JPH0510822A - Radiation temperature measuring instrument - Google Patents

Radiation temperature measuring instrument

Info

Publication number
JPH0510822A
JPH0510822A JP3184088A JP18408891A JPH0510822A JP H0510822 A JPH0510822 A JP H0510822A JP 3184088 A JP3184088 A JP 3184088A JP 18408891 A JP18408891 A JP 18408891A JP H0510822 A JPH0510822 A JP H0510822A
Authority
JP
Japan
Prior art keywords
temperature
emissivity
spectral
measured
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3184088A
Other languages
Japanese (ja)
Inventor
Tomio Tanaka
富三男 田中
Takashi Ohira
尚 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3184088A priority Critical patent/JPH0510822A/en
Publication of JPH0510822A publication Critical patent/JPH0510822A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To obtain a radiation temperature measuring instrument which can make measurement in a low-temperature area or a smaller target size area and, at the same time, can be also applied to an object having fluctuating emissivity in an environment where stray noise exists. CONSTITUTION:This radiation temperature measuring instrument is constituted of a stray noise shielding body 9, two sets of photon counters 3 and 4 for measuring two spectral radiation luminance signals defined by one or more different conditions of the wavelength and polarized light measuring angle, arithmetic unit 5, parameter input device 6, and computed result output device 7. Since the photon counters 3 and 4 are used, the number of photons can be discretely counted and the SN can be remarkably improved. In addition, since this radiation temperature measuring instrument finds temperatures by automatically calculating the emissivity by solving a relational expression between the two kinds of spectral emissivity, the measuring accuracy of this instrument can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加熱物体の温度を非接触
で測定する放射温度計測装置に関する。本発明による放
射温度計測装置は鉄鋼、非鉄金属等の金属製造プロセス
をはじめ、高温処理プロセスを有する化学、機械等数多
くの産業分野で利用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation temperature measuring device for measuring the temperature of a heated object in a non-contact manner. INDUSTRIAL APPLICABILITY The radiation temperature measuring device according to the present invention can be used in many industrial fields such as a metal manufacturing process for steel and non-ferrous metals, as well as chemistry and machinery having a high temperature treatment process.

【0002】[0002]

【従来の技術】従来の放射温度計測装置(例えば“中温
用放射温度計の開発”、電気製鋼,Vol.57,No.2,pp.104
-111の放射温度計)は、光電変換手段としてSi,Ge,PbS
等の光量子型半導体検出器やサーモパイル等光熱起電力
型の検出器を用いていたため光量子を一個づつ計測する
ことができず、従って信号対雑音比(SN比)の制約か
ら測定可能な下限温度を広げることが困難であった。ま
た、従来の単色あるいは二色温度計は、放射率あるいは
放射率比が一定であると仮定して測定を行うため放射率
が変動する物体には適用できないという問題があった。
2. Description of the Related Art Conventional radiation temperature measuring devices (for example, "medium temperature"
Of a radiation thermometer for electric use ", Electric Steelmaking, Vol.57, No.2, pp.10Four
-111 radiation thermometer) uses Si, Ge, PbS as photoelectric conversion means.
Photoelectromotive force such as photon-type semiconductor detectors and thermopiles
Type photon detector is used, so photons are measured one by one
Is not possible, and is it a signal-to-noise ratio (SN ratio) constraint?
It was difficult to increase the measurable lower limit temperature. Well
Also, conventional single-color or two-color thermometers have
Since the measurement is performed assuming that the emissivity ratio is constant, the emissivity is
However, there is a problem in that it cannot be applied to a moving object.

【0003】[0003]

【発明が解決しようとする課題】放射測温法で物体の温
度を非接触で精度良く測定するためには、できるだけ短
い波長の分光放射輝度信号を測定するのが原則である
が、プランクの黒体放射式からも知られているように、
温度の低下に伴って短波長になるほど物体からの放射輝
度信号は急激に減少するためSN比が確保できなくな
り、測定可能な下限温度が存在する。下限温度は検出波
長、検出波長帯域幅、検出素子、光学系、電気信号処理
系等の諸条件によって決定されるが、そのなかでも最も
重要なのは検出波長と検出素子である。従来の放射温度
計の標準的な測定可能下限温度は、Si素子で波長約1μ
mの放射温度計では約500℃、Ge素子で波長約1.6 μ
mの放射温度計では約350℃、PbS 素子で波長約2.2
μmでは約200℃となっている。
In order to accurately measure the temperature of an object in a non-contact manner by the radiation temperature measuring method, it is a principle to measure a spectral radiance signal having a wavelength as short as possible. As is known from the body radiation formula,
As the temperature decreases, the radiance signal from the object sharply decreases as the wavelength becomes shorter, so that the SN ratio cannot be secured, and there is a measurable lower limit temperature. The lower limit temperature is determined by various conditions such as the detection wavelength, the detection wavelength bandwidth, the detection element, the optical system, and the electric signal processing system. Among them, the most important are the detection wavelength and the detection element. The standard measurable lower limit temperature of the conventional radiation thermometer is a wavelength of about 1μ for Si devices.
Approximately 500 ° C with radiation thermometer of m, wavelength about 1.6 μ with Ge element
Approximately 350 ° C with a radiation thermometer of m, wavelength about 2.2 with PbS element
It is about 200 ° C. in μm.

【0004】前述した従来の放射温度計の測定可能下限
温度は、被測定物体の測定対象表面積(ターゲットサイ
ズ)がある程度以上確保される場合のものであって、タ
ーゲットサイズが小さくなると下限温度は更に上昇す
る。すなわち、Si素子で波長約1μmの放射温度計を用
いた場合、1m前方にある直径10mm程度の大きさの
物体の温度は下限約500℃まで測定可能であるが、直
径1mmの物体の温度を測ろうとした場合には下限温度
は500℃以上でなければ測定できないことになる。
The lower limit temperature that can be measured by the conventional radiation thermometer described above is a case where the measurement target surface area (target size) of the object to be measured is secured to a certain extent or more. To rise. That is, when a radiation thermometer with a wavelength of about 1 μm is used with a Si element, the temperature of an object with a diameter of about 10 mm 1 m ahead can be measured up to a lower limit of about 500 ° C. When trying to measure, the lower limit temperature must be 500 ° C. or higher for measurement.

【0005】本発明が解決しようとする第1の課題は、
従来の放射温度計ではSN比の制限から測定不可能であ
った温度領域、或はターゲットサイズ領域で高SN比を
確保し精度良い温度測定装置を提供することである。
The first problem to be solved by the present invention is
It is an object of the present invention to provide an accurate temperature measuring device that secures a high SN ratio in a temperature range where the conventional radiation thermometer cannot measure due to the limitation of the SN ratio or a target size range.

【0006】また、従来の単色及び二色温度計では放射
率あるいは放射率比を一定と仮定して測定を行うため放
射率が変動する物体には適用できないという問題があっ
た。本発明が解決しようとする第2の課題は、第1の課
題を解決し且つ放射率が変動する物体でも精度よく温度
と放射率を求めることができる温度測定装置を提供する
ことである。
Further, the conventional monochromatic and dichroic thermometers have a problem that they cannot be applied to an object whose emissivity fluctuates because the measurement is performed assuming that the emissivity or the emissivity ratio is constant. A second problem to be solved by the present invention is to solve the first problem and to provide a temperature measuring device capable of accurately obtaining temperature and emissivity even for an object whose emissivity varies.

【0007】[0007]

【課題を解決するための手段】本発明の放射温度計測装
置は、被測定物体表面に入射する迷光雑音を除去するた
めに該物体表面上の測定点に対向させて設置される遮蔽
体、あるいは被測定物体表面に入射する迷光雑音を除去
し、且つ該物体表面の実効的な分光放射率を高めるため
に前記被測定物体表面上の測定点に対向させて設置され
る遮蔽体と、前記被測定物体表面の分光放射輝度に比例
した光子数を波長、測定角度、偏光のうちいづれか一つ
以上異なる分光条件で計数するための2組のフォトンカ
ウンタと、各分光放射輝度に対応する2組の分光放射率
間の関係式を表すためのパラメータを入力するためのパ
ラメータ入力装置と、2組のフォトンカウンタによる光
子計数値と、あらかじめパラメータ入力装置により設定
された2つの分光放射率間の関係式から被測定物体の温
度と2つの放射率を計算する演算装置と、演算装置が求
めた温度と2組の分光放射率値の演算結果を出力するた
めの演算結果出力装置から構成されることを特徴とす
る。
A radiation temperature measuring apparatus of the present invention is a shield installed to face a measurement point on the surface of an object to be measured in order to remove stray light noise incident on the surface of the object to be measured, or A shield installed facing the measurement point on the surface of the object to be measured in order to remove stray light noise incident on the surface of the object to be measured and to increase the effective spectral emissivity of the surface of the object; Two sets of photon counters for counting the number of photons proportional to the spectral radiance on the surface of the measurement object under different spectral conditions such as wavelength, measurement angle, and polarization, and two sets of photon counters corresponding to each spectral radiance. A parameter input device for inputting a parameter for expressing a relational expression between spectral emissivities, a photon count value by two sets of photon counters, and two spectroscopic values preset by the parameter input device. An arithmetic unit for calculating the temperature of the object to be measured and the two emissivities from the relational expression between the emissivities, and an arithmetic result output unit for outputting the arithmetic result of the temperature and the two sets of spectral emissivity values obtained by the arithmetic unit. It is characterized by being composed of.

【0008】[0008]

【作用】温度Tの被測定物体は以下の式で表される分光
放射輝度を持つ。
The object to be measured at the temperature T has the spectral radiance represented by the following equation.

【00014】 Lλ=ελ・Lb(λ、T) (W・m-2・sr-1・μm-1) (1) ただし、 ελ :分光放射率(−) Lb(λ、T):温度T,波長λにおける黒体分光放射
輝度(W・m-2・sr-1・μm-1
Lλ = ελ · Lb (λ, T) (W · m −2 · sr −1 · μm −1 ) (1) where ελ: Spectral emissivity (−) Lb (λ, T): Temperature T , Blackbody spectral radiance at wavelength λ (Wm -2 sr -1 μm -1 )

【0009】従来の放射温度計は(1)式で表される分
光放射輝度に比例した光パワー Eλ=ελ・Eb(λ、T) =ελ・K・Lb(λ、T)(W) (2) ただし、 K :光学系等で決まる定数 (m
2 ・sr・μm) Eb(λ、T):黒体分光放射輝度信号 (W) に比例する連続電流信号を検出しているため、連続電流
信号に伴って発生するショット雑音や、暗電流雑音等が
検出信号に混在していた。
In the conventional radiation thermometer, the optical power proportional to the spectral radiance represented by the equation (1) Eλ = ελ · Eb (λ, T) = ελ · K · Lb (λ, T) (W) ( 2) However, K: constant determined by optical system (m
2・ sr ・ μm) Eb (λ, T): Since a continuous current signal proportional to the blackbody spectral radiance signal (W) is detected, shot noise and dark current noise generated with the continuous current signal are detected. Etc. were mixed in the detection signal.

【00010】光電子増倍管と計数器より構成されるフ
ォトンカウンタを利用すると一個一個の光子を離散的に
カウントすることができるためショット雑音や暗電流に
基づく雑音を低減することができる。即ち、フォトンカ
ウンタは次式で表される光子数を計数する。 Nλ=Eλ/(h・ν) =ελ・Eb(λ、T)/(h・ν) (s-1) (3) ただし、 Nλ:物体からの光子計数値 (s
-1) h :プランク定数(=6.63×10-34 ) (J・s) ν :光の振動数(=c/λ) (s-1) c :光速度(=3×108 ) (m/s) フォトカウンタを黒体炉で校正しておき、 Nb(λ、T)=Eb(λ、T)/(h・ν) (s-1) (4) ただし、Nb(λ、T):温度T、波長λにおける黒体
炉光子計数値を温度Tと関係づけておけば、被測定物体
の測定値Nλをελで補正すればNb(λ、T)よりた
だちに物体温度Tを求めることができる。
If a photon counter composed of a photomultiplier tube and a counter is used, each photon can be discretely counted, so that shot noise and noise due to dark current can be reduced. That is, the photon counter counts the number of photons represented by the following equation. Nλ = Eλ / (h · ν) = ελ · Eb (λ, T) / (h · ν) (s −1 ) (3) where Nλ: photon count value from the object (s
-1 ) h: Planck's constant (= 6.63 × 10 −34 ) (J · s) ν: Light frequency (= c / λ) (s −1 ) c: Light velocity (= 3 × 10 8 ) (m / S) The photo counter was calibrated in a blackbody furnace, and Nb (λ, T) = Eb (λ, T) / (h · ν) (s −1 ) (4) where Nb (λ, T) : If the blackbody furnace photon count value at temperature T and wavelength λ is related to temperature T, the object temperature T can be immediately obtained from Nb (λ, T) if the measured value Nλ of the object to be measured is corrected by ελ. You can

【00011】実際には、光電子増倍管の光電面表面に
おける量子効率ηが1以下であるので Nb(λ、T)=η・Eb(λ、T)/(h・ν) (s-1) (5) Nλ=ελ・Nb(λ、T) (s-1) (6) となる。
Actually, since the quantum efficiency η on the photocathode surface of the photomultiplier tube is 1 or less, Nb (λ, T) = η · Eb (λ, T) / (h · ν) (s -1 (5) Nλ = ελ · Nb (λ, T) (s −1 ) (6)

【00012】このようにフォトンカウンタでは、一個
一個の光子を離散的に計数できるため、従来の連続電流
として光強度を測定していた場合に比べてSN比で格段
に改善することが可能であり、したがって従来法に比べ
てより低い温度で、或はより小さなターゲットサイズで
測定することができる。
As described above, since the photon counter can discretely count photons one by one, it is possible to significantly improve the SN ratio as compared with the conventional case where the light intensity is measured as a continuous current. Therefore, it can be measured at a lower temperature or with a smaller target size than the conventional method.

【00013】本発明による放射温度計測装置は、従来
の放射温度計に比べてより短い波長帯域で、しかもより
低い温度域まで測定することが可能となるため、前述し
たメリットに加えて更に以下のような利点がある。即
ち、あらゆる放射温度計に対して一般的に成立する、放
射率の設定誤差に基づく温度測定誤差 △T=(λ・T2 /C2 )・(△ελ/ελ) (℃またはK) (7) ただし、 C2 :放射の第2定数(=14,388) (μ
m・K) を格段に小さくできる。例えば温度300℃の物体を放
射率設定誤差10%で測定する場合を比較するために従
来の放射温度計では、λ=2.2 μm、本発明に基づく放
射温度計測装置では仮にλ=0.5 μmの波長で測定を行
ったとすると(7)式で与えられる温度測定誤差は、 △T=5.0 ℃ :従来 △T=1.1 ℃ :本発明 となり、格段の精度改善も期待することができる。
The radiation temperature measuring device according to the present invention can measure in a shorter wavelength band and lower temperature range than the conventional radiation thermometer. Therefore, in addition to the above-mentioned merits, There are such advantages. That is, a temperature measurement error ΔT = (λ · T 2 / C 2 ) · (Δελ / ελ) (° C. or K) (based on the emissivity setting error, which generally holds for all radiation thermometers) 7) However, C 2: second constant radiation (= 14,388) (mu
m · K) can be made significantly smaller. For example, in order to compare the case of measuring an object at a temperature of 300 ° C. with an emissivity setting error of 10%, a conventional radiation thermometer has a wavelength of λ = 2.2 μm, and a radiation temperature measuring device according to the present invention has a wavelength of λ = 0.5 μm. The temperature measurement error given by the equation (7) is ΔT = 5.0 ° C .: Conventional ΔT = 1.1 ° C .: The present invention, and a marked improvement in accuracy can be expected.

【00014】以上は、ある波長λに着目した場合に期
待される、フォトンカウンタを利用した放射温度計測装
置の利点を簡単に説明したものである。
The above is a brief description of the advantages of a radiation temperature measuring device using a photon counter, which is expected when a certain wavelength λ is focused.

【00015】さて、分光放射輝度信号は波長、測定角
度(被測定物体面放線と放射信号光のなす角度)、偏光
のうちいずれか一つ以上異なれば物理的に区別して取り
扱うことができる。この意味で異なる2つの分光放射輝
度に比例した光子計数値をそれぞれNx、Nyとすると
それらは以下の式で表現される。
A spectral radiance signal can be physically distinguished and handled if any one or more of wavelength, measurement angle (angle formed by radiation line of object to be measured and radiation signal light) is different. If the photon count values proportional to two spectral radiances that are different in this sense are Nx and Ny, respectively, they are expressed by the following equation.

【00016】 Nx=εx・Nbx(T) (s-1) (8) Ny=εy・Nby(T) (s-1) (9) ただし、 x,y:波長、測定角度、偏光のいずれかが
異なることを示す添字 Nx,Ny:被測定物体表面からの放射輝度信号計数値
(s-1) Nbx,Nby:温度Tにおける黒体放射輝度信号計数
値 (s-1
Nx = εx · Nbx (T) (s −1 ) (8) Ny = εy · Nby (T) (s −1 ) (9) where x, y: wavelength, measurement angle, or polarization Subscript Nx, Ny: Radiance signal count value from the surface of the object to be measured (s -1 ) Nbx, Nby: Blackbody radiance signal count value at temperature T (s -1 )

【00017】本件発明者の一人は特願昭63-2710 47に
おいて2つの分光放射率間の関係式を解く方法によって
物体の温度と2つの放射率を同時に求めうることを示し
た。この方法を適用すれば次式 εy=f(εx) (10) ただし、 f:放射率間の関係を表す放射率特性関
数 を(8)、(9)式と連立させて解くことによって温度
Tと、2つの放射率εx,εyを同時に求めることがで
きる。
One of the inventors of the present invention is Japanese Patent Application No. 63-2710. To 47
By the method of solving the relational expression between the two spectral emissivities
It shows that the temperature of an object and two emissivities can be calculated simultaneously.
It was If this method is applied,     εy = f (εx) (10) However, f: emissivity characteristic relation showing the relationship between emissivity
number (8) and (9) are solved simultaneously by solving
It is possible to obtain T and two emissivities εx and εy at the same time.
Wear.

【00018】放射率特性関数fは、あらかじめ実験的
に求めておいても良いし、あるいは理論的に決定してお
いても良い。
The emissivity characteristic function f may be experimentally obtained in advance or may be theoretically determined.

【00019】本発明による放射温度計測装置では2つ
の異なる分光放射輝度信号を用いて温度と放射率を同時
に測定することが可能なため、酸化あるいは合金化とい
った表面での変化現象を伴う雰囲気中での鋼板温度測定
のように、放射率が激しく変化しうる状況においても正
確な測定ができるという特徴がある。
Since the radiant temperature measuring device according to the present invention can simultaneously measure temperature and emissivity by using two different spectral radiance signals, it can be used in an atmosphere accompanied by a phenomenon of surface change such as oxidation or alloying. It has a feature that accurate measurement can be performed even in a situation where the emissivity can change drastically like the steel plate temperature measurement described in (1).

【00020】ところで、物体の温度を放射測温法を用
いて測定する場合、物体の周囲に更に高温の物体や、火
炎が存在するとそれらからの熱放射信号が物体表面に入
射し、一部の反射された信号(迷光雑音)が放射計に入
り測定誤差を生ずる。また、近赤外域、および可視域の
放射信号を検出する場合は、太陽光や、蛍光灯等からの
放射信号も迷光雑音となり温度測定誤差を生ずることが
ある。以下、単色温度計の場合を例にとって迷光雑音の
影響について説明する。
By the way, when the temperature of an object is measured by the radiation thermometry, if a higher temperature object or a flame exists around the object, a heat radiation signal from the object is incident on the object surface and a part of the object is detected. The reflected signal (stray light noise) enters the radiometer and causes measurement errors. Further, when detecting radiation signals in the near-infrared region and visible region, radiation signals from sunlight or fluorescent lamps may also become stray light noise, resulting in temperature measurement error. Hereinafter, the effect of stray light noise will be described by taking the case of a monochromatic thermometer as an example.

【00021】迷光雑音が存在する場合に、ある分光条
件(波長、測定角度、偏光の条件)において計数される
フォトン数は、近似的に Nλ=ελ・Nb(λ、T)+(1−ελ)・Nb(λ、Ts)(11) ただし、 Ts:周囲の見かけ温度 で表される。(11)式右辺第2項が迷光雑音項であ
る。
In the presence of stray light noise, the number of photons counted under a certain spectroscopic condition (wavelength, measurement angle, polarization condition) is approximately Nλ = ελ · Nb (λ, T) + (1-ελ ) .Nb (λ, Ts) (11) where Ts is represented by the apparent temperature of the surroundings. The second term on the right side of the equation (11) is the stray light noise term.

【00022】上記の問題は、被測定物体表面上の測定
点に対向させて設置される遮蔽体を用いることにより容
易に解決することができる。すなわち、測定点に対向し
て例えば金属等の不透明体で作られた遮蔽体を設置すれ
ば、周囲からの迷光は遮蔽体によって遮られるため測定
点に入射せず、したがって(11)式右辺第2項の迷光
雑音信号が放射計に入らない。
The above problem can be easily solved by using a shield which is installed so as to face a measurement point on the surface of the object to be measured. That is, if a shield made of, for example, an opaque body such as metal is installed facing the measurement point, stray light from the surroundings is blocked by the shield and does not enter the measurement point. The stray light noise signal of item 2 does not enter the radiometer.

【00023】一方、例えば冷延鋼板等金属の温度を測
定する場合、一般に近赤外域、及び可視域の波長帯では
分光放射率が低いことが多く、したがって信号が小さく
なるとともに放射率の設定誤差に基づく温度測定誤差が
大きくなることがある。
On the other hand, when measuring the temperature of a metal such as a cold-rolled steel sheet, in general, the spectral emissivity is often low in the near-infrared and visible wavelength bands, so that the signal becomes smaller and the emissivity setting error occurs. The temperature measurement error based on may increase.

【00024】この問題は、被測定物体表面上の測定点
に対向する面が高反射率に処理された遮蔽体を用いるこ
とにより容易に解決することができる。すなわち、周囲
からの迷光は遮蔽体の外面によって遮られるため測定点
に入射せず、また測定点から放射された光は遮蔽体内面
と被測定物体表面によって多重反射され、次式で示され
るような実効的により大きな分光放射信号として放射計
で検出される。 Nλ=ελ′・Nb(λ・T) (12) ただし、 ελ′:実効的分光放射率
This problem can be easily solved by using a shield whose surface facing the measurement point on the surface of the object to be measured is processed to have high reflectance. That is, stray light from the surroundings is blocked by the outer surface of the shield so that it does not enter the measurement point, and the light emitted from the measurement point is multiply reflected by the inner surface of the shield and the surface of the measured object, as shown in the following equation. This is effectively detected by the radiometer as a larger spectral radiation signal. Nλ = ελ ′ · Nb (λ · T) (12) where ελ ′: Effective spectral emissivity

【00025】放射率設定誤差に基づく温度測定誤差
は、(7)式で表されるから実効的に分光放射率を大き
くすることにより温度測定誤差を小さくすることができ
る。遮蔽体内面を高反射率にするためには例えば金メッ
キ処理等を行えば良い。
Since the temperature measurement error based on the emissivity setting error is expressed by the equation (7), the temperature measurement error can be reduced by effectively increasing the spectral emissivity. In order to make the inner surface of the shield have a high reflectance, for example, gold plating may be performed.

【00026】上記のように遮蔽体を用いることにより
迷光雑音の除去が可能となり、或はあわせて実効的に分
光放射率を高めて測定できるためにその結果として、従
来の放射温度計ではSN比の制限から測定不可能であっ
た温度領域、或はターゲットサイズ領域で高SN比を確
保し精度良い温度測定装置を提供することができる。
By using the shield as described above, stray light noise can be removed, or at the same time, the spectral emissivity can be effectively increased for measurement. As a result, the conventional radiation thermometer has an SN ratio. It is possible to provide a high-accuracy temperature measuring device that secures a high SN ratio in a temperature region where measurement is impossible due to the above limitation or a target size region.

【00027】以上、単色温度計の場合を例にとって説
明したことは、本発明の装置のように2つの異なる分光
放射輝度を測定する場合にも当てはまる。すなわち、遮
蔽体を用いることにより容易に迷光雑音を除去できるた
め、誤差のない測定が可能になる。更に、被測定物体表
面上の測定点に対向する面が高反射率に処理された遮蔽
体を用いた場合は、実効的に分光放射率を高めて2つの
分光放射輝度を測定できるため精度良い温度測定が可能
になる。この場合、放射率特性関数fは εy′=f(εx′) (13) のように、実行的な分光放射率εx′とεy′の関係を
表すものとしてあらかじめ実験的に、或は理論的に決定
しておけば良い。
What has been described above by taking the case of the monochromatic thermometer as an example also applies to the case of measuring two different spectral radiances as in the apparatus of the present invention. That is, the stray light noise can be easily removed by using the shield, so that measurement without error becomes possible. Furthermore, when a shield whose surface facing the measurement point on the surface of the object to be measured has a high reflectance is used, the spectral emissivity can be effectively increased and two spectral radiances can be measured, resulting in high accuracy. Enables temperature measurement. In this case, the emissivity characteristic function f is expressed as εy ′ = f (εx ′) (13) by experimentally or theoretically as a function of the effective spectral emissivity εx ′ and εy ′. You just have to decide.

【00028】〈実施例〉図1は、本発明による放射温
度計測装置の実施例を示したものである。8は被測定物
体、9は遮蔽体、1は被測定物体からのx成分の放射信
号光、2はy成分の放射信号光であり、放射信号光1、
2は遮蔽体に設けられた透過窓(図示せず)を通して
3、4で示された2組のフォトンカウンタの受光部に入
射する。これらフォトンカウンタ3、4は光子数Nx,
Nyをそれぞれ計数し演算装置5へ伝送する。演算装置
5は、あらかじめパラメータ入力装置6から入力設定さ
れている放射率特性関数fとNx,Nyとから黒体計数
値Nbx,Nby及び温度T,放射率εx,εyを求め
る。演算結果出力装置7は、演算によって求められたN
bx,Nby,T,εx,εyを電流、電圧あるいはデ
ジタル等適当な形式でもって外部に出力する。
<Embodiment> FIG. 1 shows an embodiment of a radiation temperature measuring apparatus according to the present invention. 8 is an object to be measured, 9 is a shield, 1 is radiation signal light of x component from the object to be measured, 2 is radiation signal light of y component, radiation signal light 1,
2 enters a light receiving portion of two sets of photon counters indicated by 3 and 4 through a transmission window (not shown) provided in the shield. These photon counters 3 and 4 have a photon number Nx,
Each Ny is counted and transmitted to the arithmetic unit 5. The arithmetic unit 5 obtains the black body count values Nbx, Nby, the temperature T, and the emissivities εx, εy from the emissivity characteristic function f and Nx, Ny which are input and set from the parameter input unit 6 in advance. The calculation result output device 7 determines the N calculated by the calculation.
bx, Nby, T, εx, εy are output to the outside in an appropriate format such as current, voltage or digital.

【00029】2つのフォトンカウンタ3、4は一つの
受光装置の中に収納してもよく、あるいは特に測定角度
が異なる信号を検出する場合には別々に設置することも
できる。各フォトンカウンタ3、4の受光部には、波長
を限定するための干渉フィルタをつけてもよいのは勿
論、異なる偏光成分の信号光を検出するために偏光板を
つけてもよいことは言うまでもない。
The two photon counters 3 and 4 may be housed in one light-receiving device, or may be separately installed, especially when detecting signals having different measurement angles. It goes without saying that the light receiving portions of the photon counters 3 and 4 may be provided with an interference filter for limiting the wavelength, or of course, a polarizing plate may be provided for detecting the signal light of different polarization components. Yes.

【00030】温度TとNbx(T),Nby(T)の
関係は従来の放射温度計と同様に黒体炉での校正を行い
表或は式として既知にしておけば良い。
The relationship between the temperature T and Nbx (T), Nby (T) may be known in the form of a table or a formula by performing calibration in a black body furnace as in the conventional radiation thermometer.

【00031】パラメータ入力装置6の入力手段は例え
ばキーボードのようなものでも良いし、或はメモリーカ
ード等の読み取り装置、或は外部コンピュータからの回
線等による入力手段でも良いのは言うまでもない。
It goes without saying that the input means of the parameter input device 6 may be, for example, a keyboard, or a reading device such as a memory card, or an input means such as a line from an external computer.

【00032】表1は、本発明による放射温度計測装置
の1例を黒体炉で校正した場合の計数値Nbx(T),
Nby(T)を表にしたものである。この例では波長λ
x=0.7 μm,λy=0.6 μmでそれぞれ帯域幅0.1 μ
m、測定対象径10mm,レンズ径25mm,距離1m
で検出した。検出器の量子効率ηは約0.1 であった。
Table 1 shows a count value Nbx (T) when one example of the radiation temperature measuring device according to the present invention is calibrated in a black body furnace,
It is a table of Nby (T). In this example the wavelength λ
Bandwidth of 0.1 μ at x = 0.7 μm and λy = 0.6 μm
m, measuring object diameter 10 mm, lens diameter 25 mm, distance 1 m
Detected in. The quantum efficiency η of the detector was about 0.1.

【00033】このように構成した2組のフォトンカウ
ンタではNbx(T),Nby(T)は次式で精度良く
表すことができた Nbx(λ、T)=7.67×1017・exp (−C2 /(λx・T)(s-1) Nby(λ、T)=1.42×1018・exp (−C2 /(λy・T)(s-1) ただし、 λx=0.7 μm、λy=0.6 μm、Tは絶対
温度(単位:K)である。
In the two sets of photon counters thus constructed, Nbx (T) and Nby (T) could be accurately expressed by the following equation: Nbx (λ, T) = 7.67 × 10 17 · exp (-C 2 / (λx · T) (s −1 ) Nby (λ, T) = 1.42 × 10 18 · exp (−C 2 / (λy · T) (s −1 ) where λx = 0.7 μm, λy = 0.6 μm and T are absolute temperatures (unit: K).

【00034】表1からも明らかなように本実施例の放
射温度計測装置では、0.7 μmと、0.6 μmという短い
波長域であるにも関わらず400℃という低い温度域ま
で測定可能である。従来の放射温度計では、例えば波長
1μm程度の長い波長域であっても500℃が低温側の
検出限界であることを考えれば、本発明によって低温域
への温度域拡大が可能になったことが明らかである。
As is clear from Table 1, the radiation temperature measuring apparatus of this embodiment can measure a temperature range as low as 400 ° C. even though the wavelength range is as short as 0.7 μm and 0.6 μm. In the conventional radiation thermometer, considering that 500 ° C. is the detection limit on the low temperature side even in the long wavelength region of about 1 μm, the present invention enables the temperature region to be expanded to the low temperature region. Is clear.

【00035】また、本実施例の放射温度計測装置で測
定対象径を小さくしていき、500℃においてNby
(T)が約200(s-1)の計数値になる径(d)を求
めてみる。測定対象径の平方値と光子計数値がほぼ比例
すると考えると、表1の値を用いて計算すると (d/10)2 =200/4.81×104 ∴ d=0.64mm となる。すなわち、0、64mm径の物体でも500℃
において充分計測することができる。従来の放射温度計
では距離計数(距離と測定対象径の比)が約100程度
の値であるのに対し、本発明による放射温度計測装置で
は距離計数を約1500といった大きな値にすることが
でき、より小さな測定物体でも温度を計測することが可
能になる。
Further, with the radiation temperature measuring apparatus of this embodiment, the diameter of the object to be measured is reduced, and Nby at 500.degree.
Find the diameter (d) at which (T) becomes a count value of about 200 (s −1 ). Considering that the square value of the measurement target diameter and the photon count value are almost proportional, (d / 10) 2 = 200 / 4.81 × 10 4 ∴d = 0.64 mm when calculated using the values in Table 1. That is, even objects with a diameter of 0 and 64 mm have a temperature of 500 ° C.
Can be sufficiently measured in. In the conventional radiation thermometer, the distance count (ratio between the distance and the diameter to be measured) has a value of about 100, whereas in the radiation temperature measuring device according to the present invention, the distance count can be a large value such as about 1500. , It becomes possible to measure the temperature even with a smaller measuring object.

【00036】本実施例の放射温度計測装置では、2つ
の分光放射率間の関係を表す関係式として εy=f(εx) =0.95・εx+0.014 を用いて合金鋼板の温度を測定したところ、放射率を変
えても相対誤差△T/Tが約1%以内で精度良く測定で
きた。
In the radiation temperature measuring apparatus of this embodiment, the temperature of the alloy steel sheet was measured by using εy = f (εx) = 0.95 · εx + 0.014 as a relational expression representing the relation between two spectral emissivities. However, even if the emissivity was changed, the relative error ΔT / T could be accurately measured within about 1%.

【00037】本発明に基づく放射温度計測装置では、
波長、測定角度、偏光のいづれか1つ以上異なる分光放
射輝度を計測すれば物理的に意味のある計測を行うこと
ができる。相対誤差△T/Tが1%以内で計測できた場
合を合格と判定して条件を変えて実験を行った結果を表
2に示す。表中λx,λyは検出波長(単位:μm)、
θx,θyは測定角度(単位:°)、pはp偏光,sは
s偏光を示す。また、添え字x,yがないものは同一条
件であることを示す。
In the radiation temperature measuring device according to the present invention,
Physically meaningful measurement can be performed by measuring the spectral radiance that differs by at least one of wavelength, measurement angle, and polarization. Table 2 shows the results obtained by conducting an experiment under different conditions when the relative error ΔT / T was measured within 1% and the condition was judged to be acceptable. In the table, λx and λy are detection wavelengths (unit: μm),
θx and θy are measurement angles (unit: °), p is p-polarized light, and s is s-polarized light. In addition, those without the subscripts x and y indicate the same conditions.

【00038】表2で明らかなように、本発明に基づく
放射温度計測装置を用いると従来の放射温度計に比較し
てより低温域、或はより小さな被測定物体でも測定する
ことが可能になり、しかも放射率が変動する物体に対し
ても正確な測定が可能となる。
As is clear from Table 2, by using the radiation temperature measuring device according to the present invention, it is possible to measure a lower temperature range or a smaller object to be measured than the conventional radiation thermometer. Moreover, it is possible to perform accurate measurement even on an object whose emissivity varies.

【00039】図1に示した具体例のうち、遮蔽体内面
を特に高反射率に処理せずに加熱炉内の酸化鋼板の温度
を測定した場合の測定例を示す。この例で用いた遮蔽体
の内面形状は半径300mm、高さ150mmの円筒形
で、鋼板との間隙は50mmであった。この場合は、波
長λx=0.7 μmにおける分光反射率は0.6、波長λ
y=0.6 μmにおける分光反射率は0.7であることが
予め実験によりわかっていた。鋼板温度が500℃、炉
内壁温度が600℃であったが、遮蔽体の遮蔽効果によ
りフォトンクンタによる光子計数値はそれぞれ Nx=1.31×106 (s-1) Ny=3.37×104 (s-1) と得られた。放射率特性関数fは、予め実験によって求
めてあり、(εx,εy)=(0.6,0.7)を通る
ため、上記のNx,Nyを用いて(8)、(9)、(1
0)式を連立して解くと εx=0.6 εy=0.7 Nbx=2.18×106 Nby=4.18×104 T=500℃ が正確に得られた。
Among the specific examples shown in FIG. 1, a measurement example is shown in which the temperature of the oxide steel sheet in the heating furnace is measured without treating the inner surface of the shield to a high reflectance. The inner surface of the shield used in this example had a cylindrical shape with a radius of 300 mm and a height of 150 mm, and the gap with the steel plate was 50 mm. In this case, the spectral reflectance at wavelength λx = 0.7 μm is 0.6 and the wavelength λx is 0.7 μm.
It was previously known by experiments that the spectral reflectance at y = 0.6 μm was 0.7. Although the steel plate temperature was 500 ° C. and the furnace inner wall temperature was 600 ° C., the photon count value by photon quantum was Nx = 1.31 × 10 6 (s −1 ) Ny = 3.37 × due to the shielding effect of the shield. It was obtained as 10 4 (s -1 ). The emissivity characteristic function f has been previously obtained by an experiment, and since (εx, εy) = (0.6, 0.7) is satisfied, the above Nx, Ny are used to obtain (8), (9), ( 1
By solving the equations (0) simultaneously, εx = 0.6 εy = 0.7 Nbx = 2.18 × 10 6 Nby = 4.18 × 10 4 T = 500 ° C. was accurately obtained.

【00040】一方、遮蔽体を用いない従来法で測定し
た場合は、炉内壁からの迷光雑音が混入するため光子計
数値は(11)式より Nx=0.6 ×Nbx(500 ℃)+(1- 0.6)×Nbx(600 ℃) =0.6 ×2.18×106 +0.4 ×4.58×107 =1.96×107 (s-1) Ny=0.7 ×Nby(500 ℃)+(1- 0.7)×Nby(600 ℃) =0.7 ×4.81×104 +0.3 ×1.68×106 =5.38×105 (s-1) となり、迷光雑音の無い場合の値 Nx=1.31×106 , Ny=3.37×104 (s-1) とは大きく異なった値となり、当然大きな測定誤差を生
ずる。
On the other hand, when measured by the conventional method without using a shield, stray light noise from the inner wall of the furnace is mixed in, and the photon count value is Nx = 0.6 × Nbx (500 ° C.) + (1- 0.6) × Nbx (600 ° C.) = 0.6 × 2.18 × 10 6 + 0.4 × 4.58 × 10 7 = 1.96 × 10 7 (s −1 ) Ny = 0.7 × Nby (500 ° C.) + (1-0.7) × Nby (600 ° C) = 0.7 x 4.81 x 10 4 +0.3 x 1.68 x 10 6 = 5.38 x 10 5 (s -1 ) and the value without stray light noise Nx = 1.31 x 10 6 , Ny = 3 The value is significantly different from 0.37 × 10 4 (s −1 ), which naturally causes a large measurement error.

【00041】同様に図1に示した具体例のうち、遮蔽
体内面を特に高反射率に処理して加熱炉内の冷延鋼板の
温度を測定した場合の測定例を示す。この例で用いた遮
蔽体の内面形状は前述した例のものと同一形状であっ
た。この例の場合は、波長λx=0.7 μmにおける冷延
鋼板の分光放射率は0.3であり、波長λy=0.6 μm
における分光反射率は0.4であった。これに内面を高
反射率に処理した遮蔽体を対向させたとき実効的放射率
がそれぞれ0.7及び0.8になることが予め実験によ
りわかっていた。鋼板温度が500℃、炉内壁温度が6
00℃であったが、遮蔽体の遮蔽効果によりフォトンカ
ウンタによる光子計数値は、 Nx=1.53×106 (s-1) Ny=3.85×104 (s-1) と得られた。この場合も実行的に高められた分光放射率
間の関係を表す放射率特性関数fは、予め実験によって
求めてあり、(εx,εy)=(0.7,0.8)を通
るため、上記のNx,Nyを用いて(8)、(9)、
(10)式を連立して解くと εx=0.7 εy=0.8 Nbx(T)=2.18×106 Nby(T)=4.18×104 T=500℃ が正確に得られた。
Similarly, among the specific examples shown in FIG. 1, the shield
The inner surface of the cold-rolled steel sheet in the heating furnace is treated to a high reflectance.
An example of measurement when the temperature is measured is shown. The shield used in this example
The shape of the inner surface of the cover was the same as that of the above-mentioned example.
It was In the case of this example, cold rolling at the wavelength λx = 0.7 μm
The spectral emissivity of the steel sheet is 0.3, and the wavelength λy is 0.6 μm.
The spectral reflectance at was 0.4. High inside
Effective emissivity when facing a shield treated to reflectivity
According to the experiment,
I knew. Steel plate temperature is 500 ° C, furnace inner wall temperature is 6
The temperature was 00 ° C, but the photon
The photon count value by Unta is Nx = 1.53 × 106   (S-1) Ny = 3.85 × 10Four    (S-1) Was obtained. In this case as well, the practically increased spectral emissivity
The emissivity characteristic function f representing the relationship between
It has been determined that (εx, εy) = (0.7, 0.8)
Therefore, using the above Nx and Ny, (8), (9),
When equations (10) are solved simultaneously, εx = 0.7 εy = 0.8 Nbx (T) = 2.18 × 106 Nby (T) = 4.18 × 10Four T = 500 ° C Was obtained accurately.

【00042】一方、遮蔽体を用いない従来法で測定し
た場合は、炉内壁からの迷光雑音が混入するため光子計
数値は(11)式より Nx=0.3 ×Nbx(500 ℃)+(1- 0.3)×Nbx(600 ℃) =0.3 ×2.18×106 +0.7 ×4.58×107 =3.27×107 (s-1) Ny=0.4 ×Nby(500 ℃)+(1- 0.4)×Nby(600 ℃) =0.4 ×4.81×104 +0.6 ×1.68×106 =1.03×106 (s-1) となり、迷光雑音の無い場合の値 Nx=1.53×106 , Ny=3.85×104 (s-1) とは大きく異なった値となり、当然大きな測定誤差を生
ずる。
On the other hand, the conventional method without a shield was used.
In this case, stray light noise from the inner wall of the furnace mixes in the photon meter.
The numerical value is from equation (11)     Nx = 0.3 x Nbx (500 ° C) + (1-0.3) x Nbx (600 ° C)         = 0.3 x 2.18 x 106 +0.7 x 4.58 x 107         = 3.27 x 107                                  (S-1)     Ny = 0.4 x Nby (500 ° C) + (1-0.4) x Nby (600 ° C)         = 0.4 x 4.81 x 10Four  +0.6 x 1.68 x 106          = 1.03 x 106                                   (S-1) And the value when there is no stray light noise     Nx = 1.53 × 106 , Ny = 3.85 × 10Four    (S-1) Results in a value that is significantly different from
Cheat.

【00043】本発明のように遮蔽体を用いれば迷光雑
音の除去が可能となり、或はあわせて実効的に分光放射
率を高めて測定できるためにその結果として、従来の放
射温度計ではSN比の制限から測定不可能であった温度
領域、或はターゲットサイズ領域で高SN比を確保し精
度良い温度測定装置を提供することができる。
If a shield is used as in the present invention, stray light noise can be removed, or at the same time, the spectral emissivity can be effectively increased for measurement. As a result, the conventional radiation thermometer has an SN ratio. It is possible to provide a high-accuracy temperature measuring device that secures a high SN ratio in a temperature region where measurement is impossible due to the above limitation or a target size region.

【00044】[00044]

【発明の効果】本発明による放射温度計測装置を用いれ
ば、従来の放射温度計に比べて温度測定下限値の拡大、
ターゲットサイズの縮小が可能となるうえ、放射率が変
動する物体に対しても正確な測温が可能となり、温度測
定精度が製品品質や生産性等に大きな影響を及ぼす諸工
業プロセスでの利用による経済的効果は計り知れないも
のがある。
By using the radiation temperature measuring device according to the present invention, the lower limit of temperature measurement can be expanded as compared with the conventional radiation thermometer.
In addition to reducing the target size, accurate temperature measurement is possible even for objects with varying emissivity, and it can be used in various industrial processes where temperature measurement accuracy greatly affects product quality and productivity. The economic effects are immeasurable.

【表1】 [Table 1]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に基づく放射温度計測装置の実施例であ
る。
FIG. 1 is an embodiment of a radiation temperature measuring device according to the present invention.

【符号の説明】[Explanation of symbols]

1 放射信号光(x成分) 2 放射信号光(y成分) 3 フォトンカウンタ(x成分検出用) 4 フォトンカウンタ(y成分検出用) 5 演算装置 6 パラメータ入力装置 7 演算結果出力装置 8 被測定物体 9 遮蔽体 1 Radiation signal light (x component) 2 Radiation signal light (y component) 3 Photon counter (for x component detection) 4 Photon counter (for y component detection) 5 arithmetic unit 6 Parameter input device 7 Calculation result output device 8 Object to be measured 9 Shield

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定物体表面上の測定点に対向させて
設置される遮蔽体と、前記被測定物体表面の分光放射輝
度に比例した光子数を波長、測定角度、偏光のうちいづ
れか一つ以上異なる分光条件で計数するための2組のフ
ォトンカウンタと、2組の分光放射輝度に対応する分光
放射率間の関係式を表現するパラメータを入力するため
のパラメータ入力装置と、2組の光子計数値と分光放射
率間の関係式とから被測定物体の温度と2組の分光放射
率を計算するための演算装置と、計算で求められた温度
と2組の分光放射率値を出力するための演算結果出力装
置とを具備することを特徴とする放射温度計測装置。
1. A shield installed facing a measurement point on the surface of the object to be measured, and a number of photons proportional to the spectral radiance of the surface of the object to be measured, which is one of wavelength, measurement angle, and polarization. Two sets of photon counters for counting under different spectral conditions, a parameter input device for inputting a parameter expressing a relational expression between spectral emissivity corresponding to two sets of spectral radiance, and two sets of photons An arithmetic unit for calculating the temperature of the object to be measured and the two sets of spectral emissivity from the relational expression between the count value and the spectral emissivity, and the temperature obtained by the calculation and the two sets of spectral emissivity values are output. And a calculation result output device for the radiation temperature measuring device.
【請求項2】遮蔽体は、被測定物体表面上の測定点に対
向させて設置される面が高反射率に処理された遮蔽体で
あることを特徴とする請求項1記載の放射温度計測装
置。
2. The radiation temperature measurement according to claim 1, wherein the shield is a shield having a surface which is installed facing the measurement point on the surface of the object to be measured and which has been treated to have high reflectance. apparatus.
JP3184088A 1991-06-28 1991-06-28 Radiation temperature measuring instrument Withdrawn JPH0510822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3184088A JPH0510822A (en) 1991-06-28 1991-06-28 Radiation temperature measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3184088A JPH0510822A (en) 1991-06-28 1991-06-28 Radiation temperature measuring instrument

Publications (1)

Publication Number Publication Date
JPH0510822A true JPH0510822A (en) 1993-01-19

Family

ID=16147191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3184088A Withdrawn JPH0510822A (en) 1991-06-28 1991-06-28 Radiation temperature measuring instrument

Country Status (1)

Country Link
JP (1) JPH0510822A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182932A (en) * 1992-06-15 1993-07-23 Hitachi Ltd Micro-ion beam processing method
JP2011053047A (en) * 2009-09-01 2011-03-17 Sumitomo Metal Ind Ltd Surface temperature measuring method, surface temperature measuring apparatus, and steel manufacturing method
CN113167653A (en) * 2018-11-21 2021-07-23 杰富意钢铁株式会社 Calibration method for temperature measurement device, calibration device for temperature measurement device, calibration method for physical quantity measurement device, and calibration device for physical quantity measurement device
JP2021139706A (en) * 2020-03-04 2021-09-16 日本製鉄株式会社 Temperature measurement apparatus and temperature measurement method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182932A (en) * 1992-06-15 1993-07-23 Hitachi Ltd Micro-ion beam processing method
JP2011053047A (en) * 2009-09-01 2011-03-17 Sumitomo Metal Ind Ltd Surface temperature measuring method, surface temperature measuring apparatus, and steel manufacturing method
CN113167653A (en) * 2018-11-21 2021-07-23 杰富意钢铁株式会社 Calibration method for temperature measurement device, calibration device for temperature measurement device, calibration method for physical quantity measurement device, and calibration device for physical quantity measurement device
CN113167653B (en) * 2018-11-21 2023-09-05 杰富意钢铁株式会社 Calibration method for temperature measuring device, calibration device for temperature measuring device, calibration method for physical quantity measuring device, and calibration device for physical quantity measuring device
JP2021139706A (en) * 2020-03-04 2021-09-16 日本製鉄株式会社 Temperature measurement apparatus and temperature measurement method

Similar Documents

Publication Publication Date Title
Mazikowski et al. Non-contact multiband method for emissivity measurement
US3435237A (en) Radiation discriminator means
JP2007192579A (en) Temperature measuring device and method
JPH0510822A (en) Radiation temperature measuring instrument
JP2008268106A (en) Method of measuring temperature information
US4605314A (en) Spectral discrimination pyrometer
CN113324663A (en) Measuring method and system for out-field target emissivity
JPH04361125A (en) Measuring apparatus of radiation temperature based on two spectral radiation detection signals
KR0133637B1 (en) Calibration method for light measuring device and radiation
RU59822U1 (en) PYROMETER
GB2160971A (en) Temperature monitoring
JPH04369443A (en) Radiation temperature measuring apparatus
JPH04370723A (en) Measuring apparatus of radiation temperature
JP3293470B2 (en) Radiation thermometer
JPH01110225A (en) Infrared radiation meter
JPS6041293B2 (en) radiation thermometer
JP3713538B2 (en) Radiation temperature measuring device using double resonance
JPH04276527A (en) Thermometer in furnace
JPH03287025A (en) Method and device for measurement of temperature and emissivity of body and circumferential temperature
JPH06307927A (en) Radiation energy detector
JPH0933353A (en) Method for measuring radiation temperature and temperature measuring device therefor
EA039507B1 (en) Method for determination of temperature field of the heated body surface with unknown radiant heat factor
JPH02138836A (en) Radiation temperature measuring apparatus
RU2219504C2 (en) Actual temperature pyrometer
JPH06241907A (en) Radiation thermometric method and apparatus for matter in furnace

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903