毎の鋼板表面の放射率が変化しても無視可能な程度であり、放射温度計によって測定される分光放射輝度が背光雑音の影響を受ける場合の鋼板の温度測定方法および温度測定装置に関する。   The present invention is negligible even if the emissivity of the steel sheet surface for each steel type changes, and the temperature measurement method and temperature of the steel sheet when the spectral radiance measured by the radiation thermometer is affected by the back light noise. It relates to a measuring device.

従来、連続鋼板熱処理炉内その他において、鋼板の表面温度の測定に非接触で測定できる放射温度計が多く使用されている。しかし、炉内を走行する鋼板の放射率は未知であったり、材質、熱処理温度、酸化、表面粗さ等の影響を受けて変動したりするため、鋼板の温度測定に放射温度計の適用が困難であったり、あるいはその測定精度が低いと言う課題があった。この課題を解決するものとして、特許文献1には、2つの異なる分光放射率間の関係を解くことによって被測定物体の温度と放射率を同時に求める放射温度測定法が開示されている。
特公平6−23672号公報
Conventionally, a radiation thermometer that can be measured in a non-contact manner for measuring the surface temperature of a steel sheet has been frequently used in a continuous steel plate heat treatment furnace or the like. However, since the emissivity of steel plates running in the furnace is unknown or fluctuates due to the influence of materials, heat treatment temperature, oxidation, surface roughness, etc., radiation thermometers are not applicable to steel plate temperature measurement. There was a problem that it was difficult or the measurement accuracy was low. As a solution to this problem, Patent Document 1 discloses a radiation temperature measurement method for simultaneously obtaining the temperature and emissivity of an object to be measured by solving the relationship between two different spectral emissivities.
Japanese Patent Publication No. 6-23672

放射エネルギーを測定して物体の温度を測定する放射温度計においては、背光雑音を除去することによりはじめて正しい測温が可能となる。しかしながら、前記特許文献1による被測定物体の温度と放射率を同時に求める放射温度計では、取付け角度の制約が非常に厳しく、例えば45°±1°が要求されるが、実際には放射温度計の据付の誤差が生じるため、完全なる背光雑音の除去は困難で、背光雑音の影響を受けているのが実情である。一方、走行する鋼板の放射率は、鋼種毎には、無視できる程度に小さい場合が多い。   In a radiation thermometer that measures the temperature of an object by measuring radiant energy, correct temperature measurement is possible only after the back light noise is removed. However, in the radiation thermometer that obtains the temperature and emissivity of the object to be measured according to Patent Document 1 above, the mounting angle is extremely limited, for example, 45 ° ± 1 ° is required. Therefore, it is difficult to completely remove the back light noise, and it is actually affected by the back light noise. On the other hand, the emissivity of a traveling steel plate is often small enough to be ignored for each steel type.

そこで、本発明の課題は、鋼種毎の鋼板表面の放射率が変化しても無視可能な程度であり、放射温度計によって測定される分光放射輝度が背光の影響を受ける場合の鋼板の温度測定おいて、精度の高い温度測定を行うことができる温度測定方法および温度測定装置を提供することにある。   Therefore, the problem of the present invention is that even if the emissivity of the steel sheet surface for each steel type changes, it is negligible, and the temperature measurement of the steel sheet when the spectral radiance measured by the radiation thermometer is affected by the backlight. Therefore, an object of the present invention is to provide a temperature measuring method and a temperature measuring apparatus capable of performing temperature measurement with high accuracy.

上記目的を解決するために、請求項1に記載の発明は、鋼種毎の鋼板表面の放射率が変化しても無視可能な程度であり、放射温度計によって測定される分光放射輝度が背光の影響を受ける場合の鋼板の温度測定方法おいて、異なる偏光成分について測定される鋼板の2つの分光放射輝度LおよびLと、オフラインで背光を受けない状態で測定した鋼板の前記2つの偏光成分での放射率ε1tおよびε2tとを用いて背光の影響を補償し、走行する鋼板の温度T(K)を求めることを特徴とする。 In order to solve the above-mentioned object, the invention described in claim 1 is negligible even if the emissivity of the steel sheet surface for each steel type changes, and the spectral radiance measured by the radiation thermometer is backlit. In the method of measuring the temperature of a steel plate when affected, the two spectral radiances L 1 and L 2 of the steel plate measured for different polarization components, and the two polarizations of the steel plate measured off-line without receiving back light Using the emissivities ε 1t and ε 2t of the components to compensate for the influence of back light, the temperature T (K) of the traveling steel sheet is obtained.

また、請求項2に記載の発明は、走行する鋼板の温度T(K)を求める手順が以下のa)〜f)によることを特徴とする。
a)オフラインで背光を受けない状態で、異なる2つの偏光成分の放射率ε1tおよびε2tとを測定する。
b)前記異なる2つの偏光成分で、オンラインで走行中の鋼板の分光放射輝度LおよびLを測定する。
c)背光による分光放射輝度と走行する鋼板からの自発光による分光放射輝度との比Rdを次式で求める。
Rd=(ε2t/ε1t−L/L)/{L/L−(1−ε2t)/(1−ε1t)}
d)鋼板の自発光による分光放射輝度L1tを次式で求める。
1t=L/(1+Rd)
e)鋼板の黒体放射輝度Lb(λ,T)を次式で求める。
Lb(λ,T)=L1t/ε1t
ただし、λ:検出器の検出波長
f)走行する鋼板の温度Tを次式で求める。
T=1/A*(−C/(Ln(Lb(λ,T)/C))−B)
ここで、
A:測定波長
B:フィルタの透過波長帯域幅と遮断帯の透過率および検出器感度の リニアリティが関係して決まる、個々の放射温度計に固有の係数
C:放射温度計の幾何光学的な条件と検出器の感度によって決まる定数
:プランクの第二定数=0.014388[m・K]
The invention described in claim 2 is characterized in that the procedure for obtaining the temperature T (K) of the traveling steel sheet is according to the following a) to f).
a) Measure the emissivity ε 1t and ε 2t of two different polarization components in a state where no back light is received off-line.
b) Measure spectral radiances L 1 and L 2 of a steel sheet traveling online with the two different polarization components.
c) The ratio Rd between the spectral radiance caused by the back light and the spectral radiance caused by the self-emission from the traveling steel sheet is obtained by
Rd = (ε 2t / ε 1t -L 2 / L 1 ) / {L 2 / L 1- (1-ε 2t ) / (1-ε 1t )}
d) The spectral radiance L 1t due to the self-emission of the steel sheet is obtained by the following equation.
L 1t = L 1 / (1 + Rd)
e) The black body radiance Lb (λ, T) of the steel plate is obtained by the following equation.
Lb (λ, T) = L 1t / ε 1t
Where λ is the detection wavelength of the detector f) The temperature T of the traveling steel sheet is determined by the following equation.
T = 1 / A * (− C 2 / (Ln (Lb (λ, T) / C)) − B)
here,
A: Measurement wavelength B: Coefficient specific to each radiation thermometer determined by the linearity of the transmission wavelength bandwidth of the filter, the transmittance of the cutoff band, and the detector sensitivity C: Geometrical optical conditions of the radiation thermometer And a constant determined by the sensitivity of the detector C 2 : Planck's second constant = 0.014388 [m · K]

また、請求項3記載の発明は、鋼種毎の鋼板表面の放射率が変化しても無視可能な程度であり、放射温度計によって測定される分光放射輝度が背光の影響を受ける場合の走行する鋼板の温度測定装置おいて、異なる偏光成分について測定される鋼板の2つの分光放射輝度LおよびLと、オフラインで背光を受けない状態で測定した鋼板の前記2つの偏光成分での放射率ε1tおよびε2tとを用いて背光の影響を補償し、走行する鋼板の温度T(K)を求めるロジックを当該温度計内に持つことを特徴とする。 Further, the invention according to claim 3 travels when the spectral radiance measured by the radiation thermometer is affected by the back light, even if the emissivity of the steel sheet surface for each steel type changes. Two spectral radiances L 1 and L 2 of a steel plate measured for different polarization components in a steel plate temperature measuring device, and the emissivity of the two polarization components of the steel plate measured in an off-backlit state The thermometer has logic for compensating for the influence of back light using ε 1t and ε 2t and for determining the temperature T (K) of the traveling steel plate.

本発明によれば、背光の影響を補償できるので、放射温度計の据付時の誤差が多少あっても、正しい温度を得ることが可能である。また、遮蔽装置設計・据付双方に対してコスト上のメリットも期待できる。   According to the present invention, the influence of back light can be compensated, so that the correct temperature can be obtained even if there is some error during installation of the radiation thermometer. Cost benefits can also be expected for both shielding device design and installation.

以下に本発明を実施例に基づき説明する。図1は本発明にかかる実施例を示す図である。   The present invention will be described below based on examples. FIG. 1 is a diagram showing an embodiment according to the present invention.

連続鋼板熱処理炉内を走行する鋼板1の温度を放射温度計4で測定する際には、鋼板1からの放射2と、鋼板1で反射した背光雑音3との和を放射温度計4に入力する。なお、遮蔽板5はすべての背光が鋼板1で反射して入力されて外乱となるのを防止するために吸収させるものである。   When measuring the temperature of the steel plate 1 traveling in the continuous steel plate heat treatment furnace with the radiation thermometer 4, the sum of the radiation 2 from the steel plate 1 and the backlight noise 3 reflected by the steel plate 1 is input to the radiation thermometer 4. To do. The shielding plate 5 is absorbed in order to prevent all back light from being reflected and input by the steel plate 1 and causing disturbance.

一般に、放射測温では、温度Tと放射率εと背光雑音の3つの未知数がある。単色温度計は放射率εを既知として、温度Tを求める。単色温度計では、背光雑音は無視されている。また、トレース温度計では、偏光または2波長を用いて、2つの分光放射率間の方程式から2つの未知数を解く。トレース温度計では、背光雑音がないことを前提としている。本発明は、鋼板の放射率が鋼板の表面状態によって変化するものの、測定場所が固定されていることを考慮すると、鋼種毎に放射率の変化が無視できる程小さい場合が多く、そのような場合に適用できる。   Generally, in radiation temperature measurement, there are three unknowns: temperature T, emissivity ε, and backlight noise. The monochromatic thermometer obtains the temperature T assuming that the emissivity ε is known. In monochromatic thermometers, back light noise is ignored. A trace thermometer solves two unknowns from an equation between two spectral emissivities using polarized light or two wavelengths. The trace thermometer assumes that there is no back light noise. In the present invention, although the emissivity of the steel sheet varies depending on the surface state of the steel sheet, considering that the measurement location is fixed, the change in emissivity is often small enough to be ignored for each steel type. Applicable to.

本発明においては、鋼種毎の原板の放射率を既知として、測定して得られた走行する鋼板の分光放射輝度より、鋼板の温度および背光率Rdを求める方法を提案する。以下にその手順を詳述する。ここで、背光率Rdは、鋼板から放射温度計に入射する自発光成分に対する、鋼板で反射して放射温度計に入射する背光成分の比率(背光成分/自発光成分)を言う。   In the present invention, a method for determining the temperature and the backlight ratio Rd of a steel sheet from the spectral radiance of the traveling steel sheet obtained by measuring the emissivity of the original sheet for each steel type is proposed. The procedure will be described in detail below. Here, the back light rate Rd refers to the ratio of the back light component reflected by the steel plate and incident on the radiation thermometer (back light component / self light emission component) with respect to the self light emission component incident on the radiation thermometer from the steel plate.

温度Tの物体の分光放射輝度Lは以下の式で表される。
L=εLb(λ、T)
ここで、黒体放射輝度Lb(λ、T)はウィーンの式で求められる。
Lb(λ、T)=C/λ*exp{−C/(λ*T)}
ただし、C,Cは放射の第1,第2定数
The spectral radiance L of an object at temperature T is expressed by the following equation.
L = εLb (λ, T)
Here, the black body radiance Lb (λ, T) is obtained by the Wien equation.
Lb (λ, T) = C 1 / λ 5 * exp {−C 2 / (λ * T)}
Where C 1 and C 2 are the first and second constants of radiation.

放射温度測定は、P偏光成分、S偏光成分のような異なる2つの偏光成分L1t,L2tで測定すると、
1t=ε1tLb(λ、T) (1)
2t=ε2tLb(λ、T) (2)
故に、
2t/L1t=ε2t/ε1t (3)
The radiation temperature measurement is performed by measuring two different polarization components L 1t and L 2t such as a P polarization component and an S polarization component.
L 1t = ε 1t Lb (λ, T) (1)
L 2t = ε 2t Lb (λ, T) (2)
Therefore,
L 2t / L 1t = ε 2t / ε 1t (3)

次に、鋼板に入射する背光Nを考慮すると、分光放射輝度L,Lは、背光Nのうち(1−ε1t)が反射するので、
=L1t+(1−ε1t)*N (4)
=L2t+(1−ε2t)*N (5)
故に、
/L={L2t+(1−ε2t)*N}
/{L1t+(1−ε1t)*N} (6)
Next, considering the back light N incident on the steel plate, the spectral radiances L 1 and L 2 reflect (1-ε 1t ) in the back light N.
L 1 = L 1t + (1−ε 1t ) * N (4)
L 2 = L 2t + (1−ε 2t ) * N (5)
Therefore,
L 2 / L 1 = {L 2t + (1-ε 2t ) * N}
/ {L 1t + (1−ε 1t ) * N} (6)

また、鋼板から放射温度計に入射する自発光成分に対する、鋼板で反射して放射温度計に入射する背光成分の比率である背光率Rdは、以下の式で表される。
Rd=(1−ε1t)*N/L1t (7)
式(3)及び式(7)よりL2t,L1tを求め、これを式(6)に代入し、変形してRdにてまとめると、
Rd=(ε2t/ε1t−L/L)/{(L/L−(1−ε2t
/(1−ε1t)} (8)
Further, a back light rate Rd, which is a ratio of a back light component reflected by the steel plate and incident on the radiation thermometer with respect to a self-luminous component incident on the radiation thermometer from the steel plate, is expressed by the following equation.
Rd = (1-ε 1t ) * N / L 1t (7)
L 2t and L 1t are obtained from the formulas (3) and (7), substituted into the formula (6), transformed, and summarized by Rd.
Rd = (ε 2t / ε 1t −L 2 / L 1 ) / {(L 2 / L 1 − (1−ε 2t )
/ (1-ε 1t )} (8)

また、背光率Rdは次式でも表せる。
Rd=(L−L1t)/L1t (9)
式(9)を変形すると、
(1+Rd)*L1t=L (10)
式(10)を変形すると、
1t=L/(1+Rd) (11)
式(1)を変形すると、
Lb(λ、T)=L1t/ε1t (12)
The backlight factor Rd can also be expressed by the following equation.
Rd = (L 1 −L 1t ) / L 1t (9)
When formula (9) is transformed,
(1 + Rd) * L 1t = L 1 (10)
When formula (10) is transformed,
L 1t = L 1 / (1 + Rd) (11)
When formula (1) is transformed,
Lb (λ, T) = L 1t / ε 1t (12)

黒体放射輝度は、放射温度計を用いて測定する時、以下の様にも表せる。
Lb(λ、T)=C*exp(−C/(A*T+B)) (13)
ここで、
A :測定波長
B:フィルタの透過波長帯域幅と遮断帯の透過率および検出器感度のリニアリティが関係して決まる、個々の放射温度計に固有の係数
C:放射温度計の幾何光学的な条件と検出器の感度によって決まる定数
:プランクの第2定数
式(12)と(13)より、
T=1/A*(−C/(Ln(Lb(λ、T)/C))−B) (14)
Blackbody radiance can also be expressed as follows when measured using a radiation thermometer.
Lb (λ, T) = C * exp (−C 2 / (A * T + B)) (13)
here,
A: Measurement wavelength B: Coefficient specific to each radiation thermometer determined by the transmission wavelength bandwidth of the filter, the transmittance of the cutoff band, and the linearity of the detector sensitivity C: Geometrical optical conditions of the radiation thermometer And a constant determined by the sensitivity of the detector C 2 : Planck's second constant From equations (12) and (13),
T = 1 / A * (− C 2 / (Ln (Lb (λ, T) / C)) − B) (14)

以上より、鋼種毎の鋼板表面の放射率が変化しても無視可能な程度であり、放射温度計によって測定される分光放射輝度が背光の影響を受ける場合には、異なる偏光成分について測定される鋼板の2つの分光放射輝度LおよびLと、オフラインで背光を受けない状態で測定した鋼板の前記2つの偏光成分での放射率ε1tおよびε2tとを用いて背光の影響を補償し、走行する鋼板の温度T(K)を求めることができる。 From the above, even if the emissivity of the steel sheet surface for each steel type changes, it is negligible, and when the spectral radiance measured by the radiation thermometer is affected by back light, it is measured for different polarization components. Compensate for the effect of back light using the two spectral radiances L 1 and L 2 of the steel sheet and the emissivities ε 1t and ε 2t of the two polarization components of the steel sheet measured off-line in the absence of back light. The temperature T (K) of the traveling steel plate can be obtained.

次に、鋼種毎の鋼板表面の放射率が変化しても無視可能な程度であり、放射温度計によって測定される分光放射輝度が背光の影響を受ける場合の本発明による測定例と、トレース温度計での測定例を示す。   Next, even if the emissivity of the steel sheet surface for each steel type is changed, it is negligible, and the measurement example according to the present invention when the spectral radiance measured by the radiation thermometer is affected by the back light, and the trace temperature An example of measurement with a total is shown.

以下に、測定条件および測定結果例を示す。   The measurement conditions and measurement result examples are shown below.

オフラインで背光を受けない状態で測定した鋼板の前記2つの偏光成分での放射率ε1tおよびε2t
ε1t=0.2046
ε2t=0.3687
測定した放射温度計の各係数:
A=1.5541×10−6
B=−9×10−7
C=3.222×10
=0.014388 [m・K]
λ=1.5541 [μm]
異なる偏光成分について測定される鋼板の2つの分光放射輝度LおよびL
=6756.86
=10540.1
式(8)より、
Rd=(0.3687/0.2046)−6756.86/10540.1)/(6756.86/10540.1−(1−0.3687)/(1−0.2046))
=0.316
式(11)より、
1t=6756.86/(1+0.316)
=5134.338
式(12)より
Lb(λ、T)=5134.338/0.2046
=25094.52
式(14)より、本発明により背光の影響を除去後の走行する鋼帯温度Tは、
T=1/1.5541×10−6
*(−0.014388/(Ln(25094.52/3.222×10))+9×10−7
=979 [K]
=706 [℃]となる。
Emissivities ε 1t and ε 2t at the two polarization components of the steel sheet measured off-line in the absence of back light:
ε 1t = 0.2046
ε 2t = 0.3687
Each coefficient of the measured radiation thermometer:
A = 1.541 × 10 −6
B = −9 × 10 −7
C = 3.222 × 10 8
C 2 = 0.014388 [m · K]
λ = 1.541 [μm]
Two spectral radiances L 1 and L 2 of the steel sheet measured for different polarization components:
L 1 = 6756.86
L 2 = 10540.1
From equation (8)
Rd = (0.3687 / 0.2046) -6756.86 / 10540.1) / (675.86 / 10540.1- (1-0.3687) / (1-0.2046))
= 0.316
From equation (11)
L 1t = 6756.86 / (1 + 0.316)
= 5134.338
From Equation (12) Lb (λ, T) = 5134.338 / 0.2046
= 250594.52
From equation (14), the steel strip temperature T that travels after removing the influence of back light according to the present invention is:
T = 1 / 1.5541 × 10 −6
* (− 0.014388 / (Ln (25094.52 / 3.222 × 10 8 )) + 9 × 10 −7 )
= 979 [K]
= 706 [° C].

一方、従来のトレース温度計の出力は、728℃であった。   On the other hand, the output of the conventional trace thermometer was 728 ° C.

走行する鋼板の温度T(K)を求める上記ロジックを放射温度計内に持つことにより、−22℃の温度が補償できたことになる。本発明のロジックは、温度計変換器内にプログラムすることが前提だが、それに限定されない。   By having the above logic for obtaining the temperature T (K) of the traveling steel sheet in the radiation thermometer, the temperature of −22 ° C. can be compensated. The logic of the present invention is premised on programming in a thermometer converter, but is not limited thereto.

本発明にかかる実施例を示す図である。It is a figure which shows the Example concerning this invention.

符号の説明Explanation of symbols

1:鋼板
2:鋼板からの放射
3:背光雑音の鋼帯から反射
4:放射温度計
5:遮蔽板
1: Steel plate 2: Radiation from steel plate 3: Reflection from steel strip of back noise 4: Radiation thermometer 5: Shield plate

Claims (3)

放射温度計による鋼板の温度測定方法おいて、異なる2つの偏光成分について測定される鋼板の2つの分光放射輝度と、オフラインで背光を受けない状態で測定した鋼板の前記異なる2つの偏光成分での放射率とを用いて背光の影響を補償し、走行する鋼板の温度を求めることを特徴とする鋼板の温度測定方法。   In the method of measuring the temperature of a steel sheet using a radiation thermometer, the two spectral radiances of the steel sheet measured for two different polarization components and the two different polarization components of the steel sheet measured offline without receiving back light. A method for measuring the temperature of a steel sheet, comprising compensating for the influence of back light using emissivity and determining the temperature of the traveling steel sheet. 鋼板の温度を求める手順が以下のa)〜f)によることを特徴とする請求項1記載の鋼板の温度測定方法。
a)オフラインで背光を受けない状態で、異なる2つの偏光成分の放射率ε1tおよびε2tとを測定する。
b)前記異なる2つの偏光成分で、オンラインで走行中の鋼板の分光放射輝度LおよびLを測定する。
c)背光による分光放射輝度と走行する鋼板からの自発光による分光放射輝度との比Rdを次式で求める。
Rd=(ε2t/ε1t−L/L)/{L/L−(1−ε2t)/(1−ε1t)}
d)鋼板の自発光による分光放射輝度L1tを次式で求める。
1t=L/(1+Rd)
e)鋼板の黒体放射輝度Lb(λ,T)を次式で求める。
Lb(λ,T)=L1t/ε1t
ただし、λ:検出器の検出波長
f)走行する鋼板の温度Tを次式で求める。
T=1/A*(−C/(Ln(Lb(λ,T)/C))−B)
ここで、
A:測定波長
B:フィルタの透過波長帯域幅と遮断帯の透過率および検出器感度のリニアリティが関係して決まる、個々の放射温度計に固有の係数
C:放射温度計の幾何光学的な条件と検出器の感度によって決まる定数
:プランクの第二定数=0.014388[m・K]
2. The method for measuring a temperature of a steel sheet according to claim 1, wherein the procedure for obtaining the temperature of the steel sheet is according to the following a) to f).
a) Measure the emissivity ε 1t and ε 2t of two different polarization components in a state where no back light is received off-line.
b) Measure spectral radiances L 1 and L 2 of a steel sheet traveling online with the two different polarization components.
c) The ratio Rd between the spectral radiance caused by the back light and the spectral radiance caused by the self-emission from the traveling steel sheet is obtained by
Rd = (ε 2t / ε 1t -L 2 / L 1 ) / {L 2 / L 1- (1-ε 2t ) / (1-ε 1t )}
d) The spectral radiance L 1t due to the self-emission of the steel sheet is obtained by the following equation.
L 1t = L 1 / (1 + Rd)
e) The black body radiance Lb (λ, T) of the steel plate is obtained by the following equation.
Lb (λ, T) = L 1t / ε 1t
However, (lambda): Detection wavelength of a detector f) The temperature T of the steel plate to drive | work is calculated | required by following Formula.
T = 1 / A * (− C 2 / (Ln (Lb (λ, T) / C)) − B)
here,
A: Measurement wavelength B: Coefficient specific to each radiation thermometer determined by the transmission wavelength bandwidth of the filter, the transmittance of the cutoff band, and the linearity of the detector sensitivity C: Geometrical optical conditions of the radiation thermometer And a constant determined by the sensitivity of the detector C 2 : Planck's second constant = 0.014388 [m · K]
放射温度計による鋼板の温度測定装置おいて、異なる偏光成分について測定される鋼板の2つの分光放射輝度と、オフラインで背光を受けない状態で測定した鋼板の前記2つの偏光成分での放射率とを用いて背光の影響を補償し、走行する鋼板の温度を求めるロジックを当該放射温度計内に持つことを特徴とする鋼板の温度測定装置。   In the steel plate temperature measurement device using a radiation thermometer, the two spectral radiances of the steel plate measured for different polarization components, and the emissivity of the two polarization components of the steel plate measured offline without receiving back light A temperature measuring apparatus for a steel sheet, characterized in that the radiation thermometer has a logic for compensating for the influence of back light using the light and obtaining the temperature of the traveling steel sheet.
JP2005297085A 2005-10-12 2005-10-12 Method and device of measuring temperature of steel plate Withdrawn JP2007107939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005297085A JP2007107939A (en) 2005-10-12 2005-10-12 Method and device of measuring temperature of steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005297085A JP2007107939A (en) 2005-10-12 2005-10-12 Method and device of measuring temperature of steel plate

Publications (1)

Publication Number Publication Date
JP2007107939A true JP2007107939A (en) 2007-04-26

Family

ID=38033921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005297085A Withdrawn JP2007107939A (en) 2005-10-12 2005-10-12 Method and device of measuring temperature of steel plate

Country Status (1)

Country Link
JP (1) JP2007107939A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105632A (en) * 2012-11-28 2014-06-09 Hitachi Ltd Rotor temperature measuring method and device for rotary machine, and steam turbine
JP6019508B1 (en) * 2016-02-09 2016-11-02 大学共同利用機関法人 高エネルギー加速器研究機構 Radiometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105632A (en) * 2012-11-28 2014-06-09 Hitachi Ltd Rotor temperature measuring method and device for rotary machine, and steam turbine
JP6019508B1 (en) * 2016-02-09 2016-11-02 大学共同利用機関法人 高エネルギー加速器研究機構 Radiometer
WO2017138579A1 (en) * 2016-02-09 2017-08-17 大学共同利用機関法人高エネルギー加速器研究機構 Radiation measurement device

Similar Documents

Publication Publication Date Title
US4435092A (en) Surface temperature measuring apparatus for object within furnace
US4881823A (en) Radiation thermometry
WO2009081748A1 (en) Radiometric temperature measuring method and radiometric temperature measuring system
EP2299250B1 (en) Pyrometer adapted for detecting UV-radiation and use thereof
JP2007010476A (en) Method and apparatus for measuring temperature of sheet steel
JP2007192579A (en) Temperature measuring device and method
Yamada et al. Toward reliable industrial radiation thermometry
JP2007107939A (en) Method and device of measuring temperature of steel plate
JP6666740B2 (en) Grain boundary oxidation detector and grain boundary oxidation detection method
Yamada et al. In situ Si wafer surface temperature measurement during flash lamp annealing
JP2007183207A (en) Radiation temperature sensor and radiation temperature measuring device
JP2005233731A (en) Method and apparatus for measuring temperature of sheet steel
JPH07174634A (en) Method for measuring temperature of object in furnace
JPH04276527A (en) Thermometer in furnace
JPS6041293B2 (en) radiation thermometer
JP2002303551A (en) Method and device for measuring temperature of in- furnace metallic material
JP2005233790A (en) Method and apparatus for measuring temperature of sheet steel
JP2008224287A (en) Apparatus and method for measuring emissivity of surface of metal body and steel sheet manufacturing method
JP2000304617A (en) Surface temperature of steel material measuring method and apparatus
JP2007180286A (en) Method for measuring temperature of silicon wafer
JPH05273045A (en) Temperature measuring apparatus for object covered with transparent thin film
Zhukov et al. Innovative Technologies for Continuous Thermal Control of TPPs Boilers
JPH0933353A (en) Method for measuring radiation temperature and temperature measuring device therefor
JPH06241906A (en) Radiation thermometric method and apparatus for matter in furnace
JPH03287025A (en) Method and device for measurement of temperature and emissivity of body and circumferential temperature

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106