JP2007192579A - Temperature measuring device and method - Google Patents

Temperature measuring device and method Download PDF

Info

Publication number
JP2007192579A
JP2007192579A JP2006008876A JP2006008876A JP2007192579A JP 2007192579 A JP2007192579 A JP 2007192579A JP 2006008876 A JP2006008876 A JP 2006008876A JP 2006008876 A JP2006008876 A JP 2006008876A JP 2007192579 A JP2007192579 A JP 2007192579A
Authority
JP
Japan
Prior art keywords
temperature
emissivity
measurement
measurement point
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006008876A
Other languages
Japanese (ja)
Inventor
Tomokazu Okuno
友和 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006008876A priority Critical patent/JP2007192579A/en
Publication of JP2007192579A publication Critical patent/JP2007192579A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature measurement technique of non-contact method of a molten pool which eliminates the measurement error to be generated in the case of emissivity is made into a fixed value, and capable of temperature measurement of the emitting molten pool. <P>SOLUTION: A temperature measurement device 10 of the molten pool comprises: an infrared radiation detector 12 for detecting the energy intensity of the infrared ray radiated from the measurement point to be an object of temperature measurement; a dichroic radiation thermometer 11 as a radiation rate measurement means for measuring the radiation rate of the measurement point; and an operation processor 13 for calculating the temperature of the measurement point, based on the radiation rate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、溶接加工中の溶融池等の測定対象物の温度を非接触方式にて測定する技術に関する。   The present invention relates to a technique for measuring the temperature of a measurement object such as a molten pool during welding by a non-contact method.

溶接加工において、加工中の溶融金属(以下、溶融池と記載する)の温度は、溶接の良・不良や、溶接範囲等の溶接状態を知るうえで、重要な手がかりとなる。このため、溶接加工中に、溶融池の温度計測が行われる。   In the welding process, the temperature of the molten metal being processed (hereinafter referred to as a molten pool) is an important clue for knowing the welding condition such as the quality of welding and the welding range. For this reason, the temperature measurement of a molten pool is performed during welding processing.

従来、溶接加工中の溶融池の温度計測手法として、例えば、特許文献1に記載のように、溶融池に光ファイバーや熱電対等の検出器を接触させて温度を測定する、いわゆる接触方式の温度計測手法が採用されている。このような接触方式の温度計測手法では、測定対象に検出器を接触させるための加工が必要であり、試験的に温度計測を行うことしかできなかった。つまり、接触方式の温度計測手法では、オンラインでの溶融池の温度計測は不可能であるという課題があった。
また、溶融池が複雑な形状を辿る場合には、測定領域毎に検出器を移動させる機構が必要となって装置が複雑化するという課題があった。さらに、このような接触方式の温度計測手法では、アーク溶接において溶融池の温度計測は可能であるが、レーザ溶接においては温度計測が不可能であるという課題があった。
Conventionally, as a method for measuring the temperature of a molten pool during welding processing, for example, as described in Patent Document 1, a temperature measurement by a so-called contact method in which a temperature sensor is measured by bringing a detector such as an optical fiber or a thermocouple into contact with the molten pool. The method is adopted. In such a contact-type temperature measurement method, processing for bringing the detector into contact with the measurement target is necessary, and only temperature measurement can be performed experimentally. In other words, the contact-type temperature measurement method has a problem that it is impossible to measure the temperature of the molten pool online.
Further, when the molten pool follows a complicated shape, there is a problem that a mechanism for moving the detector for each measurement region is required and the apparatus becomes complicated. Furthermore, with such a contact-type temperature measurement technique, there is a problem that temperature measurement of the molten pool is possible in arc welding, but temperature measurement is impossible in laser welding.

そこで、上記課題を解決する非接触方式の温度計測手法が望まれている。非接触方式の温度計測手法として、赤外線放射温度計や二色温度計を用いたものがある。   Therefore, a non-contact temperature measurement method that solves the above-described problems is desired. Non-contact temperature measurement techniques include infrared radiation thermometers and two-color thermometers.

赤外線放射温度計は、例えば、特許文献2に記載のように、測定対象となる物体から放射される赤外線の放射量を測定し、物体温度を求めるものである。赤外線の放射量の測定は、測定領域を赤外放射検出器としての赤外線カメラにて撮像して、これを画像処理することによって行われる。   An infrared radiation thermometer measures the amount of infrared radiation radiated from an object to be measured, for example, as described in Patent Document 2, and obtains the object temperature. The measurement of the amount of infrared radiation is performed by imaging the measurement area with an infrared camera as an infrared radiation detector and processing the image.

上記赤外線放射温度計では、測定領域からの赤外線の放射率は所定の固定値(例えば1)として温度が計算される。しかし、放射率は物質により異なるため、測定領域の放射率が所定の固定値から大きく外れる場合は、赤外線放射温度計を用いて測定された測定領域の温度の値は、放射率の影響を大きく受けて測定誤差が生じるために、測定値の信頼性が低下するという課題があった。   In the infrared radiation thermometer, the infrared radiation emissivity from the measurement region is calculated as a predetermined fixed value (for example, 1). However, since the emissivity differs depending on the substance, if the emissivity of the measurement area deviates significantly from the predetermined fixed value, the temperature value of the measurement area measured using an infrared radiation thermometer greatly affects the emissivity. As a result, a measurement error occurs, resulting in a problem that the reliability of the measurement value is lowered.

また、例えば、特許文献3に記載のように、二色温度計の測定原理を利用した温度計では、物体から放射される光エネルギーのうち、予め選択された相互に異なる2波長を用いてイメージセンサにて物体の画像を検出し、検出された一対の画像の同じ部分ごとに放射強度の比を求めその放射強度の比に基づいて物体の表面温度を測定することができる。また、特許文献4に記載のように、上記二色温度計に基づいて算出した測定領域の温度分布から、放射率を算出し、該測定領域の放射率分布を知ることができる。   In addition, for example, as described in Patent Document 3, in a thermometer using the measurement principle of a two-color thermometer, an image is obtained using two mutually different wavelengths selected in advance from light energy radiated from an object. An image of the object can be detected by a sensor, and a ratio of radiation intensity can be obtained for each same part of the detected pair of images, and the surface temperature of the object can be measured based on the ratio of the radiation intensity. Further, as described in Patent Document 4, the emissivity can be calculated from the temperature distribution of the measurement region calculated based on the two-color thermometer, and the emissivity distribution of the measurement region can be known.

上記のような二色温度計では、測定領域の放射率が不明であっても相互に異なる二つの波長毎の放射強度比と測定領域の表面温度との間で相互関係が成立することを利用し、予め求められた関係式から実際の放射強度に基づいて、測定領域の表面温度分布及び放射率分布を算出することができる。
しかし、上記のような二色温度計を用いて溶接加工中の溶融池の温度計測する場合、溶融池が発光し、この発光の画像を検出してしまうために、まさに溶接が行われている溶融池の温度を検出することができないという課題があった。
特開2005−7451号公報 特開平5−34204号公報 特開2004−45268号公報 特開2004−45306号公報
The two-color thermometer as described above uses the fact that there is a correlation between the radiation intensity ratio of two different wavelengths and the surface temperature of the measurement region even if the emissivity of the measurement region is unknown. The surface temperature distribution and emissivity distribution in the measurement region can be calculated based on the actual radiation intensity from the relational expression obtained in advance.
However, when measuring the temperature of the molten pool during the welding process using the two-color thermometer as described above, the molten pool emits light and an image of this light emission is detected, so welding is being performed. There was a problem that the temperature of the molten pool could not be detected.
Japanese Patent Laid-Open No. 2005-7451 JP-A-5-34204 JP 2004-45268 A JP 2004-45306 A

本発明では、放射率を固定値とした場合に発生する計測誤差を解消し、且つ、溶融池等の発光箇所の温度計測が可能である、非接触方式の温度計測装置および方法を提案する。   The present invention proposes a non-contact temperature measuring apparatus and method that eliminates measurement errors that occur when the emissivity is a fixed value, and that enables temperature measurement at a light emitting location such as a molten pool.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

即ち、請求項1においては、温度計測の対象となる計測点から放射される赤外線エネルギーの放射強度を検出する赤外線検出手段と、前記計測点の放射率を計測する放射率計測手段と、検出した前記放射強度と、計測した前記放射率とに基づいて、前記計測点の温度を算出する演算処理手段とを、備える温度計測装置である。   That is, in claim 1, an infrared detecting means for detecting a radiation intensity of infrared energy radiated from a measurement point to be measured for temperature, an emissivity measuring means for measuring the emissivity of the measuring point, and a detection It is a temperature measuring device provided with the arithmetic processing means which calculates the temperature of the said measurement point based on the said radiation intensity and the measured said emissivity.

請求項2においては、温度計測の対象となる計測点から放射される赤外線エネルギーの強度を検出し、検出した赤外線エネルギーの強度と、予め所定の値に設定された放射率とに基づいて当該計測点の温度を計測する赤外線放射温度計と、前記計測点の放射率を計測する放射率計測手段と、計測された前記計測点の温度を、計測された前記放射率を用いて補正する演算処理手段とを、備える温度計測装置である。   In claim 2, the intensity of infrared energy radiated from a measurement point that is a target of temperature measurement is detected, and the measurement is performed based on the detected intensity of infrared energy and an emissivity set in advance to a predetermined value. An infrared radiation thermometer that measures the temperature of the point, an emissivity measuring means that measures the emissivity of the measurement point, and an arithmetic process that corrects the measured temperature of the measurement point using the measured emissivity A temperature measuring device.

請求項3においては、前記放射率計測手段は、同一計測点において少なくとも二つの波長の放射光を検出し、当該少なくとも二つの波長の放射光の放射強度に基づいて放射率を計測するものである。   According to a third aspect of the present invention, the emissivity measuring means detects at least two wavelengths of radiated light at the same measurement point, and measures the emissivity based on the radiant intensity of the at least two wavelengths of radiated light. .

請求項4においては、赤外線検出手段にて、温度計測の対象となる計測点から放射される赤外線エネルギーの放射強度を検出し、放射率計測手段にて、前記計測点の放射率を計測し、演算手段により、検出した前記放射強度と、計測した前記放射率とに基づいて、前記計測点の温度を算出する、温度計測方法である。   In claim 4, the infrared detection means detects the radiant intensity of infrared energy radiated from the measurement point to be temperature measured, the emissivity measurement means measures the emissivity of the measurement point, In this temperature measurement method, the temperature of the measurement point is calculated based on the detected radiation intensity and the measured emissivity.

請求項5においては、赤外線放射温度計にて、温度計測の対象となる計測点から放射される赤外線エネルギーの強度を検出し、検出した赤外線エネルギーの強度と、予め所定の値に設定された放射率とに基づいて当該計測点の温度を計測し、放射率計測手段にて、前記計測点の放射率を計測し、演算処理手段にて、計測された前記放射率を用いて、計測された前記計測点の温度を補正する、温度計測方法である。   In claim 5, an infrared radiation thermometer detects the intensity of infrared energy radiated from a measurement point that is a target of temperature measurement, and the intensity of the detected infrared energy and radiation set to a predetermined value in advance. The temperature of the measurement point is measured based on the rate, the emissivity measurement unit measures the emissivity of the measurement point, and the arithmetic processing unit measures the emissivity using the measured emissivity. It is a temperature measurement method which correct | amends the temperature of the said measurement point.

請求項6においては、前記放射率計測手段は、同一計測点において少なくとも二つの波長の放射光を検出し、当該少なくとも二つの波長の放射光の放射強度に基づいて放射率を計測するものである。   In claim 6, the emissivity measuring means detects at least two wavelengths of radiated light at the same measurement point, and measures the emissivity based on the radiant intensity of the at least two wavelengths of radiated light. .

本発明の効果として、以下に示すような効果を奏する。   As effects of the present invention, the following effects can be obtained.

計測された放射率と、検出された赤外線エネルギーの放射強度に基づいて、測定領域の温度分布を算出するので、発光する溶融池の温度計測が可能であり、また、発光する溶融池の温度計測を高精度に行うことができる。   Based on the measured emissivity and the detected radiation intensity of infrared energy, the temperature distribution in the measurement area is calculated, so it is possible to measure the temperature of the molten pool that emits light, and the temperature of the molten pool that emits light. Can be performed with high accuracy.

次に、発明の実施の形態を説明する。   Next, embodiments of the invention will be described.

先ず、本発明の実施例1に係る温度計測装置10について説明する。
図1は実施例1に係る温度計測装置の全体的な構成を示す図、図2は実施例1に係る温度計測装置のブロック図、図3は実施例1に係る温度計測の流れ図である。
First, the temperature measuring device 10 according to the first embodiment of the present invention will be described.
FIG. 1 is a diagram illustrating an overall configuration of a temperature measurement device according to the first embodiment, FIG. 2 is a block diagram of the temperature measurement device according to the first embodiment, and FIG. 3 is a flowchart of temperature measurement according to the first embodiment.

図1及び図2に示すように、温度計測装置10は、二色放射温度計11と、赤外線放射検出器12と、演算処理装置13とで構成される。二色放射温度計11及び赤外線放射検出器12は、演算処理装置13に電気的に接続され、二色放射温度計11及び赤外線放射検出器12で検出された情報は演算処理装置13に伝達される。
実施例1に係る温度計測装置10は、二色放射温度計11で計測した放射率と、赤外線放射検出器12で検出した赤外線エネルギーの放射強度とに基づいて、測定領域Dの温度分布を算出することを特徴とするものである。
As shown in FIGS. 1 and 2, the temperature measuring device 10 includes a two-color radiation thermometer 11, an infrared radiation detector 12, and an arithmetic processing device 13. The two-color radiation thermometer 11 and the infrared radiation detector 12 are electrically connected to the arithmetic processing device 13, and information detected by the two-color radiation thermometer 11 and the infrared radiation detector 12 is transmitted to the arithmetic processing device 13. The
The temperature measurement apparatus 10 according to the first embodiment calculates the temperature distribution in the measurement region D based on the emissivity measured by the two-color radiation thermometer 11 and the radiation intensity of the infrared energy detected by the infrared radiation detector 12. It is characterized by doing.

本実施例においては、温度計測装置10にて溶接加工中の鋼板の溶融池の温度を測定する。但し、温度計測装置10の測定対象物は、これに限定されるものではなく、広く、測定領域の温度測定に適用することができ、特に、発光する測定領域の温度計測を行うことに適している。   In this embodiment, the temperature measuring device 10 measures the temperature of the molten pool of the steel plate being welded. However, the measurement object of the temperature measuring device 10 is not limited to this, and can be widely applied to the temperature measurement of the measurement region, and is particularly suitable for measuring the temperature of the measurement region that emits light. Yes.

[二色放射温度計11]
二色放射温度計11は、測定領域Dの各計測点の放射率を計測する放射率計測手段である。
本実施例に係る二色放射温度計11では、計測点の温度と放射率とを一度に計測することができる。よって、測定領域Dの温度分布及び放射率分布とを得ることができるので、後述する赤外線放射検出器12にて検出された測定領域Dの温度分布と、二色放射温度計11で検出された測定領域Dの放射率分布とを、画像を照合させることによって、測定領域の各測定点と放射率とを整合させることができる。
[Two-color radiation thermometer 11]
The two-color radiation thermometer 11 is an emissivity measuring means for measuring the emissivity at each measurement point in the measurement region D.
In the two-color radiation thermometer 11 according to the present embodiment, the temperature and emissivity of the measurement point can be measured at a time. Therefore, since the temperature distribution and emissivity distribution of the measurement region D can be obtained, the temperature distribution of the measurement region D detected by the infrared radiation detector 12 described later and the two-color radiation thermometer 11 detected. By collating the image with the emissivity distribution of the measurement region D, each measurement point in the measurement region and the emissivity can be matched.

但し、放射率計測手段は、温度と放射率とを一度に計測できる二色放射温度計11に限定されない。例えば、同一温度の黒体と計測点との赤外線強度をそれぞれ分光放射光度計で計測して計測点の放射率を算出したり、予め既知の放射率の赤外線を計測点に照射したときの反射強度を分光放射光度計で計測して当該計測点の放射率を算出したりすることによって、計測点の放射率を得ることができる。なお、これらの場合は、溶接加工前に測定領域Dの放射率分布を予め計測しておく必要がある。   However, the emissivity measuring means is not limited to the two-color radiation thermometer 11 that can measure the temperature and the emissivity at a time. For example, the infrared intensity of a black body and a measurement point at the same temperature is measured with a spectroradiometer to calculate the emissivity of the measurement point, or the reflection when the measurement point is irradiated with infrared rays with a known emissivity in advance. The emissivity at the measurement point can be obtained by measuring the intensity with a spectroradiometer and calculating the emissivity at the measurement point. In these cases, it is necessary to measure the emissivity distribution in the measurement region D in advance before welding.

二色放射温度計11には、計測点から放射される所定の波長の光エネルギーを検出する放射検出器31と、各波長について検出された光エネルギーの放射強度の比に基づいて表面温度を算出する温度算出部33と、算出された計測点の温度から放射率を算出する放射率算出部34とが備えられる。   The two-color radiation thermometer 11 calculates a surface temperature based on a radiation detector 31 that detects light energy of a predetermined wavelength radiated from a measurement point and a ratio of the radiant intensity of the light energy detected for each wavelength. A temperature calculation unit 33 that calculates the emissivity from the calculated temperature of the measurement point.

なお、前記放射検出器31として、可視光測定用CCDカメラが採用される。
本実施例では、二色放射温度計11にて、溶接加工中の鋼板の溶融池の温度を計測する。鉄が溶融する温度は1000〜2000℃程度であるので、この温度から判断すれば、測定領域Dから放射される光エネルギーのピークは可視光〜近赤外線の範囲であると推定されるため、前記放射検出器31として、可視光測定用CCDカメラを採用することが適当である。
As the radiation detector 31, a visible light measuring CCD camera is employed.
In this embodiment, the two-color radiation thermometer 11 measures the temperature of the molten pool of the steel plate being welded. Since the temperature at which iron melts is about 1000 to 2000 ° C., judging from this temperature, the peak of the light energy emitted from the measurement region D is estimated to be in the range of visible light to near infrared, It is appropriate to employ a visible light measurement CCD camera as the radiation detector 31.

放射検出器31は、フィルタ35と、レンズ36と、画像センサ37等で構成される。
上記構成の放射検出器31では、計測点から放射された光エネルギーを、フィルタ35を透過させてレンズ36などの光学系で集光し、画像センサ37へ結像する。前記赤フィルタ35にて、所定の波長帯にある光エネルギーだけが集光される。
そして、画像センサ37では、入射した光エネルギーが、該光エネルギーの放射強度に比例した電気的信号に変換され、この電気的信号が検出信号として、温度算出部33に伝達される。
The radiation detector 31 includes a filter 35, a lens 36, an image sensor 37, and the like.
In the radiation detector 31 configured as described above, the light energy radiated from the measurement point is transmitted through the filter 35, collected by an optical system such as a lens 36, and imaged on the image sensor 37. Only light energy in a predetermined wavelength band is collected by the red filter 35.
In the image sensor 37, the incident light energy is converted into an electrical signal proportional to the radiation intensity of the light energy, and this electrical signal is transmitted to the temperature calculation unit 33 as a detection signal.

放射検出器31にて検出する波長帯は、測定領域Dの融点の温度から最適な波長帯を推定することによって、決定される。
最適な波長帯の推定手法として、下記[数1]に示す、プランクの放射則におけるピーク波長と温度の関係式に基づいて、波長帯が算出される。そして、算出された波長帯に基づいて、放射検出器31にて検出する波長帯が決定される。
The wavelength band detected by the radiation detector 31 is determined by estimating the optimum wavelength band from the temperature of the melting point of the measurement region D.
As an optimal wavelength band estimation method, the wavelength band is calculated based on the relational expression between the peak wavelength and the temperature in Planck's radiation law shown in [Equation 1] below. Based on the calculated wavelength band, the wavelength band detected by the radiation detector 31 is determined.

[数1]
λ×T=2897.7
λ;波長(μm)、T;絶対温度(K)
[Equation 1]
λ × T = 2897.7
λ: Wavelength (μm), T: Absolute temperature (K)

なお、二色放射温度計11にて、溶接加工中の鋼板の溶融池の温度を計測する本実施例においては、上記[数1]に基づいて算出される波長帯は、ほぼ可視光領域から近赤外線領域であり、放射検出器31にて検出する波長帯は、0.8μm帯又は0.6μm帯と決定することが適当である。本実施例では、0.8μm帯とし、放射検出器31にて検出する波長を0.85μmと0.75μmと決定する。   In the present embodiment in which the temperature of the molten pool of the steel plate being welded is measured with the two-color radiation thermometer 11, the wavelength band calculated based on the above [Equation 1] is almost from the visible light region. The wavelength band that is in the near-infrared region and is detected by the radiation detector 31 is suitably determined to be the 0.8 μm band or the 0.6 μm band. In this embodiment, the band is 0.8 μm, and the wavelengths detected by the radiation detector 31 are determined to be 0.85 μm and 0.75 μm.

上記構成の二色放射温度計11では、先ず、放射検出器31にて、測定領域Dから放射される光エネルギーのうち、前述のように予め決定された相互に異なる複数の波長に相当するものが検出される。
続いて、温度算出部33にて、測定領域Dの同じ計測点ごとに各波長での放射強度の比を求め、その放射強度の比に基づいて表面温度が算出される。測定領域Dの各計測点について温度を算出することにより、測定領域Dの温度分布を得ることができる。
そして、放射率算出部34にて、算出された測定領域Dの各計測点の温度から各計測点の放射率が算出される。測定領域Dの各計測点について放射率を算出することにより、測定領域Dの放射率分布を得ることができる。
上述のように、二色放射温度計11にて計測された測定領域Dの温度分布及び放射率分布は、演算処理装置13に伝達される。
In the two-color radiation thermometer 11 having the above-described configuration, first, of the light energy radiated from the measurement region D by the radiation detector 31, one corresponding to a plurality of mutually different wavelengths determined in advance as described above. Is detected.
Subsequently, the temperature calculation unit 33 obtains the ratio of the radiation intensity at each wavelength for each measurement point in the measurement region D, and calculates the surface temperature based on the ratio of the radiation intensity. By calculating the temperature for each measurement point in the measurement region D, the temperature distribution in the measurement region D can be obtained.
Then, the emissivity calculation unit 34 calculates the emissivity of each measurement point from the calculated temperature of each measurement point of the measurement region D. By calculating the emissivity for each measurement point in the measurement region D, the emissivity distribution in the measurement region D can be obtained.
As described above, the temperature distribution and emissivity distribution of the measurement region D measured by the two-color radiation thermometer 11 are transmitted to the arithmetic processing device 13.

[赤外線放射検出器12]
赤外線放射検出器12は、測定領域Dの各計測点から放射される赤外線エネルギーを検出する、赤外線検出手段である。
[Infrared radiation detector 12]
The infrared radiation detector 12 is infrared detection means for detecting infrared energy radiated from each measurement point in the measurement region D.

前記赤外線放射検出器12として、赤外線カメラが採用される。
なお、赤外線放射検出器12として、以下の(1)〜(3)の条件に合致するものを採用することが望ましい。
(条件1)予め測定領域Dの周囲の照明や太陽光等の外乱要因の分光分析を行い、これらの外乱波長を避けた波長帯に感度を有するもの。
(条件2)溶接加工中には溶融池から発光があるため、この発光を避けた波長帯に感度を有するもの。
(条件3)金属材料の放射率の波長依存性を考慮して、なるべく短波長の波長帯に感度を有するもの。
An infrared camera is employed as the infrared radiation detector 12.
In addition, as the infrared radiation detector 12, it is desirable to employ one that meets the following conditions (1) to (3).
(Condition 1) A spectroscopic analysis of disturbance factors such as illumination around the measurement region D or sunlight is performed in advance, and sensitivity is obtained in a wavelength band that avoids these disturbance wavelengths.
(Condition 2) Since light is emitted from the molten pool during the welding process, it has sensitivity in a wavelength band that avoids this light emission.
(Condition 3) In consideration of the wavelength dependence of the emissivity of the metal material, the material has sensitivity in a wavelength band as short as possible.

また、赤外線放射検出器12としての赤外線カメラは、長波長帯(8〜13μm)では、高温領域での感度が低いため、短波長帯(例えば、3〜5μm)に感度が設定されたものを採用することが望ましい。   Moreover, since the infrared camera as the infrared radiation detector 12 has low sensitivity in the high temperature region in the long wavelength band (8 to 13 μm), the sensitivity set in the short wavelength band (for example, 3 to 5 μm) is used. It is desirable to adopt.

赤外線放射検出器12は、赤外線フィルタ42と、レンズ43と、赤外線センサ44等で構成される。
上記構成の赤外線放射検出器12では、測定領域Dから放射された赤外線エネルギーを、赤外線フィルタ42を透過させてレンズ43などの光学系で集光し、赤外線センサ44へ結像する。前記赤外線フィルタ42にて、所定の波長帯にある赤外線だけが集光される。
そして、赤外線センサ44では、入射した赤外線エネルギーが、該赤外線エネルギーの大きさに比例した電気的信号に変換され、この電気的信号が検出信号として、温度算出部47に伝達される。
The infrared radiation detector 12 includes an infrared filter 42, a lens 43, an infrared sensor 44, and the like.
In the infrared radiation detector 12 having the above-described configuration, the infrared energy radiated from the measurement region D is transmitted through the infrared filter 42, collected by an optical system such as the lens 43, and imaged on the infrared sensor 44. The infrared filter 42 collects only infrared rays in a predetermined wavelength band.
In the infrared sensor 44, the incident infrared energy is converted into an electrical signal proportional to the magnitude of the infrared energy, and this electrical signal is transmitted to the temperature calculation unit 47 as a detection signal.

[演算処理装置13]
前記演算処理装置13は、前記二色放射温度計11からの検出信号と、前記赤外線放射検出器12からの検出信号とに基づいて、測定領域Dの温度分布を算出する、演算処理手段である。
演算処理装置13には、測定領域Dの温度を算出する温度算出部51と、算出された測定領域Dの温度分布を画像として出力する出力部52とが備えられる。
[Arithmetic processor 13]
The arithmetic processing unit 13 is arithmetic processing means for calculating the temperature distribution in the measurement region D based on the detection signal from the two-color radiation thermometer 11 and the detection signal from the infrared radiation detector 12. .
The arithmetic processing device 13 includes a temperature calculation unit 51 that calculates the temperature of the measurement region D, and an output unit 52 that outputs the calculated temperature distribution of the measurement region D as an image.

前記演算処理装置13は、CPU25と、キーボード等の入力手段26と、モニタ等の出力手段27などを備えた、汎用コンピュータとして構成することができる。但し、演算処理装置13は同様の機能を備えた専用装置として構成することもできる。   The arithmetic processing unit 13 can be configured as a general-purpose computer including a CPU 25, an input unit 26 such as a keyboard, and an output unit 27 such as a monitor. However, the arithmetic processing unit 13 can also be configured as a dedicated device having the same function.

前記温度算出部51では、赤外線放射検出器12から伝達された赤外線エネルギーの大きさに比例した電気的信号を受けて、基準温度の補正と、反射率の補正とが施されたうえで、温度に換算される。このとき、反射率の値は、二色放射温度計11にて計測された放射率の値が用いられる。   The temperature calculation unit 51 receives an electrical signal proportional to the magnitude of the infrared energy transmitted from the infrared radiation detector 12 and corrects the reference temperature and the reflectance, Converted to At this time, the value of the reflectance measured by the two-color radiation thermometer 11 is used as the reflectance value.

前記赤外線放射検出器12にて算出された測定領域Dの温度分布と、前記二色放射温度計11にて算出された測定領域Dの温度分布とを照合することによって、赤外線放射検出器12にて算出された測定領域Dの温度分布と、放射率分布とが整合される。つまり、赤外線放射検出器12にて算出された測定領域Dの各部位に対応する放射率が特定される。   By comparing the temperature distribution of the measurement region D calculated by the infrared radiation detector 12 with the temperature distribution of the measurement region D calculated by the two-color radiation thermometer 11, the infrared radiation detector 12 The temperature distribution of the measurement region D calculated in this way and the emissivity distribution are matched. That is, the emissivity corresponding to each part of the measurement region D calculated by the infrared radiation detector 12 is specified.

このように、演算処理装置13では、実測された放射率を用いて、温度換算が行われるので、放射率を固定値とした際に生じる誤差が解消された、測定領域Dの温度を計測することができる。そして、測定領域Dの各計測点において温度を算出すれば、測定領域Dの温度を得ることができる。   Thus, in the arithmetic processing unit 13, since the temperature conversion is performed using the actually measured emissivity, the temperature in the measurement region D in which the error caused when the emissivity is set to a fixed value is eliminated is measured. be able to. If the temperature is calculated at each measurement point in the measurement region D, the temperature in the measurement region D can be obtained.

そして、前記演算処理装置13の出力部52では、前記温度算出部51にて算出された測定領域Dの温度分布が、アナログ信号に変換されて、出力手段にて画像として表示出力される。   In the output unit 52 of the arithmetic processing unit 13, the temperature distribution of the measurement region D calculated by the temperature calculation unit 51 is converted into an analog signal and displayed and output as an image by the output unit.

続いて、上記構成の温度計測装置10を用いた、溶接加工中の溶融池の温度計測の流れについて、図3に示す流れ図を用いて説明する。   Next, the flow of temperature measurement of the weld pool during welding using the temperature measuring device 10 having the above configuration will be described with reference to the flowchart shown in FIG.

なお、温度計測に際し、二色放射温度計11の放射検出器31と、赤外線放射検出器12とが、測定対象に含まれる同一の測定領域Dの像を同時に捉えることのできる位置に配置される。   In the temperature measurement, the radiation detector 31 of the two-color radiation thermometer 11 and the infrared radiation detector 12 are arranged at a position where an image of the same measurement region D included in the measurement object can be simultaneously captured. .

先ず、赤外線検出手段としての赤外線放射検出器12にて、温度計測の対象となる計測点から放射される赤外線エネルギーの強度を検出する。一方、放射率計測手段としての二色放射温度計11にて、前記計測点から放出された可視光エネルギーを検出して、温度と放射率を計測する(S1)。
なお、前記計測点は、測定領域Dのうち溶接中の部位の直前に溶接された部位であり、二色放射温度計11による温度及び放射率の計測と、赤外線放射検出器12による赤外線放射強度の計測は、平行して行われる。
First, the infrared radiation detector 12 as the infrared detecting means detects the intensity of infrared energy radiated from a measurement point that is a target of temperature measurement. On the other hand, the two-color radiation thermometer 11 as emissivity measuring means detects visible light energy emitted from the measurement point, and measures temperature and emissivity (S1).
The measurement point is a part welded immediately before the part being welded in the measurement region D, and the temperature and emissivity measurement by the two-color radiation thermometer 11 and the infrared radiation intensity by the infrared radiation detector 12 are performed. These measurements are performed in parallel.

続いて、二色放射温度計11と、赤外線放射検出器12との検出信号を受けて、演算処理装置13にて、測定領域Dの温度分布が算出され(S2)、これが演算処理装置13の出力手段に画像として表示出力される(S3)。   Subsequently, upon receiving detection signals from the two-color radiation thermometer 11 and the infrared radiation detector 12, the arithmetic processing unit 13 calculates the temperature distribution in the measurement region D (S2). It is displayed and output as an image on the output means (S3).

上記の温度測定方法によれば、実測された放射率と、赤外線放射検出器12にて計測された赤外線エネルギーの放射強度に基づいて、計測点の温度が算出されるので、放射率の差異に基づく実際の測定領域Dの温度分布との誤差を解消した、信頼性の高い測定値を得ることができる。
また、上記の温度測定方法によれば、発光する溶融池の温度計測が可能である非接触方式の溶融池の温度計測を実現することができる。そして、非接触方式であるので、溶接加工中の実際の製品の溶融池の温度計測をオンラインで行うことができる。
According to the above temperature measurement method, since the temperature at the measurement point is calculated based on the actually measured emissivity and the radiant intensity of the infrared energy measured by the infrared radiation detector 12, the difference between the emissivities is calculated. It is possible to obtain a highly reliable measurement value in which an error from the temperature distribution in the actual measurement region D is eliminated.
Moreover, according to said temperature measuring method, the temperature measurement of the non-contact-type molten pool in which the temperature measurement of the molten pool which light-emits is possible is realizable. And since it is a non-contact system, the temperature measurement of the molten pool of the actual product in welding can be performed online.

次に、本発明の実施例2に係る温度計測装置10(10B)について説明する。
図4は実施例2に係る温度計測装置の全体的な構成を示す図、図5は実施例2に係る温度計測装置のブロック図、図6は実施例2に係る温度計測装置のブロック図である。
Next, the temperature measuring device 10 (10B) according to the second embodiment of the present invention will be described.
4 is a diagram illustrating an overall configuration of a temperature measuring device according to the second embodiment, FIG. 5 is a block diagram of the temperature measuring device according to the second embodiment, and FIG. 6 is a block diagram of the temperature measuring device according to the second embodiment. is there.

実施例2に係る温度計測装置10(10B)は、図4及び図5に示すように、二色放射温度計11と、赤外線放射温度計61と、演算処理装置62とで構成される。
実施例2に係る温度計測装置10は、二色放射温度計11にて計測された放射率を用いて、赤外線放射温度計61にて計測した測定領域Dの温度分布を補正することによって、測定領域Dの真の温度分布を得ることを特徴とするものである。
As shown in FIGS. 4 and 5, the temperature measurement device 10 (10 </ b> B) according to the second embodiment includes a two-color radiation thermometer 11, an infrared radiation thermometer 61, and an arithmetic processing device 62.
The temperature measurement apparatus 10 according to the second embodiment uses the emissivity measured by the two-color radiation thermometer 11 to correct the temperature distribution of the measurement region D measured by the infrared radiation thermometer 61, thereby measuring the temperature. A true temperature distribution in the region D is obtained.

なお、実施例2に係る温度計測装置10(10B)に具備される二色放射温度計11の構成は、前述の実施例1に係る温度計測装置10に具備される二色放射温度計11と同一構成であるので説明を省略する。   The configuration of the two-color radiation thermometer 11 included in the temperature measurement device 10 (10B) according to the second embodiment is the same as that of the two-color radiation thermometer 11 included in the temperature measurement device 10 according to the first embodiment. Since it is the same structure, description is abbreviate | omitted.

[赤外線放射温度計61]
赤外線放射温度計61は、測定領域Dから放射される赤外線エネルギーに基づいて、該測定領域Dの温度分布を計測する、温度計測手段である。
前記赤外線放射検出器12には、測定領域Dから放射される赤外線エネルギーを検出する赤外線放射検出器12と、赤外線エネルギーの放射強度に基づいて表面温度を算出する温度算出部63とが、備えられる。
[Infrared radiation thermometer 61]
The infrared radiation thermometer 61 is a temperature measurement unit that measures the temperature distribution of the measurement region D based on the infrared energy radiated from the measurement region D.
The infrared radiation detector 12 includes an infrared radiation detector 12 that detects infrared energy emitted from the measurement region D, and a temperature calculation unit 63 that calculates a surface temperature based on the radiation intensity of the infrared energy. .

前記赤外線放射検出器12の構成は、前述の実施例1に係る温度計測装置10に具備される赤外線放射検出器12と同一構成であるので説明を省略する。   The configuration of the infrared radiation detector 12 is the same as that of the infrared radiation detector 12 included in the temperature measuring apparatus 10 according to the first embodiment, and a description thereof will be omitted.

前記温度算出部63では、赤外線放射検出器12から受けた検出信号に基づいて、赤外線エネルギーの大きさに比例した電気的信号に対して、基準温度の補正が施されたうえで、温度に換算され、測定領域Dの各計測点の温度が算出される。このとき、温度算出部63では、測定領域Dの各計測点の放射率は、測定領域Dの物質の種類やその表面状態に応じて予め設定された固定値(例えば、1)として計算される。
つまり、温度算出部63では、赤外線放射検出器12から受けた検出信号と、予め設定された前記放射率とに基づいて、測定領域Dの各計測点の温度を算出している。
温度算出部63にて算出された測定領域Dの温度分布は、赤外線放射温度計61から演算処理装置62に伝達される。
In the temperature calculation unit 63, based on the detection signal received from the infrared radiation detector 12, an electrical signal proportional to the magnitude of the infrared energy is corrected and converted into a temperature. Then, the temperature of each measurement point in the measurement region D is calculated. At this time, in the temperature calculation unit 63, the emissivity at each measurement point in the measurement region D is calculated as a fixed value (for example, 1) set in advance according to the type of substance in the measurement region D and the surface state thereof. .
That is, the temperature calculation unit 63 calculates the temperature at each measurement point in the measurement region D based on the detection signal received from the infrared radiation detector 12 and the emissivity set in advance.
The temperature distribution of the measurement region D calculated by the temperature calculation unit 63 is transmitted from the infrared radiation thermometer 61 to the arithmetic processing device 62.

[演算処理装置62]
演算処理装置62は、前記二色放射温度計11からの検出信号と、前記赤外線放射温度計61からの検出信号とに基づいて、測定領域Dの真の温度分布を算出する、演算処理手段である。
演算処理装置62には、上述の赤外線放射温度計61で計測された測定領域Dの各計測点の温度に対して『真の温度』を算出して、測定領域Dの真の温度分布を算出する温度算出部65と、算出された測定領域Dの真の温度分布を画像として出力する出力部66とが備えられる。
[Arithmetic processing device 62]
The arithmetic processing unit 62 is arithmetic processing means for calculating a true temperature distribution in the measurement region D based on the detection signal from the two-color radiation thermometer 11 and the detection signal from the infrared radiation thermometer 61. is there.
The arithmetic processing unit 62 calculates “true temperature” for the temperature at each measurement point in the measurement region D measured by the infrared radiation thermometer 61 and calculates the true temperature distribution in the measurement region D. And an output unit 66 that outputs the calculated true temperature distribution of the measurement region D as an image.

前記演算処理装置62は、CPU25と、キーボード等の入力手段26と、モニタ等の出力手段27などを備えた、汎用コンピュータとして構成することができる。但し、演算処理装置13は同様の機能を備えた専用装置として構成することもできる。   The arithmetic processing unit 62 can be configured as a general-purpose computer including a CPU 25, an input unit 26 such as a keyboard, and an output unit 27 such as a monitor. However, the arithmetic processing unit 13 can also be configured as a dedicated device having the same function.

前記温度算出部65では、赤外線放射温度計61で計測された測定領域Dの各計測点の温度を、二色放射温度計11で計測された測定領域Dの各計測点の放射率で補正することによって、各計測点の真の温度を算出し、測定領域Dの真の温度分布を算出する。
そして、演算処理装置62の出力部66では、前記温度算出部65にて算出された測定領域Dの真の温度分布が、アナログ信号に変換されて、出力手段27にて画像として表示出力される。
In the temperature calculation unit 65, the temperature at each measurement point in the measurement region D measured by the infrared radiation thermometer 61 is corrected by the emissivity of each measurement point in the measurement region D measured by the two-color radiation thermometer 11. Thus, the true temperature at each measurement point is calculated, and the true temperature distribution in the measurement region D is calculated.
Then, in the output unit 66 of the arithmetic processing unit 62, the true temperature distribution of the measurement region D calculated by the temperature calculation unit 65 is converted into an analog signal and displayed and output as an image by the output unit 27. .

続いて、上記温度計測装置10(10B)を用いた温度計測の流れについて、図6に示す流れ図を用いて説明する。   Next, the flow of temperature measurement using the temperature measurement device 10 (10B) will be described with reference to the flowchart shown in FIG.

先ず、赤外線放射温度計61にて、温度計測の対象となる計測点から放射される赤外線エネルギーの強度を検出し、検出した赤外線エネルギーの強度と、予め所定の値に設定された放射率とに基づいて当該計測点の温度を計測する。そして、放射率計測手段である二色放射温度計11にて、前記計測点の放射率及び温度を計測する(S21)。
なお、前記計測点は、測定領域Dのうち溶接中の部位の直前に溶接された部位であり、赤外線放射温度計61による温度の計測と、二色放射温度計11による温度及び放射率の計測とは、平行して行われる。
First, the infrared radiation thermometer 61 detects the intensity of infrared energy radiated from the measurement point that is the target of temperature measurement, and the detected infrared energy intensity and the emissivity set to a predetermined value in advance. Based on this, the temperature of the measurement point is measured. And the emissivity and temperature of the said measurement point are measured with the two-color radiation thermometer 11 which is an emissivity measurement means (S21).
The measurement point is a part of the measurement region D that is welded immediately before the part being welded. The temperature is measured by the infrared radiation thermometer 61, and the temperature and emissivity are measured by the two-color radiation thermometer 11. Are performed in parallel.

続いて、演算処理手段である演算処理装置62にて、前記二色放射温度計11により計測された放射率を用いて、前記赤外線放射温度計61にて計測された計測点の温度を補正する(S22)。
最後に、演算処理装置62にて、算出された測定領域Dの温度分布を、表示出力する(S23)。
Subsequently, the temperature of the measurement point measured by the infrared radiation thermometer 61 is corrected by using the emissivity measured by the two-color radiation thermometer 11 in the arithmetic processing device 62 which is an arithmetic processing means. (S22).
Finally, the arithmetic processing unit 62 displays and outputs the calculated temperature distribution of the measurement region D (S23).

上述のように、温度計測装置10(10B)を用いた温度計測方法によれば、実測された放射率を用いて、赤外線放射温度計61にて計測された温度分布を補正するので、放射率を固定値とした際に生じる実際の測定領域Dの温度分布との誤差を解消した、信頼性の高い測定値を得ることができる。   As described above, according to the temperature measurement method using the temperature measuring device 10 (10B), the temperature distribution measured by the infrared radiation thermometer 61 is corrected using the actually measured emissivity. It is possible to obtain a highly reliable measurement value that eliminates an error from the actual temperature distribution in the measurement region D that occurs when the value is fixed.

実施例1に係る温度計測装置の全体的な構成を示す図。1 is a diagram illustrating an overall configuration of a temperature measurement device according to Embodiment 1. FIG. 実施例1に係る温度計測装置のブロック図。1 is a block diagram of a temperature measuring device according to Embodiment 1. FIG. 実施例1に係る温度計測の流れ図。2 is a flowchart of temperature measurement according to the first embodiment. 実施例2に係る温度計測装置の全体的な構成を示す図。FIG. 6 is a diagram illustrating an overall configuration of a temperature measurement device according to a second embodiment. 実施例2に係る温度計測装置のブロック図。FIG. 4 is a block diagram of a temperature measurement device according to a second embodiment. 実施例2に係る温度計測の流れ図。10 is a flowchart of temperature measurement according to the second embodiment.

符号の説明Explanation of symbols

10 温度計測装置
11 二色放射温度計
12 赤外線放射検出器
13 演算処理装置
31 放射検出器
33 温度算出部
34 放射率算出部
35 フィルタ
36 レンズ
37 画像センサ
42 赤外線フィルタ
43 レンズ
44 赤外線センサ
47 温度算出部
51 温度算出部
52 出力部
61 赤外線放射温度計
62 演算処理装置
63 温度算出部
DESCRIPTION OF SYMBOLS 10 Temperature measuring device 11 Two-color radiation thermometer 12 Infrared radiation detector 13 Arithmetic processing device 31 Radiation detector 33 Temperature calculation part 34 Emissivity calculation part 35 Filter 36 Lens 37 Image sensor 42 Infrared filter 43 Lens 44 Infrared sensor 47 Temperature calculation Unit 51 Temperature calculation unit 52 Output unit 61 Infrared radiation thermometer 62 Arithmetic processing device 63 Temperature calculation unit

Claims (6)

温度計測の対象となる計測点から放射される赤外線エネルギーの放射強度を検出する赤外線検出手段と、
前記計測点の放射率を計測する放射率計測手段と、
検出した前記放射強度と、計測した前記放射率とに基づいて、前記計測点の温度を算出する演算処理手段とを、
備えることを特徴とする、温度計測装置。
An infrared detecting means for detecting the radiation intensity of infrared energy emitted from a measurement point to be temperature-measured;
An emissivity measuring means for measuring the emissivity of the measurement point;
An arithmetic processing means for calculating the temperature of the measurement point based on the detected radiation intensity and the measured emissivity,
A temperature measuring device comprising:
温度計測の対象となる計測点から放射される赤外線エネルギーの強度を検出し、検出した赤外線エネルギーの強度と、予め所定の値に設定された放射率とに基づいて当該計測点の温度を計測する赤外線放射温度計と、
前記計測点の放射率を計測する放射率計測手段と、
計測された前記計測点の温度を、計測された前記放射率を用いて補正する演算処理手段とを、
備えることを特徴とする、温度計測装置。
Detect the intensity of infrared energy radiated from the measurement point that is the target of temperature measurement, and measure the temperature at the measurement point based on the detected intensity of the infrared energy and the emissivity set to a predetermined value in advance. An infrared radiation thermometer,
An emissivity measuring means for measuring the emissivity of the measurement point;
An arithmetic processing means for correcting the measured temperature of the measurement point using the measured emissivity,
A temperature measuring device comprising:
前記放射率計測手段は、同一計測点において少なくとも二つの波長の放射光を検出し、当該少なくとも二つの波長の放射光の放射強度に基づいて放射率を計測することを特徴とする、
請求項1又は請求項2に記載の温度計測装置。
The emissivity measuring means detects at least two wavelengths of emitted light at the same measurement point, and measures the emissivity based on the radiation intensity of the at least two wavelengths of emitted light,
The temperature measuring device according to claim 1 or 2.
赤外線検出手段にて、温度計測の対象となる計測点から放射される赤外線エネルギーの放射強度を検出し、
放射率計測手段にて、前記計測点の放射率を計測し、
演算手段により、検出した前記放射強度と、計測した前記放射率とに基づいて、前記計測点の温度を算出することを特徴とする、温度計測方法。
Infrared detection means detects the radiant intensity of infrared energy radiated from the measurement point that is the target of temperature measurement,
The emissivity measuring means measures the emissivity of the measurement point,
A temperature measurement method, wherein the temperature of the measurement point is calculated by the calculation means based on the detected radiation intensity and the measured emissivity.
赤外線放射温度計にて、温度計測の対象となる計測点から放射される赤外線エネルギーの強度を検出し、検出した赤外線エネルギーの強度と、予め所定の値に設定された放射率とに基づいて当該計測点の温度を計測し、
放射率計測手段にて、前記計測点の放射率を計測し、
演算処理手段にて、計測された前記放射率を用いて、計測された前記計測点の温度を補正することを特徴とする、温度計測方法。
The infrared radiation thermometer detects the intensity of the infrared energy emitted from the measurement point that is the target of the temperature measurement, and based on the detected intensity of the infrared energy and the emissivity set to a predetermined value in advance. Measure the temperature at the measurement point,
The emissivity measuring means measures the emissivity of the measurement point,
A temperature measurement method characterized in that the temperature of the measured measurement point is corrected by using the measured emissivity by an arithmetic processing means.
前記放射率計測手段は、同一計測点において少なくとも二つの波長の放射光を検出し、当該少なくとも二つの波長の放射光の放射強度に基づいて放射率を計測することを特徴とする、
請求項4又は請求項5に記載の温度計測方法。
The emissivity measuring means detects at least two wavelengths of emitted light at the same measurement point, and measures the emissivity based on the radiation intensity of the at least two wavelengths of emitted light,
The temperature measurement method according to claim 4 or 5.
JP2006008876A 2006-01-17 2006-01-17 Temperature measuring device and method Pending JP2007192579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006008876A JP2007192579A (en) 2006-01-17 2006-01-17 Temperature measuring device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006008876A JP2007192579A (en) 2006-01-17 2006-01-17 Temperature measuring device and method

Publications (1)

Publication Number Publication Date
JP2007192579A true JP2007192579A (en) 2007-08-02

Family

ID=38448408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006008876A Pending JP2007192579A (en) 2006-01-17 2006-01-17 Temperature measuring device and method

Country Status (1)

Country Link
JP (1) JP2007192579A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130255A (en) * 2007-11-27 2009-06-11 Ulvac Japan Ltd Deposition device
WO2011114945A1 (en) * 2010-03-16 2011-09-22 常陽機械株式会社 Method and apparatus for determining acceptance/rejection of fine diameter wire bonding
CN102519604A (en) * 2011-11-18 2012-06-27 酒泉钢铁(集团)有限责任公司 Infrared radiation temperature measurement method for measuring temperature of vault of iron making hot blast stove
CN103604503A (en) * 2013-06-17 2014-02-26 中国航天科工集团第三研究院第八三五八研究所 High-precision non-uniformity correction method for dynamic adjustment of integration time
CN104949758A (en) * 2014-03-27 2015-09-30 上海赛科利汽车模具技术应用有限公司 Production line infrared thermometer calibrating method
WO2017030142A1 (en) * 2015-08-18 2017-02-23 株式会社Ihi High-temperature part observation device
WO2020080368A1 (en) 2018-10-16 2020-04-23 古河電気工業株式会社 Temperature measuring system, temperature measuring method, and laser processing device
CN114749495A (en) * 2022-03-18 2022-07-15 武汉钢铁有限公司 On-line detection and coupling correction control method for slab temperature field

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484720A (en) * 1990-07-27 1992-03-18 Jeol Ltd Thermography apparatus
JPH04283633A (en) * 1991-03-12 1992-10-08 Nippon Steel Corp Method for measuring temperature of strip in continuous strip heat treatment equipment
JPH05273043A (en) * 1992-01-29 1993-10-22 Kawasaki Steel Corp Radiation temperature measuring apparatus, emissivity measuring apparatus and decision method of emissivity cumulative ratio-emissivity correlation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484720A (en) * 1990-07-27 1992-03-18 Jeol Ltd Thermography apparatus
JPH04283633A (en) * 1991-03-12 1992-10-08 Nippon Steel Corp Method for measuring temperature of strip in continuous strip heat treatment equipment
JPH05273043A (en) * 1992-01-29 1993-10-22 Kawasaki Steel Corp Radiation temperature measuring apparatus, emissivity measuring apparatus and decision method of emissivity cumulative ratio-emissivity correlation

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130255A (en) * 2007-11-27 2009-06-11 Ulvac Japan Ltd Deposition device
WO2011114945A1 (en) * 2010-03-16 2011-09-22 常陽機械株式会社 Method and apparatus for determining acceptance/rejection of fine diameter wire bonding
CN102918384A (en) * 2010-03-16 2013-02-06 株式会社捷太格特 Method and apparatus for determining acceptance/rejection of fine diameter wire bonding
US9199337B2 (en) 2010-03-16 2015-12-01 Jtekt Corporation Method and apparatus for determining acceptance/rejection of fine diameter wire bonding
CN102918384B (en) * 2010-03-16 2015-12-09 株式会社捷太格特 The whether qualified decision method of minute diameter wire-bonded and decision maker
CN102519604A (en) * 2011-11-18 2012-06-27 酒泉钢铁(集团)有限责任公司 Infrared radiation temperature measurement method for measuring temperature of vault of iron making hot blast stove
CN103604503A (en) * 2013-06-17 2014-02-26 中国航天科工集团第三研究院第八三五八研究所 High-precision non-uniformity correction method for dynamic adjustment of integration time
CN104949758A (en) * 2014-03-27 2015-09-30 上海赛科利汽车模具技术应用有限公司 Production line infrared thermometer calibrating method
WO2017030142A1 (en) * 2015-08-18 2017-02-23 株式会社Ihi High-temperature part observation device
JPWO2017030142A1 (en) * 2015-08-18 2018-02-01 株式会社Ihi High temperature observation device
KR20180030682A (en) * 2015-08-18 2018-03-23 가부시키가이샤 아이에이치아이 High temperature observation device
KR101962584B1 (en) 2015-08-18 2019-03-26 가부시키가이샤 아이에이치아이 High temperature observation device
US10412323B2 (en) 2015-08-18 2019-09-10 Ihi Corporation High-temperature object observation device
WO2020080368A1 (en) 2018-10-16 2020-04-23 古河電気工業株式会社 Temperature measuring system, temperature measuring method, and laser processing device
CN114749495A (en) * 2022-03-18 2022-07-15 武汉钢铁有限公司 On-line detection and coupling correction control method for slab temperature field
CN114749495B (en) * 2022-03-18 2023-11-17 武汉钢铁有限公司 On-line detection and coupling correction control method for slab temperature field

Similar Documents

Publication Publication Date Title
JP2007192579A (en) Temperature measuring device and method
US9089926B2 (en) Process monitoring the processing of a material
US7938576B1 (en) Sensing system for obtaining images and surface temperatures
US10215643B2 (en) Dual waveband temperature detector
US9255846B1 (en) Digital temperature determination using a radiometrically calibrated and a non-calibrated digital thermal imager
US10060725B2 (en) Scanning laser range finder with surface temperature measurement using two-color pyrometry
JP2008268106A (en) Method of measuring temperature information
JP5500120B2 (en) Inspection method for electronic devices
JP2005291711A (en) Calibration method and calibration apparatus of radiation thermometer
US20190154510A1 (en) Method for Determining a Temperature without Contact and Infrared Measuring System
JP2009047611A (en) Method and apparatus of measuring surface temperature
Dorsch et al. Online characterization of laser beam welds by NIR-camera observation
JP6570059B2 (en) Non-contact temperature measurement method and measurement system
JP2013092502A (en) Temperature measuring apparatus and emissivity measuring device
JP2566952Y2 (en) Surface temperature distribution measuring device for steel strip
Maldague et al. Dual imager and its applications to active vision robot welding, surface inspection, and two-color pyrometry
JP2015224887A (en) Temperature calibration method and temperature calibration device
JPH07301569A (en) Method and apparatus for processing infrared temperature image using two filters
JP2008191107A (en) Surface temperature measuring instrument and method
JP4016113B2 (en) Two-wavelength infrared image processing method
JP2014206418A (en) Temperature measurement device and temperature measurement method
JP2004109023A (en) Method and apparatus for measuring surface temperature of steel product
JP2004271537A (en) Method for measuring temperature of molten slag
JPH0510822A (en) Radiation temperature measuring instrument
JP2007107939A (en) Method and device of measuring temperature of steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419