JPH04370722A - Furnace thermometer - Google Patents

Furnace thermometer

Info

Publication number
JPH04370722A
JPH04370722A JP3174668A JP17466891A JPH04370722A JP H04370722 A JPH04370722 A JP H04370722A JP 3174668 A JP3174668 A JP 3174668A JP 17466891 A JP17466891 A JP 17466891A JP H04370722 A JPH04370722 A JP H04370722A
Authority
JP
Japan
Prior art keywords
temperature
furnace wall
measurement
furnace
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3174668A
Other languages
Japanese (ja)
Inventor
Takashi Ohira
尚 大平
Tomio Tanaka
田中 富三男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3174668A priority Critical patent/JPH04370722A/en
Publication of JPH04370722A publication Critical patent/JPH04370722A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To make it possible to conduct measurement of the temperature of an object of measurement in a noncontact, simple and accurate manner without being affected by stray light noise from the inner wall of a furnace, by a method wherein spectral radiation luminance is detected with at least one of measuring conditions varied, the temperature of the furnace wall is measured, the spectral radiation luminance is calculated and an operation is conducted so that the spectral emissivity defined beforehand be satisfied. CONSTITUTION:A spectral radiation luminance detector 2 for detecting spectral radiation luminance from a surface to be measured with at least one or more measuring conditions out of a wavelength, polarization and a measuring angle varied and converting it into two electric signals, a furnace wall temperature device 5 for measuring the temperature of a furnace wall, and an arithmetic device 3 which calculates two spectral radiation luminances from the two spectral radiation luminance signals and the temperature of the furnace wall detected by the furnace wall temperature device 5 and executes an operation satisfying a formula expressing the relation of emissivity which is defined beforehand and proper to an object of measurement, are provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は鉄や非鉄金属の製造プロ
セスにおけるスラブ加熱炉やC.A.P.L加熱炉等に
おいて、搬送されるスラブ、薄板等被加熱物体の表面温
度を、被接触で精度良くしかも物体に悪影響を与えずに
測定する放射測温装置に関する。
[Industrial Application Field] The present invention is applicable to slab heating furnaces and C.I. A. P. The present invention relates to a radiation temperature measurement device that measures the surface temperature of a heated object such as a slab or thin plate being conveyed in an L heating furnace or the like with high accuracy without contacting the object and without adversely affecting the object.

【0002】0002

【従来の技術】従来、スラブ加熱炉で一般的に行われて
いる加熱炉内スラブの温度管理は、保護管入り熱電対で
炉内雰囲気温度を測定し、それによりスラブの温度を推
定するものであった。
[Prior Art] Conventionally, temperature control of the slab inside the heating furnace, which has been generally carried out in slab heating furnaces, involves measuring the atmospheric temperature inside the furnace with a thermocouple in a protective tube, and estimating the temperature of the slab from this. Met.

【0003】一方、放射測温法により、加熱炉内物体表
面温度を非接触で測定することが考えられるが、この場
合、加熱炉内壁からの迷光雑音に対処できる放射測温法
としては、例えば特開昭48−003680号公報のよ
うに水冷式の遮蔽板を用いる方法がある。
[0003] On the other hand, it is possible to measure the surface temperature of an object inside a heating furnace in a non-contact manner using the radiation thermometry method. There is a method using a water-cooled shielding plate as disclosed in Japanese Patent Application Laid-Open No. 48-003680.

【0004】また、特開昭55−155218号公報の
ように、非水冷式の遮蔽板を用い炉内壁からの未知の迷
光雑音を除去し、一方非水冷遮蔽板からの既知の迷光雑
音の影響を補正してスラブの表面温度を測定する方法が
ある。
In addition, as in Japanese Patent Application Laid-open No. 55-155218, unknown stray light noise from the inner wall of the reactor is removed using a non-water-cooled shielding plate, while the influence of known stray light noise from the non-water-cooled shielding plate is removed. There is a method to measure the surface temperature of the slab by correcting the

【0005】[0005]

【発明が解決しようとする課題】前記の保護管入り熱電
対で炉内雰囲気温度を測定し、それによりスラブの温度
を推定する方法では、スラブの温度を正確に推定するこ
とが困難であるため、焼上げ時間を長めに取ったり、設
定温度を高めにするなどエネルギーコストの管理上も問
題があった。
[Problem to be solved by the invention] With the above-mentioned method of measuring the temperature of the furnace atmosphere with a thermocouple in a protective tube and estimating the temperature of the slab, it is difficult to accurately estimate the temperature of the slab. There were also problems in managing energy costs, such as requiring longer baking times and setting higher temperatures.

【0006】また、前記、特開昭48−003680号
公報のように水冷式の遮蔽板を用いる方法では、加熱炉
内スラブの様に静止あるいは低速で搬送されるような物
体の測温に適用すると、被測定物体を水冷遮蔽板が冷却
してしまい品質に悪影響を及ぼすといった問題があった
[0006] Furthermore, the method using a water-cooled shielding plate as described in Japanese Patent Application Laid-Open No. 48-003680 is not applicable to measuring the temperature of an object that is stationary or transported at low speed, such as a slab in a heating furnace. Then, there was a problem that the water-cooled shielding plate cooled the object to be measured, which adversely affected the quality.

【0007】また前記、特開昭55−155218号公
報のように、非水冷式の遮蔽板を用い炉内壁からの未知
の迷光雑音を除去し、一方非水冷遮蔽板からの既知の迷
光雑音の影響を補正してスラブの表面温度を測定する方
法では補正するための演算が厄介なものとなるうえ、ス
ラブ表面性状がスケールの発生により変化し、非水冷遮
蔽板からの迷光雑音の寄与率が変化した場合に測定誤差
を生じる恐れがある等の問題があった。
Furthermore, as in the above-mentioned Japanese Patent Application Laid-open No. 155218/1984, a non-water-cooled shielding plate is used to remove unknown stray light noise from the inner wall of the reactor, while eliminating known stray light noise from the non-water-cooled shielding plate. In the method of measuring the slab surface temperature by correcting the influence, the computation for correction is complicated, and the surface properties of the slab change due to the generation of scale, which increases the contribution rate of stray light noise from non-water-cooled shielding plates. There were problems such as a risk of measurement errors occurring if the temperature changed.

【0008】本発明の目的は、スラブ加熱炉やC.A.
P.L加熱炉のように炉内において搬送される被測定物
体の温度を、炉内壁からの未知の迷光雑音の影響を受け
ずに簡易にかつ非接触で精度良く表面温度を測定する温
度計を提供することにある。
The object of the present invention is to provide a slab heating furnace and a C.I. A.
P. Provides a thermometer that can easily and accurately measure the surface temperature of an object to be measured transported in a furnace such as an L heating furnace without being affected by unknown stray light noise from the furnace inner wall without contact. It's about doing.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、波長、偏光、測定角度のうち少なくとも
1以上の測定条件を変えて被測定表面からの分光放射輝
度を検出して2つの電気信号に変換するための分光放射
輝度検出器と、炉壁温度を測定するための炉壁温度装置
と、前記2つの分光放射輝度信号及び前記炉壁温度装置
により検出した炉壁温度から次の分光放射輝度を算出し
、     Lx=εxLbλx(T)+(1−εx)Lb
λx(Ts)    Ly=εyLbλy(T)+(1
−εy)Lbλy(Ts)(ただし、Lbλx(T)は
温度T波長λxの黒体分光放射輝度、Lbλy(T)は
温度T波長λyの黒体分光放射輝度、εx及びεyは被
測定物体表面の分光放射率、Tは被測定物体表面温度、
Tsは炉壁温度)予め定義している被測定物体に固有な
放射率の関係を表す式、εy=f(εx)を満たす演算
を実行する演算装置とを設けるようにしている。
[Means for Solving the Problems] In order to achieve the above object, the present invention detects spectral radiance from a surface to be measured by changing at least one measurement condition among wavelength, polarization, and measurement angle. A spectral radiance detector for converting into two electrical signals, a furnace wall temperature device for measuring the furnace wall temperature, and a furnace wall temperature detected by the two spectral radiance signals and the furnace wall temperature device. Calculate the following spectral radiance, Lx=εxLbλx(T)+(1-εx)Lb
λx(Ts) Ly=εyLbλy(T)+(1
-εy) Lbλy(Ts) (where, Lbλx(T) is the blackbody spectral radiance at temperature T and wavelength λx, Lbλy(T) is the blackbody spectral radiance at temperature T and wavelength λy, and εx and εy are the surface of the object to be measured. , T is the surface temperature of the object to be measured,
(Ts is the furnace wall temperature) A calculation device is provided which executes calculations satisfying εy=f(εx), which is a predefined expression representing the relationship between emissivity specific to the object to be measured.

【0010】また、S/N比の悪化の防止及び、迷光雑
音輝度の算定が不正確になるのを防止するため、前記分
光放射輝度検出器の集光面及び炉壁温度測定装置の測定
点とが、前記分光放射率輝度検出器の被測定物体上の測
定視野の中心に立てた法線に対し光学的対象でかつ前記
法線と分光放射輝度検出器の測定方向の成す角度が45
°〜70°の範囲内に配置されるようにしている。
[0010] In addition, in order to prevent deterioration of the S/N ratio and to prevent inaccurate calculation of stray light noise brightness, the light collecting surface of the spectral radiance detector and the measurement point of the furnace wall temperature measuring device are is an optical object with respect to the normal line set at the center of the measurement field of view of the object to be measured of the spectral emissivity luminance detector, and the angle formed between the normal line and the measurement direction of the spectral radiance detector is 45
It is arranged within the range of 70 degrees.

【0011】[0011]

【作用】上記した手段によれば、波長、偏光、測定角度
のうち少なくとも1以上の測定条件を変えて被測定表面
からの分光放射輝度を検出し、これを分光放射輝度検出
器によって2つの電気信号に変換し、一方、炉壁温度装
置によって炉壁温度を測定し、得られた前記2つの分光
放射輝度信号及び検出した炉壁温度から、被測定物表面
からの直接熱分光放射輝度成分と測定視野の迷光雑音成
分からなるLx及びLyの分光放射輝度を算出し、予め
定義している分光放射率εy=f(εx)が所定の条件
を満たすように演算装置によって演算を実行する。した
がって、加熱炉内において搬送されると共に放射率の変
化する被測定物体の温度測定を炉内壁からの迷光雑音の
影響を受けずに非接触に、簡便に、かつ正確に行うこと
が可能になる。
[Operation] According to the above-described means, the spectral radiance from the surface to be measured is detected by changing at least one of the measurement conditions of wavelength, polarization, and measurement angle, and the spectral radiance is detected by the spectral radiance detector. On the other hand, the furnace wall temperature is measured by a furnace wall temperature device, and from the two obtained spectral radiance signals and the detected furnace wall temperature, the direct thermal spectral radiance component from the surface of the object to be measured is determined. The spectral radiances of Lx and Ly, which are composed of stray light noise components in the measurement field of view, are calculated, and the arithmetic device performs calculations so that the predefined spectral emissivity εy=f(εx) satisfies a predetermined condition. Therefore, it is possible to easily and accurately measure the temperature of an object to be measured whose emissivity changes as it is transported inside the heating furnace without being affected by stray light noise from the furnace inner wall. .

【0012】また、分光放射輝度検出器及び炉壁温度測
定装置は、スラブ表面に立てた法線に対し光学的に対象
で、かつ前記法線と分光放射輝度検出器の測定方向の成
す角度が45°〜70°の範囲内にあるように配置した
ことで、70°を越える場合の迷光雑音の輝度が被測定
物体表面からの分光放射輝度に比べて大きくなるのを防
止し、また、45°以下における検出器に入射する迷光
雑音が測定点の法線に光学的に対象な炉壁部分以外から
の放射輝度の割合が多くなるのを制限する。したがって
、S/N比の悪化の防止及び、迷光雑音輝度の算定が不
正確になるのを防止することができる。
Further, the spectral radiance detector and the furnace wall temperature measuring device are optically symmetrical to the normal line erected on the slab surface, and the angle between the normal line and the measurement direction of the spectral radiance detector is By arranging it within the range of 45° to 70°, the brightness of stray light noise when exceeding 70° is prevented from becoming larger than the spectral radiance from the surface of the object to be measured. Stray light noise incident on the detector at temperatures below 10°C limits the increase in the proportion of radiance from areas other than the reactor wall portion that is optically symmetrical to the normal to the measurement point. Therefore, it is possible to prevent deterioration of the S/N ratio and prevent inaccurate calculation of stray light noise brightness.

【0013】[0013]

【実施例1】図1は本発明による炉内温度計の一実施例
を示す正面図である。ここでは加熱炉内スラブの測温に
適用した例を示している。
Embodiment 1 FIG. 1 is a front view showing an embodiment of a furnace thermometer according to the present invention. Here, an example is shown in which it is applied to temperature measurement of a slab inside a heating furnace.

【0014】図1の実施例の説明の前に、本発明の炉内
温度の原理について説明する。
Before explaining the embodiment shown in FIG. 1, the principle of the furnace temperature of the present invention will be explained.

【0015】加熱炉内の被測定物表面からの分光放射輝
度で波長、偏光、測定角度のうち少なくとも1つ以上の
条件が異なる2種類の分光放射輝度Lx,Lyは次式で
表される。
Two types of spectral radiance Lx and Ly from the surface of the object to be measured in the heating furnace, which differ in at least one condition among wavelength, polarization, and measurement angle, are expressed by the following equations.

【0016】     Lx=εxLbλx(T)+(1−εx)Lb
λx(Ts)      (1)    Ly=εyL
bλy(T)+(1−εy)Lbλy(Ts)    
  (2)(1)(2)式右辺第1項は被測定物体から
の直接熱分光放射輝度成分であり第2項は測定視野の迷
光雑音の項である。
Lx=εxLbλx(T)+(1−εx)Lb
λx(Ts) (1) Ly=εyL
bλy(T)+(1-εy)Lbλy(Ts)
(2) The first term on the right side of equations (1) and (2) is the direct thermal spectral radiance component from the object to be measured, and the second term is the stray light noise in the measurement field of view.

【0017】この迷光雑音は、おもに分光放射輝度検出
器の視野を反射面とし検出器と光学対象上にある炉壁部
分から放射されたものであるからこの部分の炉壁温度を
何らかの方法で測定し、被測定物体表面の分光放射εx
,εyがあたえられれば(1)(2)式上の右辺第2項
の雑音項は算出することができる。
This stray light noise is mainly emitted from the part of the furnace wall that uses the field of view of the spectral radiance detector as a reflective surface and is above the detector and the optical object, so it is necessary to measure the furnace wall temperature of this part by some method. and the spectral radiation εx of the surface of the object to be measured
, εy are given, the noise term in the second term on the right side of equations (1) and (2) can be calculated.

【0018】また、検出器の視野と光学軸に対象な方向
の炉壁面に相当する面を黒色化する、あるいは積極的に
冷却制御を行う、またはその両方の手段を同時に用い(
1)(2)式右辺第2項の迷光雑音項を小さくしS/N
比を向上させ測温精度を上げる事ももちろん可能である
[0018] Furthermore, it is possible to blacken the surface corresponding to the reactor wall surface in the direction symmetrical to the field of view of the detector and the optical axis, or to actively control cooling, or to use both means at the same time (
1) Reduce the stray light noise term in the second term on the right side of equation (2) to reduce the S/N
Of course, it is also possible to improve the temperature measurement accuracy by improving the ratio.

【0019】ここで被測定物体の分光放射率が酸化等に
より変化する場合、放射率相互の関係をあらかじめ求め
(3)式で近似する。
If the spectral emissivity of the object to be measured changes due to oxidation or the like, the relationship between the emissivities is determined in advance and approximated by equation (3).

【0020】     εy=f(εx)             
                         
      (3)検出器で検出した分光放射輝度(L
x,Ly)及び検出器視野と光学対象上の炉壁温度Ts
を(1)(2)式に代入し(1)(2)(3)式を連立
させて解くことによりεx,εy,Tを算出することが
できる。
εy=f(εx)

(3) Spectral radiance (L
x, Ly) and the furnace wall temperature Ts on the detector field of view and optical object
εx, εy, and T can be calculated by substituting Equations (1) and (2) into Equations (1), (2), and (3) and solving them simultaneously.

【0021】ここで(1)(2)式において分光放射輝
度Lx,Lyの測定条件、波長、偏光、測定角度がすべ
て等しいと(1)(2)式はまったく同じ式となり互い
に独立でなくなる。
In equations (1) and (2), if the measurement conditions, wavelength, polarization, and measurement angle of the spectral radiances Lx and Ly are all equal, then equations (1) and (2) become exactly the same and are not independent of each other.

【0022】また、(3)式は     εy=εx                
                         
         (3)となるため被測定物体の温度
、及び放射率を算出できなくなる。このため(3)式が
εy≠εxでありかつεy=f(εx)となり(1)(
2)式が互いに独立となるように前記測定条件(波長、
偏光、測定角度)のうちすくなくとも1つ以上の測定条
件を変え分光放射輝度Lx,Lyを前記検出器により測
定する。 ただし、    Lx,Ly    :分光放射輝度(
W・sr−1・m−2 ) Lbλx(T):温度T波長λxの黒体分光放射輝度(
W・sr−1・m−2) Lbλy(T):温度T波長λyの黒体分光放射輝度(
W・sr−1・m−2) εx,εy    :被測定物体表面の分光放射率T 
           :被測定物体表面温度(K)T
s          :炉壁温度         
 (K)検出器、及び炉壁温度計の配置は、スラブ表面
に立てた法線に対し45°〜70°の範囲内に設置する
。この範囲内では、検出器の入射する迷光雑音の輝度が
精度良く推定できるため、前記(1)(2)式右辺第2
項の雑音項が正確に算定できるので、誤差が少なく正確
な測温ができる。しかしながら、設置する角度が70°
を越える場合、検出器に入射する迷光雑音の輝度は被測
定物表面からの分光放射輝度に比べて非常に大きくなる
ため炉壁温度計で迷光雑音源温度を計測し迷光雑音量を
補正しているとはいえS/N比が悪くなり正確な測温は
困難になる。また、設置する角度が45°未満の場合、
検出器に入射する迷光雑音は測定点法線に光学的に対象
な炉壁部分以外からの放射輝度の割合が多くなり炉壁に
温度分布がある場合、炉壁温度計で計測した炉壁温度と
迷光雑音源温度は一致しなくなる。このため迷光雑音輝
度の算定が不正確となり測温結果に誤差を生じる。
[0022] Furthermore, equation (3) is εy=εx

(3) Therefore, the temperature and emissivity of the object to be measured cannot be calculated. Therefore, equation (3) holds εy≠εx and εy=f(εx), which results in (1)(
2) The measurement conditions (wavelength,
The spectral radiances Lx and Ly are measured by the detector while changing at least one measurement condition among (polarization, measurement angle). However, Lx, Ly: Spectral radiance (
W・sr−1・m−2) Lbλx(T): Blackbody spectral radiance at temperature T and wavelength λx (
W・sr−1・m−2) Lbλy(T): Blackbody spectral radiance at temperature T and wavelength λy (
W・sr−1・m−2) εx, εy: Spectral emissivity T of the surface of the object to be measured
: Surface temperature of measured object (K)T
s: Furnace wall temperature
(K) The detector and the furnace wall thermometer are placed within the range of 45° to 70° with respect to the normal to the slab surface. Within this range, the brightness of the stray light noise incident on the detector can be estimated with high accuracy, so the second right-hand side of equations (1) and (2) above
Since the noise term in the term can be calculated accurately, accurate temperature measurement can be performed with less error. However, the installation angle is 70°
If it exceeds , the brightness of the stray light noise incident on the detector will be much larger than the spectral radiance from the surface of the object to be measured, so measure the stray light noise source temperature with a furnace wall thermometer and correct the amount of stray light noise. However, the S/N ratio deteriorates and accurate temperature measurement becomes difficult. Also, if the installation angle is less than 45°,
Stray light noise incident on the detector is caused by a large proportion of radiance coming from areas other than the optically targeted furnace wall normal to the measurement point.If there is a temperature distribution on the furnace wall, the furnace wall temperature measured by the furnace wall thermometer and the stray light noise source temperature no longer match. For this reason, the calculation of the stray light noise brightness becomes inaccurate, causing an error in the temperature measurement result.

【0023】このように本発明は検出する2つの分光放
射輝度の条件(波長、偏光、測定角度)を最適に選ぶこ
とにより放射率の変化する加熱炉内の被測定物体の温度
を迷光雑音の影響を除去して測定することが可能となる
In this way, the present invention optimally selects the conditions for the two spectral radiances (wavelength, polarization, and measurement angle) to be detected, thereby controlling the temperature of the object to be measured in the heating furnace, where the emissivity changes, by minimizing stray light noise. It becomes possible to remove the influence from measurement.

【0024】次に、図1に示す実施例の構成について説
明する。
Next, the configuration of the embodiment shown in FIG. 1 will be explained.

【0025】スラブ1の表面からの分光放射輝度は、加
熱炉均熱帯炉壁4の測定用窓から検出器2により測定し
ている。この測定は、スラブ表面に立てた法線に対し4
5°の角度から行っている。
The spectral radiance from the surface of the slab 1 is measured by the detector 2 through a measurement window in the wall 4 of the heating furnace soaking zone. This measurement is carried out by 4
This is done from a 5° angle.

【0026】検出器2の受光レンズにより集光された放
射輝度はバンドパスフィルタ(0.9μm)を通過し、
ポラライザーによりS,P各々の偏光成分に分けられ検
出素子(シリコン素子)に集光され、光電変換した後輝
度信号Lx,Lyとして演算装置3へ伝送される。
The radiance collected by the light receiving lens of the detector 2 passes through a band pass filter (0.9 μm),
The light is divided into S and P polarization components by a polarizer, focused on a detection element (silicon element), photoelectrically converted, and then transmitted to the arithmetic unit 3 as luminance signals Lx and Ly.

【0027】炉壁温度Tsは測定視野の光学対象上炉壁
中心部に設置された炉壁温度計(熱電対)5で測定して
いる。演算装置3は、輝度信号Lx,Lyと炉壁温度T
sを前述した(1)(2)式に代入し(1)(2)(3
)式を連立させεx,εy,Tを算出している。
The furnace wall temperature Ts is measured by a furnace wall thermometer (thermocouple) 5 installed at the center of the furnace wall above the optical object in the measurement field. The calculation device 3 calculates the luminance signals Lx, Ly and the furnace wall temperature T.
Substituting s into equations (1) and (2) above, we get (1) (2) (3
) equations are used to calculate εx, εy, and T.

【0028】このようにして本発明の炉内温度計を用い
てスラブ表面を測定した結果を図2に示した。同図には
、比較のため従来の炉内温度計の測定結果を示す。
FIG. 2 shows the results of measuring the slab surface using the furnace thermometer of the present invention. The figure shows the measurement results of a conventional furnace thermometer for comparison.

【0029】図2から明らかなように、本発明では炉壁
温度、及びスラブの放射率が変化しても測温誤差は、従
来の炉内温度計の測定結果より測温誤差は小さく、測温
精度の良いことがわかる。
As is clear from FIG. 2, in the present invention, even if the furnace wall temperature and the emissivity of the slab change, the temperature measurement error is smaller than that of the conventional furnace thermometer, and the temperature measurement error is smaller than that of the conventional furnace temperature meter. It can be seen that the temperature accuracy is good.

【0030】このような測温システムが期待される適用
対象は、鉄鋼業だけでもスラブ加熱炉、高輝焼鈍炉等数
多く、その他非鉄金属製造業、セラミック製造業、電子
材料製造業等での炉内測温への適用も考え合わせれば製
品品質の向上、操業管理、省エネルギー等の効果は計り
知れない程大なるものがある。
[0030] Such a temperature measurement system is expected to be applied to many areas such as slab heating furnaces and high brightness annealing furnaces in the steel industry alone, as well as furnace interiors in the non-ferrous metal manufacturing industry, ceramic manufacturing industry, electronic material manufacturing industry, etc. If you also consider its application to temperature measurement, the effects of improved product quality, operational management, energy savings, etc. will be immeasurable.

【0031】[0031]

【実施例2】本実施例は前記実施例と同一の構成をとり
、その用途、測定角度も前記実施例と同じであるが、ポ
ラライザーによる偏光は行っていない。すなわち、検出
器2の受光レンズにより集光された放射輝度はバンドパ
スフィルタ(0.9μm,0.65μm)を通過し、各
々の波長成分に分けられ検出素子(シリコン素子)に集
光され光電変換し、輝度信号Lx,Lyとして演算装置
3に伝送される。
[Embodiment 2] This embodiment has the same structure as the previous embodiment, and its application and measurement angle are also the same as those of the previous embodiment, but polarization by a polarizer is not performed. That is, the radiance collected by the light receiving lens of the detector 2 passes through a band pass filter (0.9 μm, 0.65 μm), is divided into each wavelength component, and is focused on a detection element (silicon element) to be photoelectronically transmitted. It is converted and transmitted to the arithmetic unit 3 as luminance signals Lx and Ly.

【0032】炉壁温度Tsは測定視野の光学対象上の炉
壁に設置された炉壁温度計(熱電対)5で測定している
。演算装置3は輝度信号Lx,Lyと炉壁温度Tsを前
述した(1)(2)式に代入し(1)(2)(3)式を
連立させεx,εy,Tを算出している。
The furnace wall temperature Ts is measured by a furnace wall thermometer (thermocouple) 5 installed on the furnace wall above the optical object in the measurement field. The arithmetic unit 3 substitutes the luminance signals Lx, Ly and the furnace wall temperature Ts into the above-mentioned equations (1) and (2), and combines equations (1), (2), and (3) to calculate εx, εy, and T. .

【0033】本発明の炉内温度計を適用した結果、実施
例1と同様に本発明の方が測定精度は良い事が判明した
As a result of applying the furnace thermometer of the present invention, it was found that the measurement accuracy of the present invention was better as in Example 1.

【0034】[0034]

【実施例3】図3は本発明の第3実施例を示す正面図で
ある。この実施例は、加熱炉均熱帯炉壁の2ケ所に設置
された検出器2と検出器6によってスラブ1の表面から
の放射輝度を測定するところに特徴がある。この場合の
測定角度は、スラブ表面に立てた法線に対し、検出器2
を45°の角度から測定し、検出器6を70°の角度か
ら測定している。
Embodiment 3 FIG. 3 is a front view showing a third embodiment of the present invention. This embodiment is characterized in that the radiance from the surface of the slab 1 is measured by a detector 2 and a detector 6 installed at two locations on the wall of the heating furnace soaking zone. The measurement angle in this case is that the detector 2
is measured from an angle of 45°, and the detector 6 is measured from an angle of 70°.

【0035】検出器の受光レンズにより集光された放射
輝度はバンドパスフィルタ(0.9μm)を通過し検出
素子(シリコン素子)に集光の後光電変換され輝度信号
Lx,Lyとして演算装置3に伝送される。炉壁温度T
sは測定視野の光学対象上炉壁中心部に設置された炉壁
温度計(熱電対)5で2カ所測定している。
The radiance collected by the light-receiving lens of the detector passes through a band-pass filter (0.9 μm) and is focused on a detection element (silicon element), where it is photoelectrically converted and sent to the arithmetic unit 3 as luminance signals Lx and Ly. transmitted to. Furnace wall temperature T
s is measured at two locations with a furnace wall thermometer (thermocouple) 5 installed at the center of the furnace wall above the optical object in the measurement field of view.

【0036】演算装置3は輝度信号Lx,Lyと炉壁温
度Tsを前述した(1)(2)式に代入し(1)(2)
(3)式を連立させεx,εy,Tを算出している。
The arithmetic unit 3 substitutes the luminance signals Lx, Ly and the furnace wall temperature Ts into the above-mentioned equations (1) and (2).
Equations (3) are combined to calculate εx, εy, and T.

【0037】本発明の炉内温度計を適用した結果、実施
例1と同様に本発明の方が測定精度は良い事が判明した
As a result of applying the furnace thermometer of the present invention, it was found that the measurement accuracy of the present invention was better as in Example 1.

【0038】[0038]

【実施例4】本実施例は前記実施例3と同一の構成をと
り、その用途、及び測定角度も前記実施例と同じである
が、ポラライザーを用いて処理するところに特徴がある
。すなわち、各検出器の受光レンズにより集光された放
射輝度はポラライザーによりS,P各々の偏光成分に分
けられ前記検出器2はP偏光成分、前記検出器6はS偏
光成分を検出素子(シリコン素子)に集光し光電変換し
輝度信号として出力する。検出器2からの輝度信号をL
x、検出器6からの輝度信号をLyとして演算装置3に
伝送している。
[Embodiment 4] This embodiment has the same structure as the above-mentioned embodiment 3, and its application and measurement angle are also the same as those of the above-mentioned embodiment, but the feature is that processing is performed using a polarizer. That is, the radiance collected by the light receiving lens of each detector is divided into S and P polarization components by a polarizer. The detector 2 uses a P polarization component, and the detector 6 uses a detection element (silicon element), performs photoelectric conversion, and outputs it as a luminance signal. The luminance signal from detector 2 is
x, the luminance signal from the detector 6 is transmitted to the arithmetic unit 3 as Ly.

【0039】炉壁温度Tsは各々検出器の測定視野の光
学対象上炉壁中心部に設置された炉壁温度計(熱電対)
5で2カ所測定している。演算装置3は輝度信号Lx,
Lyと炉壁温度Tsを前述した(1)(2)式に代入し
(1)(2)(3)式を連立させεx,εy,Tを算出
している。
The furnace wall temperature Ts is determined by a furnace wall thermometer (thermocouple) installed at the center of the furnace wall above the optical object in the measurement field of each detector.
5, measurements were taken at two locations. The arithmetic unit 3 receives the luminance signal Lx,
εx, εy, and T are calculated by substituting Ly and the furnace wall temperature Ts into the above-mentioned equations (1), (2), and combining equations (1), (2), and (3).

【0040】本発明の炉内温度計を適用した結果、実施
例1と同様に本発明の方が測定精度は良い事が判明した
As a result of applying the furnace thermometer of the present invention, it was found that the measurement accuracy of the present invention was better as in Example 1.

【0041】[0041]

【実施例5】本実施例は前記実施例3と同一の構成をと
り、その用途、及び測定角度も前記実施例と同じである
が、2つの検出器で集光する際の波長を限定したところ
に特徴がある。
[Example 5] This example has the same configuration as Example 3, and its application and measurement angle are also the same as in the example above, but the wavelengths used when condensing light with two detectors are limited. The place has its characteristics.

【0042】各検出器の受光レンズにより集光された放
射輝度はバンドパスフィルタ(0.9μm,0.65μ
m)を通過し各々の波長成分に分けられ前記検出器2は
波長0.9μmの成分、前記検出器6は波長0.65μ
mの成分を検出素子(シリコン素子)に集光し光電変換
し、輝度信号として出力する。検出器2からの輝度信号
をLx、検出器6からの輝度信号をLyとして演算装置
3に伝送している。
The radiance collected by the light receiving lens of each detector is filtered through a bandpass filter (0.9μm, 0.65μm).
m) and is divided into each wavelength component, and the detector 2 detects the component with a wavelength of 0.9 μm, and the detector 6 detects the component with a wavelength of 0.65 μm.
The component m is focused on a detection element (silicon element), photoelectrically converted, and output as a luminance signal. The luminance signal from the detector 2 is transmitted to the arithmetic unit 3 as Lx, and the luminance signal from the detector 6 as Ly.

【0043】炉壁温度Tsは各々検出器の測定視野の光
学対象上炉壁中心部に設置された炉壁温度計(熱電対)
5で2カ所測定している。演算装置3は輝度信号Lx,
Lyと炉壁温度Tsを前述した(1)(2)式に代入し
(1)(2)(3)式を連立させεx,εy,Tを算出
している。
The furnace wall temperature Ts is determined by a furnace wall thermometer (thermocouple) installed at the center of the furnace wall above the optical object in the measurement field of each detector.
5, measurements were taken at two locations. The arithmetic unit 3 receives the luminance signal Lx,
εx, εy, and T are calculated by substituting Ly and the furnace wall temperature Ts into the above-mentioned equations (1), (2), and combining equations (1), (2), and (3).

【0044】本発明の炉内温度計を適用した結果、実施
例1と同様に本発明の方が測定精度は良い事が判明した
As a result of applying the furnace thermometer of the present invention, it was found that the measurement accuracy of the present invention was better as in Example 1.

【0045】[0045]

【実施例6】本実施例は前記実施例3の構成にあって、
検出器2のみを用いて測定を行うようにしたところに特
徴がある。その用途は、前記各実施例と同様に加熱炉内
スラブの測温である。この場合、スラブ1の表面からの
放射輝度は加熱炉均熱帯炉壁の測定用窓から検出器2に
より測定している。また、その測定角度は、スラブ表面
に立てた法線に対し、45°の角度から測定している。
[Embodiment 6] This embodiment has the configuration of Embodiment 3, but
The feature is that the measurement is performed using only the detector 2. Its purpose is to measure the temperature of the slab inside the heating furnace, similar to the above embodiments. In this case, the radiance from the surface of the slab 1 is measured by the detector 2 through a measurement window on the wall of the heating furnace soaking zone. Moreover, the measurement angle is 45° with respect to the normal line erected on the slab surface.

【0046】検出器の受光レンズにより集光された放射
輝度はポラライザーによりS,P各々の偏光成分に分け
られた後バンドパスフィルタ(0.9μm,0.65μ
m)を通過し、各々の波長成分に分けられ、検出素子(
シリコン素子)に集光され光電変換し輝度信号Lx,L
yとして演算装置3に伝送される。
The radiance collected by the light receiving lens of the detector is divided into S and P polarization components by a polarizer, and then passed through a band pass filter (0.9 μm, 0.65 μm).
m), is separated into each wavelength component, and is sent to a detection element (
The light is focused on a silicon element) and photoelectrically converted into luminance signals Lx,L.
It is transmitted to the arithmetic unit 3 as y.

【0047】炉壁温度Tsは測定視野の光学対象上炉壁
中心部に設置された炉壁温度計(熱電対)5で測定して
いる。演算装置3は輝度信号Lx,Lyと炉壁温度Ts
を前述した(1)(2)式に代入し(1)(2)(3)
式を連立させεx,εy,Tを算出している。
The furnace wall temperature Ts is measured by a furnace wall thermometer (thermocouple) 5 installed at the center of the furnace wall above the optical object in the measurement field. The calculation device 3 calculates the luminance signals Lx, Ly and the furnace wall temperature Ts.
Substituting into equations (1) and (2) above, we get (1), (2), and (3).
εx, εy, and T are calculated using simultaneous equations.

【0048】本発明の炉内温度計を適用した結果、実施
例1と同様に本発明の方が測定精度は良い事が判明した
As a result of applying the furnace thermometer of the present invention, it was found that the measurement accuracy of the present invention was better as in Example 1.

【0049】[0049]

【実施例7】本実施例は前記実施例3と実施例4を組み
合わせたところに特徴があり、スラブ1表面からの放射
輝度は加熱炉均熱帯炉壁2カ所に設置された検出器2及
び検出器6により測定している。測定角度はスラブ表面
に立てた法線に対し検出器2は45°の角度より測定し
検出器6は70°の角度より測定している。
[Embodiment 7] This embodiment is characterized in that it is a combination of Embodiments 3 and 4, and the radiance from the surface of the slab 1 is measured by the detector 2 installed on the wall of the heating furnace and soaking zone. It is measured by the detector 6. The measurement angle is such that the detector 2 measures from an angle of 45° and the detector 6 measures from an angle of 70° with respect to the normal line erected on the slab surface.

【0050】各検出器の受光レンズにより集光された放
射輝度はバンドパスフィルタ(0.9μm,0.65μ
m)を通過し各々の波長成分に分けられた後ポラライザ
ーによりS,P各々の偏光成分に分けられ前記検出器2
は波長0.65μmのS偏光成分、前記検出器6は波長
0.9μmのP偏光成分を検出素子(シリコン素子)に
集光し光電変換し輝度信号として出力する。検出器2か
らの輝度信号をLx、検出器6からの輝度信号をLyと
して演算装置3に伝送している。
The radiance collected by the light receiving lens of each detector is filtered through a band pass filter (0.9 μm, 0.65 μm).
m), and after being separated into each wavelength component, the polarized light is separated into S and P polarized components by a polarizer and sent to the detector 2.
is an S-polarized light component with a wavelength of 0.65 μm, and the detector 6 focuses the P-polarized light component with a wavelength of 0.9 μm onto a detection element (silicon element), photoelectrically converts it, and outputs it as a luminance signal. The luminance signal from the detector 2 is transmitted to the arithmetic unit 3 as Lx, and the luminance signal from the detector 6 as Ly.

【0051】炉壁温度Tsは各々検出器の測定視野の光
学対象上炉壁中心部に設置された炉壁温度計(熱電対)
5で2カ所測定している。演算装置3は輝度信号Lx,
Lyと炉壁温度Tsを前述した(1)(2)式に代入し
(1)(2)(3)式を連立させεx,εy,Tを算出
している。
The furnace wall temperature Ts is determined by a furnace wall thermometer (thermocouple) installed at the center of the furnace wall above the optical object in the measurement field of each detector.
5, measurements were taken at two locations. The arithmetic unit 3 receives the luminance signal Lx,
εx, εy, and T are calculated by substituting Ly and the furnace wall temperature Ts into the above-mentioned equations (1), (2), and combining equations (1), (2), and (3).

【0052】本発明の炉内温度計を適用した結果、実施
例1と同様に本発明の方が測定精度は良い事が判明した
As a result of applying the furnace thermometer of the present invention, it was found that the measurement accuracy of the present invention was better as in Example 1.

【0053】以上のように本発明では、迷光雑音の補正
を行いかつ被測定物の放射率の変動補正を行って炉内の
物体の温度を計測する事ができるために迷光雑音の補正
を行わない方法に比べ図2のように高い精度で計測する
事が可能となる。
As described above, in the present invention, the stray light noise is corrected and the temperature of the object in the furnace can be measured by correcting the stray light noise and the variation in the emissivity of the object to be measured. It is possible to measure with high accuracy as shown in Figure 2 compared to methods without this method.

【0054】[0054]

【発明の効果】本発明は上記のとおり構成されているの
で、次に記載する効果を奏する。
[Effects of the Invention] Since the present invention is constructed as described above, it achieves the following effects.

【0055】請求項1の炉内温度計においては、波長、
偏光,測定角度のうち少なくとも1以上の測定条件をか
えて被測定表面からの分光放射輝度を検出して2つの電
気信号に変換するための分光放射輝度検出器と、炉壁温
度を測定するための炉壁温度装置と、前記2つの分光放
射輝度信号及び前記炉壁温度装置により検出した炉壁温
度から次の分光放射輝度を算出し、     Lx=εxLbλx(T)+(1−εx)Lb
λx(Ts)    Ly=εyLbλy(T)+(1
−εy)Lbλy(Ts)(ただし、Lbλx(T)は
温度T波長λxの黒体分光放射輝度、Lbλy(T)は
温度T波長λyの黒体分光放射輝度、εx及びεyは被
測定物体表面の分光放射率、Tは被測定物体表面温度、
Tsは炉壁温度)予め定義している被測定物体に固有な
放射率の関係を表す式、εy=f(εx)を満たす演算
を実行する演算装置とを具備するようにしたので、加熱
炉内において搬送されかつ放射率の変化する被測定物体
の温度測定を炉内壁からの迷光雑音の影響を受けずに非
接触で簡便かつ正確に行う事が可能になる。
[0055] In the furnace thermometer of claim 1, the wavelength;
A spectral radiance detector for detecting spectral radiance from the surface to be measured and converting it into two electrical signals by changing at least one measurement condition among polarization and measurement angle, and for measuring furnace wall temperature. The following spectral radiance is calculated from the furnace wall temperature device detected by the furnace wall temperature device, the two spectral radiance signals, and the furnace wall temperature detected by the furnace wall temperature device, Lx=εxLbλx(T)+(1−εx)Lb
λx(Ts) Ly=εyLbλy(T)+(1
-εy) Lbλy(Ts) (where, Lbλx(T) is the blackbody spectral radiance at temperature T and wavelength λx, Lbλy(T) is the blackbody spectral radiance at temperature T and wavelength λy, and εx and εy are the surface of the object to be measured. , T is the surface temperature of the object to be measured,
Ts is the furnace wall temperature) Since the heating furnace It becomes possible to easily and accurately measure the temperature of an object to be measured whose emissivity changes while being transported within the furnace without being affected by stray light noise from the inner wall of the furnace.

【0056】請求項2の炉内温度計においては、分光放
射輝度検出器の集光面及び炉壁温度測定装置の測定点と
が、前記分光放射輝度検出器の被測定物体上の測定視野
の中心に立てた法線に対し光学的対象でかつ前記法線と
分光放射輝度検出器の測定方向の成す角度が45°〜7
0°の範囲内に設置されるようにしたので、S/N比の
悪化の防止及び、迷光雑音輝度の算定が不正確になるの
を防止することができる。
In the furnace thermometer according to the second aspect, the light collecting surface of the spectral radiance detector and the measurement point of the furnace wall temperature measuring device are located within the measurement field of view of the object to be measured of the spectral radiance detector. It is an optical object with respect to the normal line set at the center, and the angle formed between the normal line and the measurement direction of the spectral radiance detector is 45° to 7°.
Since it is arranged within the range of 0°, it is possible to prevent deterioration of the S/N ratio and prevent inaccurate calculation of stray light noise brightness.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による炉内温度計の一実施例を示す正面
図である。
FIG. 1 is a front view showing an embodiment of a furnace thermometer according to the present invention.

【図2】本発明の炉内温度計と従来の炉内温度計を用い
て加熱炉内のスラブ温度を測定した場合の炉壁温度変化
と測定誤差の関係を示す特性図である。
FIG. 2 is a characteristic diagram showing the relationship between furnace wall temperature change and measurement error when the slab temperature in the heating furnace is measured using the furnace temperature meter of the present invention and the conventional furnace temperature meter.

【図3】本発明による炉内温度計の他の構成図を示す正
面図である。
FIG. 3 is a front view showing another configuration diagram of the furnace thermometer according to the present invention.

【符号の説明】[Explanation of symbols]

1  スラブ 2  検出器 3  演算装置 4  加熱炉均熱帯炉壁 5  炉壁温度計 1 Slab 2 Detector 3 Arithmetic device 4 Heating furnace soaking zone furnace wall 5 Furnace wall thermometer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  波長、偏光、測定角度のうち少なくと
も1以上の測定条件を変えて被測定表面からの分光放射
輝度を検出して2つの電気信号に変換するための分光放
射輝度検出器と、炉壁温度を測定するための炉壁温度装
置と、前記2つの分光放射輝度信号及び前記炉壁温度装
置により検出した炉壁温度から次の分光放射輝度を算出
し、     Lx=εxLbλx(T)+(1−εx)Lb
λx(Ts)    Ly=εyLbλy(T)+(1
−εy)Lbλy(Ts)(ただし、Lbλx(T)は
温度T、波長λxの黒体分光放射輝度、Lbλy(T)
は温度T、波長λxの黒体分光放射輝度、εx及びεy
は被測定物体表面の分光放射率、Tは被測定物体表面温
度、Tsは炉壁温度)予め定義している被測定物体に固
有な放射率の関係を表す式、εy=f(εx)を満たす
演算を実行する演算装置とを具備することを特徴とする
炉内温度計。
1. A spectral radiance detector for detecting spectral radiance from a surface to be measured and converting it into two electrical signals by changing at least one measurement condition among wavelength, polarization, and measurement angle; A furnace wall temperature device is used to measure the furnace wall temperature, and the following spectral radiance is calculated from the two spectral radiance signals and the furnace wall temperature detected by the furnace wall temperature device, and Lx=εxLbλx(T)+ (1-εx)Lb
λx(Ts) Ly=εyLbλy(T)+(1
-εy) Lbλy(Ts) (Lbλx(T) is the blackbody spectral radiance at temperature T and wavelength λx, Lbλy(T)
are temperature T, blackbody spectral radiance at wavelength λx, εx and εy
is the spectral emissivity of the surface of the object to be measured, T is the surface temperature of the object to be measured, and Ts is the furnace wall temperature. An in-furnace thermometer characterized by comprising: an arithmetic device that executes an arithmetic operation that satisfies the requirements.
【請求項2】  前記分光放射輝度検出器の集光面及び
炉壁温度測定装置の測定点とが、前記分光放射輝度検出
器の被測定物体上の測定視野の中心に立てた法線に対し
光学的対象でかつ前記法線と分光放射輝度検出器の測定
方向の成す角度が45°〜70°の範囲内に配置される
ことを特徴とする請求項1記載の炉内温度計。
2. The light condensing surface of the spectral radiance detector and the measurement point of the furnace wall temperature measuring device are aligned with respect to a normal line set at the center of the measurement field of view of the object to be measured of the spectral radiance detector. The furnace thermometer according to claim 1, which is an optical object and is arranged so that the angle between the normal line and the measurement direction of the spectral radiance detector is within a range of 45° to 70°.
JP3174668A 1991-06-20 1991-06-20 Furnace thermometer Withdrawn JPH04370722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3174668A JPH04370722A (en) 1991-06-20 1991-06-20 Furnace thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3174668A JPH04370722A (en) 1991-06-20 1991-06-20 Furnace thermometer

Publications (1)

Publication Number Publication Date
JPH04370722A true JPH04370722A (en) 1992-12-24

Family

ID=15982612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3174668A Withdrawn JPH04370722A (en) 1991-06-20 1991-06-20 Furnace thermometer

Country Status (1)

Country Link
JP (1) JPH04370722A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012177649A1 (en) * 2011-06-21 2012-12-27 Advanced Energy Industries, Inc. Compensation of stray light interference in substrate temperature measurement
US9459220B2 (en) 2011-08-26 2016-10-04 Nippon Steel & Sumitomo Metal Corporation Alloyed position determining method, alloyed position determining apparatus, and recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012177649A1 (en) * 2011-06-21 2012-12-27 Advanced Energy Industries, Inc. Compensation of stray light interference in substrate temperature measurement
US20120327970A1 (en) * 2011-06-21 2012-12-27 Advanced Energy Industries, Inc. Compensation of Stray Light Interference in Substrate Temperature Measurement
US8506161B2 (en) 2011-06-21 2013-08-13 Advanced Energy Industries, Inc. Compensation of stray light interference in substrate temperature measurement
US9459220B2 (en) 2011-08-26 2016-10-04 Nippon Steel & Sumitomo Metal Corporation Alloyed position determining method, alloyed position determining apparatus, and recording medium

Similar Documents

Publication Publication Date Title
EP0335224B1 (en) Radiation thermometry
US5166080A (en) Techniques for measuring the thickness of a film formed on a substrate
JPS59206726A (en) Duplex type sensor radiation pyrometer
JPH04370722A (en) Furnace thermometer
CN115979425B (en) Multi-wavelength mobile narrow-band window optimizing spectrum temperature measurement method
US3610592A (en) Method and apparatus for estimating errors in pyrometer readings
JPH04276527A (en) Thermometer in furnace
JPS6114529A (en) Measuring method of temperature using optical fiber
JP2566952Y2 (en) Surface temperature distribution measuring device for steel strip
JPS6049246B2 (en) Measured value compensation method in infrared temperature measurement method
JPH07174634A (en) Method for measuring temperature of object in furnace
JPS6041293B2 (en) radiation thermometer
JP2007107939A (en) Method and device of measuring temperature of steel plate
JPH05231944A (en) Method for radiometric temperature measurement using multiple wavelength
KR0159954B1 (en) Surface condition measurement apparatus
JPH03287025A (en) Method and device for measurement of temperature and emissivity of body and circumferential temperature
JPH08219891A (en) Surface condition measuring method for steel sheet and steel sheet temperature measuring method
JPH0510822A (en) Radiation temperature measuring instrument
RU2253845C1 (en) Multichannel radiation pyrometer
JPH0456145A (en) Measuring device for substrate temperature in plasma
JP2004109023A (en) Method and apparatus for measuring surface temperature of steel product
JPH0815036A (en) Method for correcting radiation thermometer and light measuring equipment by utilizing new interpolation formula
JPH03287024A (en) Method and device for simultaneous measurement of temperature and emissivity of body
JPH05273045A (en) Temperature measuring apparatus for object covered with transparent thin film
JPS6114528A (en) Measuring method of temperature using optical fiber

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903