JPH03287025A - Method and device for measurement of temperature and emissivity of body and circumferential temperature - Google Patents

Method and device for measurement of temperature and emissivity of body and circumferential temperature

Info

Publication number
JPH03287025A
JPH03287025A JP8750290A JP8750290A JPH03287025A JP H03287025 A JPH03287025 A JP H03287025A JP 8750290 A JP8750290 A JP 8750290A JP 8750290 A JP8750290 A JP 8750290A JP H03287025 A JPH03287025 A JP H03287025A
Authority
JP
Japan
Prior art keywords
temperature
spectral
measured
emissivity
spectral radiance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8750290A
Other languages
Japanese (ja)
Inventor
Tomio Tanaka
田中 富三男
Ryoichi Yoshinaga
吉永 良一
Takashi Ohira
尚 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8750290A priority Critical patent/JPH03287025A/en
Publication of JPH03287025A publication Critical patent/JPH03287025A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To know body temperature T, spectral emissivity epsilon, and the representative temperature Tw of a circumferential furnace wall by representing spectral radiation brightness signals as the sums of spectral radiation brightness signal components generated by a body to be measured and ambient stray light noise signal components, and using relational equations among spectral emissivity values. CONSTITUTION:The spectral radiation brightness signals L which different in one of the wavelength, polarization, and measured angle of heat radiation from the surface of the body in the furnace are shown by the equations I of Lx - LZ, where Lb is black body spectral radiation brightness and X, Y, and Z are indexes showing the wavelength, polarization, and measured angles. In each right side, a 1st term is a direct heat radiant component and a 2nd term is a stray light noise component from the circumferential furnace wall. When the surface of the body to be measured changes owing to oxidation, etc., spectral emissivity corresponding to the spectral radiation brightness signals varies, but when independent relation epsilony = fyx (epsilonx) and deltaz = fzy (epsilony) are already known, T, Tw, and epsilonx - epsilonz are found as their solutions. In this constitution, T, epsilon, and Tw can Tw can easily and accurately be measured even for the body which varies in emissivity epsilon.

Description

【発明の詳細な説明】 〔産業上の利用分野2 本発明は、鉄鋼業におけるスラブ加熱炉のような高温加
熱炉内において、静止あるいは低速で搬送されるスラブ
等の物体の表面温度を、精度よくしかも物体に悪影響を
与えずに計測する放射測温技術に関し、その応用は鉄鋼
業はもちろん非鉄金属、セラミック、電子材料等で加熱
炉内物体の温度測定を行なう数多くの分野で活用できる
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 2] The present invention is a method for accurately measuring the surface temperature of objects such as slabs that are conveyed stationary or at low speed in high-temperature heating furnaces such as slab heating furnaces in the steel industry. Radiation temperature measurement technology, which measures temperature without adversely affecting objects, can be applied not only to the steel industry but also to many other fields such as non-ferrous metals, ceramics, electronic materials, etc., where the temperature of objects in heating furnaces is measured.

〔従来の技術〕[Conventional technology]

スラブ加熱炉を例に取れば、従来最も一毅的に行i;わ
れでいる加熱炉内スラブの温度管理は、保護管入り熱電
対で炉内雰囲気温度を測定し、それによりスラブの温度
を推定するものであった。この方法では、スラブの温度
を正確に推定することが困難であるため、焼き上げ時間
を長く取ったり、設定温度を高めにするなどエネルギー
コストの管理上も問題があった。一方、放射測温法によ
り加熱炉内物体表面温度を非接触で測定することが考え
られるが、この場合、加熱炉内壁等からの迷光雑音除去
が問題となる。迷光雑音に対処できる放射測温法として
は、例えば弁内らの文献(弁内、大野、草鹿、“連続焼
鈍炉内真温度測定システムの開発”、鉄と鋼、Vol、
 61 、No、 8.11p2076−2C187)
のように水冷式の遮蔽板を用いる方法があるが、この方
法を加熱炉内スラブのように静止あるいは低速で搬送さ
れるような物体の測温に適用すると被測定物体を水冷遮
蔽板が冷却してしまい品質に悪影響を及ぼすといった問
題があった。
Taking a slab heating furnace as an example, the temperature control of the slab inside the heating furnace is carried out in the most consistent manner in the past. It was an estimate. With this method, it is difficult to accurately estimate the temperature of the slab, so there are problems in energy cost management, such as requiring a long baking time and setting a high temperature. On the other hand, it is possible to non-contactly measure the surface temperature of an object inside the heating furnace by radiation thermometry, but in this case, removing stray light noise from the inside wall of the heating furnace, etc. becomes a problem. As a radiation thermometry method that can deal with stray light noise, for example, the literature by Benuchi et al. (Benuchi, Ohno, Kusaka, "Development of a true temperature measurement system in a continuous annealing furnace", Tetsu-to-Hagane, Vol.
61, No. 8.11p2076-2C187)
There is a method using a water-cooled shielding plate, but when this method is applied to measuring the temperature of an object that is stationary or transported at low speed, such as a slab in a heating furnace, the water-cooled shielding plate cools the measured object. There was a problem in that this had a negative impact on quality.

また、特開昭55−155218のように、非水冷遮蔽
板を用い炉内壁からの未知の迷光雑音を除去し、一方弁
水冷遮蔽板からの既知の迷光雑音の影響を補正してスラ
ブの表面温度を測定する方法もあるが、この方法では補
正するための演算が厄介なものとなるうえ、スラブ表面
の放射率がスケールの発生により変化し、非水冷a画板
からの迷光雑音の寄与率が変化した場合に測定誤差を生
じる恐れがある等の問題があった。
In addition, as in JP-A-55-155218, a non-water-cooled shielding plate is used to remove unknown stray light noise from the reactor inner wall, and the effect of known stray light noise from the one-way valve water-cooled shielding plate is corrected to improve the surface of the slab. There is also a method of measuring temperature, but this method requires complicated calculations for correction, and the emissivity of the slab surface changes due to the generation of scale, and the contribution rate of stray light noise from the non-water-cooled drawing board increases. There were problems such as a risk of measurement errors occurring if the temperature changed.

〔発明が解決しようとする課題二 本発明の目的は、スラブ加熱炉のように高温の炉内にお
いて静止あるいは低速で搬送される被測定物体の温度を
、炉内壁からの未知の迷光雑音の影響を除いて、しかも
物体の放射率も同時に測定する方法および装置を提案す
ることにある。
[Problems to be Solved by the Invention 2] The purpose of the present invention is to reduce the influence of unknown stray light noise from the inner wall of the furnace by controlling the temperature of a measured object that is stationary or being transported at low speed in a high-temperature furnace such as a slab heating furnace. The object of the present invention is to propose a method and apparatus for simultaneously measuring the emissivity of an object.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の物体の温度と放射率および周囲代表温度の測定
方法は、被測定物体からの熱放射のうち波長、偏光、測
定角度のいずれかが互いに異なる3種類の分光放射輝度
信号を検出し、それらの各分光放射輝度信号を被測定物
体が発した分光放射輝度信号成分と周囲からの迷光雑音
信号成分との和で表した3つの式と、該分光放射輝度信
号に対応する3つの分光放射率間の関係を表す独立rヨ
2つの式との計5つの式を解くことにより被測定物体温
度、3つの分光放射率、および周囲代表温度を求めるこ
とを特徴とするものである。
The method of measuring the temperature and emissivity of an object and the representative ambient temperature of the present invention detects three types of spectral radiance signals that differ from each other in wavelength, polarization, or measurement angle among thermal radiation from the object to be measured, Three equations that express each of these spectral radiance signals as the sum of the spectral radiance signal component emitted by the object to be measured and the stray light noise signal component from the surroundings, and the three spectral radiance signals corresponding to the spectral radiance signal. This method is characterized in that the temperature of the object to be measured, the three spectral emissivities, and the representative ambient temperature are determined by solving a total of five equations, including two independent equations expressing the relationship between the ratios.

また、本発明の物体の温度と放射率および周囲代表温度
の測定装置は、被測定物体からの熱放射のうち波長、偏
光、測定角度のいずれかが互いに異なる3種類の分光放
射輝度信号を検出する手段と、それら3つの分光放射輝
度信号からそれらに対応する3つの分光放射率と温度お
よび被測定物体周囲の代表温度を求める演算装置と、演
算によって求められた被測定物体温度、3つの分光放射
率、被測定物体周囲代表温度を出力する手段と、3つの
分光放射率間の関数関係を定義するためのパラメタを該
演算装置に入力するための手段を有し、該演算装置は各
分光放射輝度信号を被測定物体が発した分光放射輝度信
号成分と周囲からの迷光雑音信号成分との和で表した3
つの式と、3つの分光放射率間の関係を表す独立な2つ
の式との計5つの式を解くことにより被測定物体温度、
3つの分光放射率、およL(周囲代表温度を計算するこ
とを特徴とするものである。
Furthermore, the device for measuring temperature and emissivity of an object and representative ambient temperature of an object according to the present invention detects three types of spectral radiance signals that differ in wavelength, polarization, or measurement angle among thermal radiation from the object to be measured. means for calculating, from the three spectral radiance signals, three corresponding spectral emissivities and temperatures, and a calculation device that calculates the representative temperature around the object to be measured, the temperature of the object to be measured calculated by the calculation, and the three spectral radiance signals. It has a means for outputting emissivity and a representative temperature around the object to be measured, and means for inputting parameters for defining a functional relationship between the three spectral emissivities into the calculation device, and the calculation device outputs each spectral emissivity. The radiance signal is expressed as the sum of the spectral radiance signal component emitted by the object to be measured and the stray light noise signal component from the surroundings.
By solving a total of five equations: one equation and two independent equations expressing the relationship between the three spectral emissivities, the temperature of the object to be measured can be determined.
It is characterized by calculating three spectral emissivities, and L (ambient representative temperature).

:作 m: 炉内にある物体表面からの熱放射のうち波長、偏光、測
定角度のいずれがか互に異なる3種類の分光放射B度信
号を検出したときそれるは次の式%式% (1) (2) (3) ただし、T : 被測定物体温度 T、: 周囲炉壁の代表温度 L : 分光放射輝度 Lb : 黒体分光放射輝度(温度Tの既知関数) ε : 分光放射率 X・y・2: 波長、偏光、測定角度の違いを表す添字 (1)〜(3)式の右辺第1項は被測定物体からの直接
熱放射光成分てあり、第2項は周囲炉壁からの迷光雑音
環である。
:Production m: When detecting three types of spectral radiation B degree signals that differ from each other in wavelength, polarization, and measurement angle among thermal radiation from the surface of an object in the furnace, the deviation is calculated using the following formula % formula % (1) (2) (3) Where, T: Temperature of the object to be measured T,: Representative temperature of the surrounding furnace wall L: Spectral radiance Lb: Blackbody spectral radiance (known function of temperature T) ε: Spectral emissivity X・y・2: Subscripts representing differences in wavelength, polarization, and measurement angle The first term on the right side of equations (1) to (3) is the direct thermal radiation component from the object to be measured, and the second term is the direct thermal radiation component from the surrounding furnace. This is a stray light noise ring from the wall.

被測定物体の表面性状が酸化等により変化すると各分光
放射輝度信号に対応する3つの分光放射率も変化するが
、これら3つの分光放射率間の関係を表す独立な関係式 %式%(4) (5) が既知であれば(1)〜(5)式は数値的に解くことが
できて、5つの未知数T、T、、ε8ε9.ε2を求め
ることができる。
When the surface properties of the object to be measured change due to oxidation, etc., the three spectral emissivities corresponding to each spectral radiance signal also change, but an independent relational expression % (4 ) (5) is known, equations (1) to (5) can be solved numerically, and the five unknowns T, T, ε8ε9. ε2 can be found.

この方法では、水冷式遮蔽板や非水冷式遮蔽板を用いる
必要がなく、また周囲炉壁の代表温度も熱電対等であら
かじめ求めておく必要もない。したがって、測定装置構
成を簡便にてき、炉壁に遮蔽板等を取り付けるための特
別な工事等をする必要もなく、放射率が変動する物体に
対しても簡単に精度よく被測定物体温度、分光放射率、
周囲代表温度を測定することができる。
In this method, there is no need to use a water-cooled shielding plate or a non-water-cooled shielding plate, and there is no need to determine the representative temperature of the surrounding furnace wall in advance using a thermocouple or the like. Therefore, the configuration of the measuring device is simple, there is no need for special construction such as attaching a shielding plate to the furnace wall, and the temperature and spectroscopy of the object to be measured can be easily and accurately measured even for objects whose emissivity fluctuates. Emissivity,
Ambient representative temperature can be measured.

〔実施例: 以下、図面を参照しながら本発明の実施例について説明
する。第1図は、本発明による測定装置の構成を示した
ものであり、1,2.3は3つの異なる分光放射輝度り
、、Ly 、L、を検出するための放射計、4は演算処
理装置、5は関数関係(4)、  (5)式を定めるた
めのパラメタ等を演算処理装置4へ入力するためのキー
ボード等の入力装置、6は演算によって得られた被測定
物体温度、分光放射率、周囲代表温度等を出力するため
の出力装置である。
[Examples: Examples of the present invention will be described below with reference to the drawings. Figure 1 shows the configuration of the measuring device according to the present invention, where 1, 2.3 are radiometers for detecting three different spectral radiances, , Ly, and L, and 4 is an arithmetic processing unit. 5 is an input device such as a keyboard for inputting parameters, etc. for determining the functional relationships (4) and (5) to the arithmetic processing device 4; 6 is an input device such as a keyboard for inputting the temperature of the object to be measured and the spectral radiation obtained by the calculation; This is an output device for outputting the rate, representative ambient temperature, etc.

1・2・3の放射計において波長を選択するためには例
えば干渉フィルターを用いる方法があり、偏光成分を選
択するためには例えば偏光ビームスプリンター等を利用
することができる。測定角度が異なる場合には各放射計
はそれぞれ別の方向角度に設置されるが、波長、あるい
は偏光が異なるだけの場合には同一筐体内に収納するこ
ともできる。もちろん波長帯域によってたとえば5IG
e、PbSなどの光電変換素子を使い分:することがて
きる。また、光ファイバーを導波路として用いて分光放
射輝度を測定することもできるのは言うまでもない。
In order to select the wavelength in radiometers 1, 2, and 3, there is a method using, for example, an interference filter, and to select the polarization component, for example, a polarization beam splinter or the like can be used. If the measurement angles are different, the radiometers are installed at different direction angles, but if they only differ in wavelength or polarization, they can be housed in the same housing. Of course, depending on the wavelength band, for example, 5IG
It is possible to use photoelectric conversion elements such as e, PbS, etc. It goes without saying that spectral radiance can also be measured using an optical fiber as a waveguide.

第2図は、本発明の方法を用いて加熱炉内スラブの温度
測定をする場合の測定系をしめしたものである。この例
はそれぞれ波長が異なる分光放射輝度信号を検出してス
ラブ温度を求めるため同じ方向から測定できるので放射
計検出器8の内部には3つの分光放射輝度信号り、、、
Ly 、L、を同時に検出する装置が一体化して収納さ
れている。
FIG. 2 shows a measurement system for measuring the temperature of a slab in a heating furnace using the method of the present invention. In this example, since the slab temperature is determined by detecting spectral radiance signals with different wavelengths, measurement can be performed from the same direction, so there are three spectral radiance signals inside the radiometer detector 8.
A device for simultaneously detecting Ly and L is housed in an integrated manner.

9はスラブ加熱炉であり炉壁代表温度はTV、10はス
ラブであり表面温度はT、3つの放射率はε8.ε1.
ε2である。
9 is a slab heating furnace with a typical furnace wall temperature of TV, 10 is a slab with a surface temperature of T, and three emissivities of ε8. ε1.
ε2.

それぞれの分光放射輝度信号は、(1)、  (2)。The respective spectral radiance signals are (1) and (2).

(3)式の右辺第一項に相当するスラブからの直接放射
成分11と、右辺第二項に相当する迷光雑音成分12が
含まれている。放射計検出器8からの3つの分光放射輝
度信号7は図示していない演算処理装置に伝送されスラ
ブ温度、3つの放射率、炉壁代表温度が演算jこよって
もとめSれる。
A direct radiation component 11 from the slab, which corresponds to the first term on the right side of equation (3), and a stray light noise component 12, which corresponds to the second term on the right side, are included. The three spectral radiance signals 7 from the radiometer detector 8 are transmitted to an arithmetic processing unit (not shown), and the slab temperature, three emissivities, and the furnace wall representative temperature are calculated and determined.

分光放射率間の関係式は、実験的に予め求めておき、多
項式を用いた簡単ビ;数学的表現で記述した。もちろん
、方程式の解法にあたっては別の関数表現ある5)は数
値表としての表現を用−5)るなど種々の方法が利用τ
きる。
The relational expression between the spectral emissivities was obtained experimentally in advance and described using a simple mathematical expression using a polynomial. Of course, various methods can be used to solve equations, such as using another functional representation (5) and a numerical table (5).
Wear.

〔発明の効果: 以上述べたように本発明によれば、高温炉内において静
止あるいは低速て搬送され、しかも表面性状の変化によ
って放射率が変動する物体であっても、物体に冷却等の
悪影響を及ぼさずに正確な温度を測定することができる
。このような測温が期待される適用対象は鉄鋼業だけで
もスラブ加熱炉、連続焼鈍炉、高輝焼鈍炉等数多く、そ
の他罪鉄金属製造業、セラミック製造業、電子材料製造
業等での炉内測温への適用も考えあわせれば製品品質の
向上、操業管理、省エネルギー等の効果は計り知れない
[Effects of the invention: As described above, according to the present invention, even if the object is conveyed stationary or at low speed in a high-temperature furnace and the emissivity changes due to changes in surface properties, the object will not be affected by adverse effects such as cooling. Accurate temperature measurements can be taken without overheating. There are many applications where such temperature measurement is expected in the steel industry, such as slab heating furnaces, continuous annealing furnaces, and high brightness annealing furnaces, as well as other furnace interiors in the ferrous metal manufacturing industry, ceramic manufacturing industry, electronic material manufacturing industry, etc. If you also consider its application to temperature measurement, the effects on product quality improvement, operational management, energy savings, etc. are immeasurable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による測定装置の構成を示した図、第2
図は本発明の方法を用いて加熱炉内スラブの温度測定を
する場合の測定系の具体例をしめしたものである。 図中の番号は以下の通りである。 1・・・分光放射計、    2・・・分光放射計、3
・・・分光放射計、    4・・・演算処理装置、5
・・・演算パラメタ入力装置、 6・・・出力装置、     7・・・分光放射輝度信
号、8・・・放射計検出器、   9・・・スラブ加熱
炉、10・・・スラブ、     11・・・直接放射
光成分、工2・・・迷光雑音成分。
Fig. 1 is a diagram showing the configuration of a measuring device according to the present invention, Fig. 2 is a diagram showing the configuration of a measuring device according to the present invention;
The figure shows a specific example of a measurement system for measuring the temperature of a slab in a heating furnace using the method of the present invention. The numbers in the figure are as follows. 1... Spectroradiometer, 2... Spectroradiometer, 3
... Spectroradiometer, 4... Arithmetic processing unit, 5
... Calculation parameter input device, 6... Output device, 7... Spectral radiance signal, 8... Radiometer detector, 9... Slab heating furnace, 10... Slab, 11...・Direct radiation component, 2nd... Stray light noise component.

Claims (1)

【特許請求の範囲】 1、被測定物体からの熱放射のうち波長、偏光、測定角
度のいずれかが互いに異なる3種類の分光放射輝度信号
を検出し、それらの各分光放射輝度信号を被測定物体が
発した分光放射輝度信号成分と周囲からの迷光雑音信号
成分との和で表した3つの式と、該分光放射輝度信号に
対応する3つの分光放射率間の関係を表す独立な2つの
式との計5つの式を解くことにより被測定物体温度、3
つの分光放射率、および周囲代表温度を求めることを特
徴とする物体の温度と放射率および周囲代表温度の測定
方法。 2、被測定物体からの熱放射のうち波長、偏光、測定角
度のいずれかが互いに異なる3種類の分光放射輝度信号
を検出する手段と、それら3つの分光放射輝度信号から
それらに対応する3つの分光放射率と温度および被測定
物体周囲の代表温度を求める演算装置と、演算によって
求められた被測定物体温度、3つの分光放射率、被測定
物体周囲代表温度を出力する手段と、3つの分光放射率
間の関数関係を定義するためのパラメタを該演算装置に
入力するための手段を有し、該演算装置は各分光放射輝
度信号を被測定物体が発した分光放射輝度信号成分と周
囲からの迷光雑音信号成分との和で表した3つの式と、
3つの分光放射率間の関係を表す独立な2つの式との計
5つの式を解くことにより被測定物体温度、3つの分光
放射率、および周囲代表温度を計算することを特徴とす
る物体の温度と放射率および周囲代表温度の測定装置。
[Claims] 1. Detect three types of spectral radiance signals that differ from each other in wavelength, polarization, or measurement angle among thermal radiation from an object to be measured, and use each of these spectral radiance signals to be measured. Three equations expressed as the sum of the spectral radiance signal component emitted by the object and the stray light noise signal component from the surroundings, and two independent equations expressing the relationship between the three spectral emissivities corresponding to the spectral radiance signal. By solving a total of five equations, the temperature of the object to be measured, 3
A method for measuring the temperature and emissivity of an object, as well as the representative ambient temperature, characterized by determining the spectral emissivity and representative ambient temperature of an object. 2. Means for detecting three types of spectral radiance signals that differ from each other in wavelength, polarization, or measurement angle among thermal radiation from an object to be measured, and a means for detecting three types of spectral radiance signals that differ from each other in wavelength, polarization, or measurement angle, and detecting three corresponding spectral radiance signals from these three spectral radiance signals. a calculation device that calculates the spectral emissivity and temperature and the representative temperature around the object to be measured; a means for outputting the temperature of the object to be measured, the three spectral emissivities and the representative temperature around the object to be measured; The computing device has means for inputting parameters for defining a functional relationship between emissivities into the computing device, and the computing device calculates each spectral radiance signal from a spectral radiance signal component emitted by the object to be measured and from the surroundings. Three equations expressed as the sum of the stray light noise signal component and
The temperature of the object to be measured, the three spectral emissivities, and the representative surrounding temperature are calculated by solving a total of five equations, including two independent equations expressing the relationships between three spectral emissivities. Measuring device for temperature, emissivity, and representative ambient temperature.
JP8750290A 1990-04-03 1990-04-03 Method and device for measurement of temperature and emissivity of body and circumferential temperature Pending JPH03287025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8750290A JPH03287025A (en) 1990-04-03 1990-04-03 Method and device for measurement of temperature and emissivity of body and circumferential temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8750290A JPH03287025A (en) 1990-04-03 1990-04-03 Method and device for measurement of temperature and emissivity of body and circumferential temperature

Publications (1)

Publication Number Publication Date
JPH03287025A true JPH03287025A (en) 1991-12-17

Family

ID=13916759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8750290A Pending JPH03287025A (en) 1990-04-03 1990-04-03 Method and device for measurement of temperature and emissivity of body and circumferential temperature

Country Status (1)

Country Link
JP (1) JPH03287025A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303513A (en) * 2001-01-30 2002-10-18 Fujitsu Ltd Observation device
CN102042993A (en) * 2010-11-23 2011-05-04 清华大学 System for measuring normal spectral emissivity of high-temperature material
WO2023223598A1 (en) * 2022-05-19 2023-11-23 Jfeスチール株式会社 Temperature measurement method, temperature measurement device, temperature control method, temperature control device, steel material manufacturing method, and steel material manufacturing equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303513A (en) * 2001-01-30 2002-10-18 Fujitsu Ltd Observation device
CN102042993A (en) * 2010-11-23 2011-05-04 清华大学 System for measuring normal spectral emissivity of high-temperature material
WO2023223598A1 (en) * 2022-05-19 2023-11-23 Jfeスチール株式会社 Temperature measurement method, temperature measurement device, temperature control method, temperature control device, steel material manufacturing method, and steel material manufacturing equipment

Similar Documents

Publication Publication Date Title
CA1158887A (en) Surface temperature measuring apparatus for object within furnace
US4881823A (en) Radiation thermometry
US20030067956A1 (en) Temperature measuring method and apparatus
JPH03287025A (en) Method and device for measurement of temperature and emissivity of body and circumferential temperature
JPS6049246B2 (en) Measured value compensation method in infrared temperature measurement method
JPH04276527A (en) Thermometer in furnace
Merchant Infrared temperature measurement theory and application
JPH03287026A (en) Method and device for simultaneous measurement of temperature and emissivity of body
JPH02138836A (en) Radiation temperature measuring apparatus
JPH03287024A (en) Method and device for simultaneous measurement of temperature and emissivity of body
JPH0510822A (en) Radiation temperature measuring instrument
JPH03287027A (en) Method and device for simultaneous measurement of temperature and emissivity of body
JPH08219891A (en) Surface condition measuring method for steel sheet and steel sheet temperature measuring method
JPH05231944A (en) Method for radiometric temperature measurement using multiple wavelength
JPH04370722A (en) Furnace thermometer
JPH02296121A (en) Surface-temperature measuring of object in heating furnace
JPH05273045A (en) Temperature measuring apparatus for object covered with transparent thin film
JPS58169038A (en) Dichroic radiation thermometer
JPH06241906A (en) Radiation thermometric method and apparatus for matter in furnace
Zhukov et al. Innovative Technologies for Continuous Thermal Control of TPPs Boilers
JP2632086B2 (en) Radiation thermometry and radiation thermometer used for the temperature measurement
JPH06147989A (en) Method and instrument for measuring surface temperature of comparatively low-temperature object
JPH0579920A (en) Dichromic radiation temperature measuring method and dichromic radiation thermometer
JPS6160364B2 (en)
CN116124294A (en) Low-temperature multispectral radiation temperature measurement method