JPS6041293B2 - radiation thermometer - Google Patents

radiation thermometer

Info

Publication number
JPS6041293B2
JPS6041293B2 JP54041714A JP4171479A JPS6041293B2 JP S6041293 B2 JPS6041293 B2 JP S6041293B2 JP 54041714 A JP54041714 A JP 54041714A JP 4171479 A JP4171479 A JP 4171479A JP S6041293 B2 JPS6041293 B2 JP S6041293B2
Authority
JP
Japan
Prior art keywords
light
temperature
output
receiving element
sequentially
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54041714A
Other languages
Japanese (ja)
Other versions
JPS55134324A (en
Inventor
精 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP54041714A priority Critical patent/JPS6041293B2/en
Publication of JPS55134324A publication Critical patent/JPS55134324A/en
Publication of JPS6041293B2 publication Critical patent/JPS6041293B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 本発明は、放射温度計に係り、特に、100000以下
の鋼材の真温度を、非接触で且つ信頼性高く測定できる
放射温度計に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radiation thermometer, and more particularly to a radiation thermometer that can measure the true temperature of steel materials of 100,000 or less in a non-contact manner and with high reliability.

鋼材等の被側温体表面より放出される放射エネルギーを
測定しこれを温度に変換する放射高温測定法は、被側温
体の温度を非接触で測定できるという特徴を有するが、
物体の表面現象について現在行われている理論体系が未
だ不確実であり、一方現在用いられているどの測定装置
も温度指示にある程度基本的誤差を生ずることは避けら
れない。
The radiation pyrometry method, which measures the radiant energy emitted from the surface of a heated body such as steel and converts it into temperature, has the characteristic of being able to measure the temperature of the heated body without contact.
The current theoretical system of surface phenomena of objects is still uncertain, while it is inevitable that any measurement equipment currently in use will introduce some fundamental error in temperature indication.

被測塩体が黒体であればプランクの法則で言いつくされ
ているので問題ないが、黒体でない鋼材の表面温度を工
場の生産ラインで測定するには所謂放射率ご(入,T)
、波長入、温度Tおよび鋼材と温度計間の雰囲気を厳密
に解明して行くことが正確な温度測定には不可避である
。しかし、鋼材の生産ラインはあらゆる温度あらゆる鋼
材表面状況、設備の冷却水より発生する水蒸気廃ガス等
厳密に解明して行くことが不可能に近いし、又、この状
況が時々刻々変化して行くという極めて悪条件下で真温
度測定が要求される。特に熱処理ラインの様に、温度以
外に品質、操業管理のパラメータがない所では、全放射
高温計、シリコンSi、硫化鉛PbS、インジュームア
ンチモンlnSb等ある帯域を持った受光素子を使用し
た放射温度計、ある特定の波長例えばァメカ標準局(N
atio順IBmeauofStandard)等で放
射率が正確に測定されている0.653仏、2.3仏を
使用した輝度高温計等を、主に熱処理温度とトレーサビ
リティを考慮し選択設置して来た。
If the object to be measured is a black body, there is no problem as it is fully stated by Planck's law, but in order to measure the surface temperature of a steel material that is not a black body on a factory production line, it is necessary to use the so-called emissivity (in, T).
, wavelength input, temperature T, and the atmosphere between the steel material and the thermometer must be strictly determined for accurate temperature measurement. However, it is nearly impossible to precisely understand the steel production lines at all temperatures, all steel surface conditions, steam waste gas generated from equipment cooling water, etc., and this situation changes from time to time. True temperature measurement is required under extremely adverse conditions. Particularly in places where there are no quality or operational control parameters other than temperature, such as heat treatment lines, radiation temperature measurement using a total radiation pyrometer, a photodetector with a certain band such as silicon Si, lead sulfide PbS, indium antimony lnSb, etc. For example, the American Standards Station (N
We have selected and installed brightness pyrometers with emissivities of 0.653 French and 2.3 French, whose emissivity has been accurately measured by IBmeau of Standard, etc., mainly considering heat treatment temperature and traceability.

又、場合によっては複数台設置し信頼性向上を図って来
たが、これらの温度計は原理的に誤差を生ずるので、ラ
インでの使用条件が異なれば新しい使用条件下で再度精
度トレス、調整を必要とする。一方、最近技術的に可能
となった2色温度計は、放射率の影響による誤差はかな
り小さくなったが、スペクトル放射率ご(入,)/ご(
入2)が一定でない場合は、やはり測定誤差を生ずる。
In addition, in some cases, multiple thermometers have been installed to improve reliability, but these thermometers inherently produce errors, so if the usage conditions on the line change, the accuracy must be checked and adjusted again under new usage conditions. Requires. On the other hand, two-color thermometers, which have recently become technologically possible, have considerably smaller errors due to the influence of emissivity;
If the input 2) is not constant, measurement errors will still occur.

この温度計は、又、原理的に非常に複雑な電子回路を用
いて実現することが多いので、生産ラインの近傍に設置
すると、水袷等の使用条件を充分考慮しても、周囲温度
、振動、内部回路の発熱等により電気的な誤差を発生し
やすく、厳密な温度管理が必要な所では、やはり複数台
の温度計を設置することになり、非常に高価なものとな
る。信頼性向上として複数台温度計を設置することの決
定的な欠点は、被測定物である鋼材の同じ場所を同じ角
度で視ることが困難であることが多いので、全数正確に
校正した温度計を用いた場合であっても、1oo0程度
の測定誤差は避けられないことにある。本発明は、前記
従来の欠点を解消するべくなされたもので、極めて信頼
性の高い測定結果を得ることができる放射温度計を提供
することを目的とする。
In addition, since this thermometer is often realized using electronic circuits that are theoretically very complex, if it is installed near the production line, the ambient temperature will be In places where electrical errors are likely to occur due to vibrations, heat generated by internal circuits, etc., and where strict temperature control is required, multiple thermometers must be installed, which is extremely expensive. A decisive disadvantage of installing multiple thermometers to improve reliability is that it is often difficult to view the same location on the steel material being measured from the same angle, so Even when a meter is used, a measurement error of about 100 is unavoidable. The present invention was made to eliminate the above-mentioned conventional drawbacks, and an object of the present invention is to provide a radiation thermometer that can obtain extremely reliable measurement results.

本発明は、放射温度計において、被測塩体表面より放出
される光のうち互いに異なる特定波長城の光の通過のみ
を順次許容する3波長以上の回転フィル夕と、該回転フ
ィル夕を通過した光を順次受光する、単一の受光素子と
、該受光素子の出力から、各2波長間の温度を順次算出
し、2個以上の計算値が、許容誤差範囲内であれば、そ
の平均値を測定温度として出力し、許容誤差範囲より大
であれば、測定異常として出力する演算処理回路と、を
備えることにより、前記目的を達成したものである。
The present invention provides a radiation thermometer including a rotating filter having three or more wavelengths that sequentially allows only light of specific wavelengths different from each other to pass among the light emitted from the surface of a salt body to be measured; The temperature between each two wavelengths is calculated sequentially from a single light-receiving element that sequentially receives the light, and the output of the light-receiving element, and if two or more calculated values are within the allowable error range, the average is calculated. The above object is achieved by including an arithmetic processing circuit which outputs a value as a measured temperature, and if it is larger than an allowable error range, outputs it as a measurement abnormality.

以下図面を参照して、本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

本実施例は、添付図面に示す如く、被灘温体である鋼材
10の表面より放出される光12のうち、互いに異なる
3個の特定波長城入,,入2,入3の光の通過のみを順
次許容する、モーター4により回転駆動される回転フィ
ル夕16と、該回転フィルター6を通過した光を順次受
光する、単一の受光素子18と、該受光素子18の出力
を信号処理に適したレベル迄増幅するィコラィザアンプ
20と、該ィコラィザアンプ20の出力のアナログ信号
を高速でデジタル信号に変換する高速アナログーデジタ
ル変換器(以下高速AD変換器と称する)22と、該高
速AD変換器22の出力及び前記回転フィルター6を回
転駆動するモーター4の出力に基づき、回転フィルター
6の各波長城^,,^2,入3 に対応する受光素子1
8の出力を順次入力し、これから各2波長間の温度を順
次算出し、2個以上の計算値が許容誤差範囲内であれば
その平均値を測定温度として出力し、許容範囲より大で
あれば測定異常として出力する、マイクロコンピュータ
が使用された高速ディジタル演算機24と、該高速デジ
タル演算機24出力の測定温度に対応するデジタル信号
を再びアナログ信号に変換する高速デジタル−アナログ
変換器(以下高速AD変換器と称する)26と、該高速
AD変換器26の出力を指示或いは記録する表示装置2
8とからなる。前記回転フィル夕16の互いに異なる特
定波長城入,,入2,入3としては、被測温体である鋼
材10の温度、鋼材10と温度計間の雰囲気、例えば水
蒸気、二酸化炭素等の赤外線透過率を参考にし、「灰体
」状態をほぼ満足し、且つ、受光素子18、例えば硫化
鉛(PbS)にとって充分な感度が得られる波長を選択
する。
In this embodiment, as shown in the attached drawings, out of the light 12 emitted from the surface of the steel material 10, which is the body to be heated, the light of three different specific wavelengths is transmitted. A rotary filter 16 rotated by a motor 4 that sequentially allows light to pass through the rotary filter 6, a single light receiving element 18 that sequentially receives the light that has passed through the rotary filter 6, and the output of the light receiving element 18 being subjected to signal processing. An equalizer amplifier 20 that amplifies to a suitable level, a high-speed analog-to-digital converter (hereinafter referred to as a high-speed AD converter) 22 that converts an analog signal output from the equalizer amplifier 20 into a digital signal at high speed, and the high-speed AD converter 22 Based on the output of the motor 4 and the output of the motor 4 that rotationally drives the rotary filter 6, the light receiving element 1 corresponding to each wavelength range ^,,^2,input 3 of the rotary filter 6 is selected.
8 outputs are input sequentially, and the temperature between each two wavelengths is calculated sequentially. If two or more calculated values are within the allowable error range, the average value is output as the measured temperature. A high-speed digital computing machine 24 using a microcomputer, which outputs a measurement abnormality, and a high-speed digital-to-analog converter (hereinafter referred to as (referred to as a high-speed AD converter) 26, and a display device 2 that indicates or records the output of the high-speed AD converter 26.
It consists of 8. The different specific wavelengths of the rotary filter 16 include the temperature of the steel material 10, which is the object to be measured, and the atmosphere between the steel material 10 and the thermometer, such as infrared rays such as water vapor and carbon dioxide. With reference to the transmittance, a wavelength is selected that substantially satisfies the "gray body" state and provides sufficient sensitivity for the light receiving element 18, for example lead sulfide (PbS).

測定範囲が500〜1000qoであれば、例えば2.
04仏m、2.30山m、2.64仏mの3波長が適当
である。以下作用を説明する。鋼材10から放射された
光12は、回転フィルター6により順次測定波長城〜
,^2,入3に対応した成分に分離され、受光素子18
に入力される。受光素子16の出力は、ィコラィザアン
プ20、高速AD変換器22を経て高速デジタル演算器
24に入力される。
If the measurement range is 500 to 1000 qo, for example, 2.
Three wavelengths of 0.04 m, 2.30 m, and 2.64 m are suitable. The action will be explained below. The light 12 emitted from the steel material 10 is sequentially measured at wavelengths by the rotating filter 6.
, ^2, and input 3, and the light receiving element 18
is input. The output of the light receiving element 16 is input to a high speed digital arithmetic unit 24 via an equalizer amplifier 20 and a high speed AD converter 22.

この際、高速デジタル演算器24は同時に、回転フィル
夕16を回転駆動するモータ14から同期信号15が入
力されているため、高速AD変換器22の出力が、どの
測定波長に対応しているかを出力することが可能である
。各波長域入,,^2,入3に対応して受光素子18に
入力される光の輝度は、ウィーンの式に従って次の様に
なる。L(入・,T) =ご(^,)C,入,−5exp(一C2/入,T)・
・・【1’L(入2,T)ニご(入2 )C,入2‐5
exp(一C2/^,T)・・セーLく入3,T)=ど
(^3 )CI^3 −5eXp(−C2/^3T〉‐
‐付}ここで C,ニ3.74×10‐12(W/肌)
C2=1.438(抑K)である。
At this time, since the high-speed digital arithmetic unit 24 simultaneously receives the synchronization signal 15 from the motor 14 that rotationally drives the rotary filter 16, it can determine which measurement wavelength the output of the high-speed AD converter 22 corresponds to. It is possible to output. The brightness of the light input to the light receiving element 18 corresponding to each of the wavelength ranges ENTER, ^2, and INR 3 is as follows according to Wien's formula. L(in・,T) =Go(^,)C,in,−5exp(1C2/in,T)・
... [1'L (in 2, T) Nigo (in 2) C, in 2-5
exp(1C2/^,T)...SeL 3,T)=do(^3)CI^3 -5eXp(-C2/^3T>-
-With}Here C, 23.74 x 10-12 (W/skin)
C2=1.438 (inhibition K).

従って、各波長の輝度比は、従来の2色温度計と同機に
次のようになる。
Therefore, the brightness ratio of each wavelength is as follows compared to the conventional two-color thermometer.

R.=幹帯 R2:u#宅帯 R3=缶苧手 ‘4},‘5),{61式の輝度比R,,R2,R3は
、放射縞率の直後の関数ではなく、放射率比と温度の関
数である。
R. = Trunk zone R2: u# Residential zone R3 = Kanjite'4}, '5), {The brightness ratio R,, R2, R3 of equation 61 is not a function immediately after the radiation fringe rate, but is a function of the emissivity ratio. It is a function of temperature.

しかし前記のように波長を選択した場合、放射率比は1
.0に極めて近くなるので、この放射率の影響は実質的
にはなくなり、輝度比R,,R2,R3を知ることで、
各波長間の温度T入,2,T入23,T入3,を算出す
ることができる。前記高速デジタル演算機24は、上記
の演算を行ない、各波長間の温度T^,2,T入23,
T^3,を算出する共に、各測定温度T入,2,T入2
3,T入31に対し、それぞれの温度差△T,,△T2
,△T3を次式に従って算出する。IT入12一T入2
3I:△TI …【7)IT入凶一T^3
1!ニ△T2 …{8}IT^の−T〜2
Iニ△T3 …【9)高速デジタル演算機
24は、これらの各測定温度差△T,,△T2,△T3
のうち、2個以上が許容誤差範囲以内(例えば5℃以下
)であれば、これらの温度の平均値を測定温度Toとし
て高速AD変換器26に出力する。
However, if the wavelength is selected as described above, the emissivity ratio is 1
.. Since it becomes extremely close to 0, the influence of this emissivity is virtually eliminated, and by knowing the luminance ratios R, , R2, and R3,
Temperatures T in, 2, T in 23, and T in 3 between each wavelength can be calculated. The high-speed digital calculator 24 performs the above calculation and calculates the temperature between each wavelength T^,2, T input 23,
In addition to calculating T^3, each measured temperature T input, 2, T input 2
3. Temperature difference △T,, △T2 for T input 31
, ΔT3 are calculated according to the following formula. IT entry 12-T entry 2
3I: △TI … [7] IT enters Kyouichi T^3
1! △T2 ...{8}IT^'s -T~2
Ini △T3...[9] The high-speed digital calculator 24 calculates these measured temperature differences △T,, △T2, △T3
If two or more of these temperatures are within the allowable error range (for example, 5° C. or less), the average value of these temperatures is output to the high-speed AD converter 26 as the measured temperature To.

又、2個以上の計算値の差が前記許容範囲外である場合
には、測定異常として測定温度を出力しないようにする
。この自己診断機能により、従来複数の温度計でしか実
現できなかった機能を1台の温度計で実現でき、極めて
高い信頼性の測定値を得ることが可能である。なお実施
例においては、各種演算を専用のマイクロコンピュータ
等の高速デジタル演算機で行なうようにしているので、
従来のアナログ演算に比べて精度の高い測定値が得られ
、又、測定値のドリフトが解消できる。又、同一視野か
らの入射エネルギーを回転フィル夕で分割してるように
しているため、必ず同じ視野角度の入射エネルギーを使
用することができ、複数台の温度計を別個に設置する場
合に比べて、測定値の視野、角度の評価、補正の必要が
なくなる。
Further, if the difference between two or more calculated values is outside the tolerance range, the measured temperature is not output as a measurement abnormality. This self-diagnosis function allows a single thermometer to perform functions that were previously only possible with multiple thermometers, making it possible to obtain extremely reliable measured values. In the embodiment, various calculations are performed using a high-speed digital processing machine such as a dedicated microcomputer.
Measured values with higher precision can be obtained than with conventional analog calculations, and drift in measured values can be eliminated. In addition, since the incident energy from the same field of view is divided by the rotating filter, it is possible to always use the incident energy from the same viewing angle, which is much better than when multiple thermometers are installed separately. This eliminates the need for field of view, angle evaluation, and correction of measured values.

なお前記実施例においては、表示装置28により演算結
果を直ちに表示するようにしているが、表示装置28の
代わりにインターフェイスを配談することにより、他の
制御装置等の入力とすることも勿論可能である。
In the above embodiment, the calculation results are immediately displayed on the display device 28, but it is of course possible to use an interface instead of the display device 28 to input the results to other control devices, etc. It is.

以上説明した通り、本発明は、放射温度計において、彼
額。
As explained above, the present invention is a radiation thermometer.

温体表面より放出される光のうち互いに異なる特定波長
域の光の通過のみを順次許容する3波長以上の回転フィ
ル夕と、該回転フィル夕を通過した光を順次受光する。
単一の受光素子と、該受光素子の出力から、各2波長間
の温度を順次算出し、2個以上の計算値が、許容誤差範
囲内であれば、その平均値を測定温度として出力し、許
容誤差範囲より大であれば、測定異常として出力する演
算処理回路と、を備えたので、測定雰囲気例えば水蒸気
の存在等の環境条件に拘らず、極めて精度が高く、且つ
信頼性の高い測定値を、1台の放射温度計で得ることが
できるという優れた効果を有する。
A rotating filter having three or more wavelengths that sequentially allows only light in different specific wavelength ranges to pass among the light emitted from the surface of the warm body, and the light that has passed through the rotating filter is sequentially received.
The temperature between each two wavelengths is calculated sequentially from a single light-receiving element and the output of the light-receiving element, and if two or more calculated values are within the allowable error range, the average value is output as the measured temperature. , and an arithmetic processing circuit that outputs a measurement abnormality if the error is greater than the allowable error range, allowing for extremely accurate and reliable measurements regardless of environmental conditions such as the presence of water vapor in the measurement atmosphere. It has the excellent effect that the value can be obtained with one radiation thermometer.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は、本発明に係る放射温度計の実施例の構成を
示すブロック線図である。 10・・・・・・鋼材、12・…・・光、14・・・・
・・モータ、16・・…・回転フィル夕、18・・・・
・・受光素子、20・・・・・・ィコラィザアンプ、2
2・・・・・・高速アナログ−デジタル変換器、24・
・・・・・高速デジタル演算器、26・…・・高速デジ
タルーアナログ変換器、28・・・・・・表示装置。
The accompanying drawing is a block diagram showing the configuration of an embodiment of a radiation thermometer according to the present invention. 10...Steel, 12...Light, 14...
...Motor, 16...Rotating filter, 18...
... Light receiving element, 20 ... Equalizer amplifier, 2
2...High-speed analog-to-digital converter, 24.
. . . High-speed digital arithmetic unit, 26 . . . High-speed digital-to-analog converter, 28 . . . Display device.

Claims (1)

【特許請求の範囲】[Claims] 1 被測温体表面より放出される光のうち互いに異なる
特定波長域の光の通過のみを順次許容する3波長以上の
回転フイルタと、該回転フイルタを通過した光を順次受
光する、単一の受光素子と、該受光素子の出力から、各
2波長間の温度を順次算出し、2個以上の計算値が、許
容誤差範囲内であれば、その平均値を測定温度として出
力し、許容誤差範囲より大であれば、測定異常として出
力する演算処理回路と、を備えたことを特徴とする放射
温度計。
1 A rotating filter with three or more wavelengths that sequentially allows only light in different specific wavelength ranges to pass among the light emitted from the surface of the temperature-measuring object, and a single filter that sequentially receives the light that has passed through the rotating filter. The temperature between each two wavelengths is calculated sequentially from the light-receiving element and the output of the light-receiving element, and if two or more calculated values are within the tolerance range, the average value is output as the measured temperature, and the tolerance error is calculated. A radiation thermometer characterized by comprising: an arithmetic processing circuit that outputs a measurement abnormality if the temperature exceeds the range.
JP54041714A 1979-04-05 1979-04-05 radiation thermometer Expired JPS6041293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54041714A JPS6041293B2 (en) 1979-04-05 1979-04-05 radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54041714A JPS6041293B2 (en) 1979-04-05 1979-04-05 radiation thermometer

Publications (2)

Publication Number Publication Date
JPS55134324A JPS55134324A (en) 1980-10-20
JPS6041293B2 true JPS6041293B2 (en) 1985-09-14

Family

ID=12616081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54041714A Expired JPS6041293B2 (en) 1979-04-05 1979-04-05 radiation thermometer

Country Status (1)

Country Link
JP (1) JPS6041293B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0129150B1 (en) * 1983-06-16 1989-04-26 Deutsche Forschungsanstalt für Luft- und Raumfahrt e.V. Method for the contactless radiation measurement of the temperature of an object independent of its emissivity, and device for carrying out this method
US4690293A (en) * 1985-07-17 1987-09-01 Toyota Jidosha Kabushiki Kaisha Filler cap structure for a fuel tank
US5385256A (en) * 1993-01-14 1995-01-31 Stant Manufacturing Inc. Filler neck closure cap
US5381919A (en) * 1993-10-18 1995-01-17 Stant Manufacturing Inc. Push-on fuel cap
US5772323A (en) * 1994-10-26 1998-06-30 Felice; Ralph A. Temperature determining device and process

Also Published As

Publication number Publication date
JPS55134324A (en) 1980-10-20

Similar Documents

Publication Publication Date Title
CA1158887A (en) Surface temperature measuring apparatus for object within furnace
US4919542A (en) Emissivity correction apparatus and method
JPS59206726A (en) Duplex type sensor radiation pyrometer
EP0335224A2 (en) Radiation thermometry
US20160018266A1 (en) Digital temperature determination using a radiometrically calibrated and a non-calibrated digital thermal imager
CN109163810B (en) High-temperature rotor radiation temperature measuring device and method
JPS6041293B2 (en) radiation thermometer
US3610592A (en) Method and apparatus for estimating errors in pyrometer readings
CN104697666B (en) A kind of MOCVD reaction chambers temp measuring method
Cho et al. In-Situ temperature estimation in rapid thermal processing systems using extended Kalman Filtering
CN105136311B (en) A kind of blast funnace hot blast stove vault infrared optical fiber temperature checking method
JPS55144513A (en) Measuring method of emissivity
JPH03287025A (en) Method and device for measurement of temperature and emissivity of body and circumferential temperature
JPH04276527A (en) Thermometer in furnace
Dixon Industrial radiation thermometry
CN104697638B (en) A kind of MOCVD device real-time temperature measurement system method for self-calibrating
CN113494972B (en) Device and method for monitoring temperature of blast furnace
JPH0510822A (en) Radiation temperature measuring instrument
JPS6330890Y2 (en)
JPH0933353A (en) Method for measuring radiation temperature and temperature measuring device therefor
CN117387768A (en) Single-channel infrared temperature measuring device
Jack et al. THE DESIGN OF A SIGNAL CONDITIONING & ACQUISITION ELEMENTS OF A CHOPPED BROADBAND RADIATION PYROMETER
JPH04370722A (en) Furnace thermometer
Barron Application design features for non-contact temperature measurement
JPS6215424A (en) Object temperature measuring method utilizing radiation