JPH03287026A - Method and device for simultaneous measurement of temperature and emissivity of body - Google Patents

Method and device for simultaneous measurement of temperature and emissivity of body

Info

Publication number
JPH03287026A
JPH03287026A JP2087503A JP8750390A JPH03287026A JP H03287026 A JPH03287026 A JP H03287026A JP 2087503 A JP2087503 A JP 2087503A JP 8750390 A JP8750390 A JP 8750390A JP H03287026 A JPH03287026 A JP H03287026A
Authority
JP
Japan
Prior art keywords
spectral
measured
temperature
radiation source
spectral radiance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2087503A
Other languages
Japanese (ja)
Inventor
Tomio Tanaka
田中 富三男
Ryoichi Yoshinaga
吉永 良一
Takashi Ohira
尚 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2087503A priority Critical patent/JPH03287026A/en
Publication of JPH03287026A publication Critical patent/JPH03287026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To remove the influence of an unknown stray light noise from the internal wall of a furnace and to measure the temperature of a body to be measured simultaneously with spectral emissivity by detecting two kinds of spectral radiation brightness signals which differ in one of the wavelength, polarization, and measured angle of heat radiation from the surface of the body to be measured and performing arithmetic. CONSTITUTION:The surface of a slab 6 which is stationary or conveyed at a slow speed in a high-temperature furnace like a slab heating furnace is irradiated with a known spectral radiation brightness signal from a reference radiation source 1 and a spectral radiometer 2 detects the two kinds of spectral radiation brightness signal components 7 and 8 which differ in one of the wavelength, polarization, and measured angle of the heat radiation from the surface of the slab 6 from each other. The components 7 and 8 are the direct heat radiant light component from the slab 6 and the stray noise signal component from the reference radiation source 1 and two equations represented as the sums of those components and an equation showing the relation between two spectral emissivity values corresponding to the spectral radiation brightness signals, i.e. three equations are solved by an arithmetic processor 3 to measure the temperature and spectral emissivity of the slab 6 at the same time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鉄鋼業におけるスラブ加熱炉のような高温加
熱炉内において、静止あるいは低速で搬送されるスラブ
等の物体の表面温度を、精度よくしかも物体に悪影響を
与えずに計測する放射測温技術に関し、その応用は鉄鋼
業はもちろん非鉄金属、セラミック、電子材料等で加熱
炉内物体の温度測定を行なう数多くの分野で活用できる
Detailed Description of the Invention [Field of Industrial Application] The present invention is an object of the present invention to accurately measure the surface temperature of an object such as a slab that is conveyed stationary or at low speed in a high-temperature heating furnace such as a slab heating furnace in the steel industry. Radiation temperature measurement technology, which measures temperature without adversely affecting objects, can be applied not only to the steel industry but also to many other fields such as non-ferrous metals, ceramics, electronic materials, etc., where the temperature of objects in heating furnaces is measured.

〔従来の技術ニ スラブ加熱炉を例に取れば、従来最も一般的に行なわれ
ている加熱炉内スラブの温度管理は、保護管入り熱電対
で炉内雰囲気温度を測定し、それによりスラブの温度を
推定するものであった。この方法では、スラブの温度を
正確に推定することが困難であるため、焼き上げ時間を
長く取ったり、設定温度を高めにするなどエネルギーコ
ストの管理上も問題があった。一方、放射測温法により
加熱炉内物体表面温度を非接触で測定することが考えら
れるが、この場合、加熱炉内壁等からの迷光雑音除去が
問題となる。迷光雑音に対処できる放射測温法としては
、例えば弁内らの文献(弁内、大野、草鹿、“連続焼鈍
炉内真温度測定システムの開発”、鉄と鋼、Vol、6
1 、No 8 、pp2076−2087)のように
水冷式の遮蔽板を用いる方法があるが、この方法を加熱
炉内スラブのように静止あるいは低速で搬送されるよう
な物体の測温に適用すると被測定物体を水冷遮蔽板が冷
却してしまい品質に悪影響を及ぼすといった問題があっ
た。
[Conventional technology Taking a varnished slab heating furnace as an example, the most common method of controlling the temperature of the slab inside the heating furnace is to measure the atmosphere temperature inside the furnace with a thermocouple in a protective tube, and thereby adjust the temperature of the slab. It was estimated that With this method, it is difficult to accurately estimate the temperature of the slab, so there are problems in energy cost management, such as requiring a long baking time and setting a high temperature. On the other hand, it is possible to non-contactly measure the surface temperature of an object inside the heating furnace by radiation thermometry, but in this case, removing stray light noise from the inside wall of the heating furnace, etc. becomes a problem. As a radiation thermometry method that can deal with stray light noise, for example, the literature by Benuchi et al.
1, No. 8, pp. 2076-2087), there is a method using a water-cooled shielding plate, but when this method is applied to temperature measurement of objects that are stationary or transported at low speed, such as slabs in a heating furnace, There was a problem in that the water-cooled shield plate cooled the object to be measured, which adversely affected quality.

また、特開昭55−155218のように、非水冷遮蔽
板を用い炉内壁からの未知の迷光雑音を除去し、一方非
水冷遮蔽板からの既知の迷光雑音の影響を補正してスラ
ブの表面温度を測定する方法もあるが、この方法では補
正するための演算が厄介なものとするうえ、スラブ表面
の放射率がスケールの発生により変化し、非水冷遮蔽板
からの迷光雑音の寄与率が変化した場合に測定誤差を生
じる恐れがある等の問題があった。
In addition, as in JP-A-55-155218, unknown stray light noise from the reactor inner wall is removed using a non-water-cooled shielding plate, while the effect of known stray light noise from the non-water-cooled shielding plate is corrected to improve the surface of the slab. There is also a method of measuring temperature, but this method requires complicated calculations for correction, and the emissivity of the slab surface changes due to the generation of scale, which increases the contribution rate of stray light noise from non-water-cooled shielding plates. There were problems such as a risk of measurement errors occurring if the temperature changed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、スラブ加熱炉のように高温の炉内にお
いて静止あるいは低速で搬送される被測定物体の温度を
、炉内壁からの未知の迷光雑音の影響を除いて、しかも
物体の放射率も同時に測定する方法および装置を提案す
ることにある。
The purpose of the present invention is to measure the temperature of an object to be measured that is stationary or transported at low speed in a high-temperature furnace such as a slab heating furnace, while eliminating the influence of unknown stray light noise from the furnace inner wall, and by measuring the emissivity of the object. The object of the present invention is to propose a method and apparatus for simultaneously measuring

〔課題を解決するための手段〕[Means to solve the problem]

本発明の温度と放射率の同時測定方法は、被測定物体表
面に既知の分光放射輝度信号を参照放射源により照射し
、被測定物体表面から熱放射のうち波長、偏光、測定角
度のいずれかが互いに異なる2種類の分光放射輝度信号
を検出し、それらの各分光放射輝度信号を被測定物体が
発した分光放射輝度信号成分と参照放射源からの迷光雑
音信号成分との和で表した2つの式と、該分光放射輝度
信号に対応する2つの分光放射率間の関係を表す式との
計3つの式を解くことにより被測定物体温度と2つの分
光放射率を求めることを特徴とするものである。
The simultaneous temperature and emissivity measurement method of the present invention irradiates the surface of the object to be measured with a known spectral radiance signal using a reference radiation source, and detects any one of the wavelength, polarization, and measurement angle of the thermal radiation from the surface of the object to be measured. Two types of spectral radiance signals that are different from each other are detected, and each of these spectral radiance signals is expressed as the sum of the spectral radiance signal component emitted by the object to be measured and the stray light noise signal component from the reference radiation source. The temperature of the object to be measured and the two spectral emissivities are determined by solving a total of three equations: one equation representing the relationship between the two spectral emissivities corresponding to the spectral radiance signal. It is something.

また、本発明の温度と放射率の同時測定装置は、被測定
物体表面に既知の分光放射輝度信号を照射する参照放射
源と、被測定物体表面からの熱放射のうち波長、偏光、
測定角度のいずれかが互いに異?よる2種類の分光放射
輝度信号を検出する手段と、それら2つの分光放射輝度
信号からそれらに対応する2つの分光放射率と温度を求
める演算装置と、演算によって求められた被測定物体温
度、2つの分光放射率を出力する手段と、2つの分光放
射率間の関数関係を定義するためのパラメタを該演算装
置に入力するための手段を有し、該演算装置は各分光放
射輝度信号を被測定物体が発した分光放射輝度信号成分
と参照放射源からの迷光雑音信号成分との和で表した2
つの式と、2つの分光放射率間の関係を表す式との計3
つの式を解くことにより被測定物体温度と2つの分光放
射率を計算することを特徴とするものである。
The simultaneous temperature and emissivity measurement device of the present invention also includes a reference radiation source that irradiates the surface of the object to be measured with a known spectral radiance signal, and a wavelength, polarization, and
Are any of the measurement angles different from each other? means for detecting two types of spectral radiance signals, a calculation device for calculating two corresponding spectral emissivities and temperatures from the two spectral radiance signals, and a temperature of the object to be measured determined by the calculation, 2. and means for inputting parameters for defining a functional relationship between the two spectral emissivities into the arithmetic device, and the arithmetic device receives each spectral radiance signal. 2 expressed as the sum of the spectral radiance signal component emitted by the measurement object and the stray light noise signal component from the reference radiation source.
A total of 3 equations: one equation and one expressing the relationship between two spectral emissivities
This method is characterized by calculating the temperature of the object to be measured and two spectral emissivities by solving two equations.

〔作 用〕[For production]

炉内にある物体表面からの熱放射のうち波長、偏光、測
定角度のいずれかが互に異なる2種類の分光放射輝度信
号を検出したときそれらは次の式%式% () (1) () (2) ただし、 T :被測定物体温度 Tr :参照放射源のみかけ温度 L :分光放射輝度 り、;黒体分光放射輝度 (温度の既知関数) ε :分光放射率 x、y:波長、偏光、測定角度の違いを表す添字 (1)〜(2〉式の右辺第1項は被測定物体からの直接
熱放射光成分であり、第2項は参照放射源からの迷光雑
音環である。
When detecting two types of spectral radiance signals that differ in wavelength, polarization, or measurement angle from the heat radiation from the surface of an object in the furnace, they are calculated using the following formula % formula % () (1) ( ) (2) Where, T: Temperature of the object to be measured Tr: Apparent temperature of the reference radiation source L: Spectral radiance,; Blackbody spectral radiance (known function of temperature) ε: Spectral emissivity x, y: Wavelength, The first term on the right side of the subscripts (1) and (2) expressing the difference in polarization and measurement angle is the direct thermal radiation component from the object to be measured, and the second term is the stray light noise ring from the reference radiation source. .

被測定物体の表面性状が酸化等により変化すると各分光
放射輝度信号に対応する3つの分光放射率も変化するが
、これら2つの分光放射率間の関係を表す式 %式%(3) が既知であれば(1)〜(3)式は数値的に解くことが
できて、3つの未知数T、ε8 ・ε、を求めることが
できる。
When the surface properties of the object to be measured change due to oxidation, etc., the three spectral emissivities corresponding to each spectral radiance signal also change, but the formula % (3) expressing the relationship between these two spectral emissivities is known. If so, equations (1) to (3) can be solved numerically, and the three unknowns T, ε8·ε, can be obtained.

この方法では、加熱炉内のように未知の迷光雑音が存在
する環境においても参照放射源によって既知の迷光雑音
雰囲気を形成し、スラブのように表面が酸化することに
よって放射率が変動する物体に対しても簡単に精度よく
被測定物体温度、分光放射率を測定することができる。
This method uses a reference radiation source to create a known stray light noise atmosphere even in an environment where unknown stray light noise exists, such as in a heating furnace, and can be applied to an object whose emissivity fluctuates due to surface oxidation, such as a slab. The temperature and spectral emissivity of the object to be measured can be easily and accurately measured.

参照放射源として熱放射源を用いるときはその温度T、
を熱電対等により測定してLbx (T、 ) 。
When a thermal radiation source is used as a reference radiation source, its temperature T,
Lbx (T, ) is measured using a thermocouple or the like.

Lby(”rr)を既知とする方法や、分光放射計で直
接参照放射源表面の分光放射輝度Lby (”rr )
 。
The spectral radiance Lby ("rr) of the source surface can be directly referenced using a spectroradiometer.
.

Lby(”rr )を測定する方法などが利用できる。A method of measuring Lby("rr"), etc. can be used.

また、参照放射源としてミラー等の反射体を用いるとき
は(1)、  (2>式はそれぞれり、−ε8・Lb、
I (T)+ρrX・(1−εX)・Lb、(T)(4
) Ly−ε= ’ Lby (T>+ρ、y−(1−εy
) ・Lby (T>(5) ただし、ρrX’ ρ、y:反射体の実効的分光反射率
で表される。したがって、(3)、  (4)、  (
5)式を解くことにより温度と2つの分光放射率を求め
ることができる。反射体の実効的分光反射率は予め実験
等により求めておけばよい。
In addition, when using a reflector such as a mirror as a reference radiation source, the equations (1) and (2> are respectively expressed as -ε8・Lb,
I (T)+ρrX・(1−εX)・Lb, (T)(4
) Ly−ε=′ Lby (T>+ρ, y−(1−εy
) ・Lby (T>(5) However, ρrX' ρ, y: Represented by the effective spectral reflectance of the reflector. Therefore, (3), (4), (
5) Temperature and two spectral emissivities can be determined by solving the equations. The effective spectral reflectance of the reflector may be determined in advance through experiments or the like.

〔実施例: 以下、図面を参照しながら本発明の実施例について説明
する。第1図は、本発明の方法を用いて加熱炉内スラブ
の温度測定をする場合の測定系の具体例を概念的に示し
た図である。lは参照放射源、2は2つの異iよる分光
放射輝度L8 ・Lyを検出するための分光放射計、3
は演算処理装置、4は関数関係(3)式を表すためのパ
ラメタ等を演算処理装置3へ入力するためのキーボード
等の入力装置、5は演算によって得られた被測定物体温
度、分光放射率を出力するための出力装置、6は被測定
物体であるスラブ、7は(1)、  (2)式右辺第1
項で表されるスラブからの直接放射輝度成分、8は(1
)、  (2)式あるヒ・)は(4)、  (5)式右
辺第2項て表される参照放射源からの迷光雑音成分であ
る。
[Examples: Examples of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram conceptually showing a specific example of a measurement system for measuring the temperature of a slab in a heating furnace using the method of the present invention. l is a reference radiation source, 2 is a spectroradiometer for detecting the spectral radiance L8 ・Ly due to two different i, 3
is an arithmetic processing unit, 4 is an input device such as a keyboard for inputting parameters etc. for expressing the functional relationship (3) to the arithmetic processing unit 3, and 5 is the temperature of the object to be measured and the spectral emissivity obtained by the calculation. 6 is the slab that is the object to be measured, 7 is the first right-hand side of equations (1) and (2).
The direct radiance component from the slab, 8, is expressed by the term (1
), (2) is the stray light noise component from the reference radiation source expressed as the second term on the right side of equations (4) and (5).

第1図にはスラブ加熱炉を図示していデ;いが、参照放
射源は炉内設置しても、炉外に設置してもよい。参照放
射源として熱放射源を用いる場合には炉内j二設置する
ことが比較的容易であり、また測定点から参照放射源を
見込む立体角を大きくすることにより炉内壁からの未知
の迷光雑音成分を遮蔽する効果を高める二とも容易にな
る。参照放射源として反射体を用いる場合には、その表
面の実効的分光反射率を高く一定に保つために炉外に設
置することが望まししハ。
Although a slab heating furnace is shown in FIG. 1, the reference radiation source may be located within the furnace or outside the furnace. When using a thermal radiation source as a reference radiation source, it is relatively easy to install it inside the furnace, and by increasing the solid angle at which the reference radiation source is viewed from the measurement point, unknown stray light noise from the furnace inner wall can be reduced. It also makes it easier to increase the effect of shielding components. When using a reflector as a reference radiation source, it is desirable to install it outside the reactor in order to keep the effective spectral reflectance of its surface high and constant.

2の分光放射計におLハで波長を選択するためには例え
ば干渉フィルターを用5)る方法があり、偏光成分を選
択するためには例えば偏光ビームスプリッタ−等を利用
することができる。測定角度が異なる場合には各放射計
はそれぞれ別の方向角度に設置されるが、第1図に示し
た具体例のように波長、あるいは偏光が異なるだけの場
合には同一筐体内に収納することもできる。もちろん波
長帯域によってたとえばSi 、 Ge 、 PbSな
どの光電変換素子を使い分けることができる。また、光
ファイバーを導波路として用いて分光放射輝度を測定す
ることもできるのは言うまでもない。
In order to select the wavelength in the spectroradiometer described in 2, there is a method of using, for example, an interference filter5), and to select the polarization component, for example, a polarizing beam splitter or the like can be used. If the measurement angles are different, each radiometer is installed at a different direction and angle, but if the wavelength or polarization is only different, as in the example shown in Figure 1, they are housed in the same housing. You can also do that. Of course, photoelectric conversion elements such as Si, Ge, and PbS can be used depending on the wavelength band. It goes without saying that spectral radiance can also be measured using an optical fiber as a waveguide.

分光放射率間の関係式は、実験的に予め求めておき、多
項式を用いた簡単な数学的表現で記述した。もちろん、
方程式の解決にあたっては別の関数表現あるいは数値表
としての表現を用いるなど種々の方法が利用できる。
The relational expression between the spectral emissivities was experimentally determined in advance and described using a simple mathematical expression using a polynomial. of course,
Various methods can be used to solve equations, such as using another functional expression or a numerical table.

〔発明の効果二 以上述べたように本発明によれば、高温炉内において静
止あるいは低速で搬送され、しかも表面性状の変化によ
って放射率が変動する物体であっても、物体に冷却等の
悪影響を及ぼさずに正確な温度を測定することができる
。このような測温か期待される適用対象は鉄鋼業だけで
もスラブ加熱炉、連続焼鈍炉、高輝焼鈍炉等数多く、そ
の他非鉄金7萬製造業、セラミック製造業、電子材料製
造業等での炉内測温への適用も考えあわせれば製品品質
の向上、漬菜管理、省エネルギー等の効果は計り知れな
い。
[Effects of the Invention 2] As described above, according to the present invention, even if an object is conveyed stationary or at low speed in a high-temperature furnace and whose emissivity varies due to changes in surface properties, the object will not be affected by adverse effects such as cooling. Accurate temperature measurements can be taken without overheating. This kind of temperature measurement is expected to be applied to many areas such as slab heating furnaces, continuous annealing furnaces, and high brightness annealing furnaces in the steel industry alone, as well as in the furnaces of non-ferrous metal manufacturing industries, ceramic manufacturing industries, electronic material manufacturing industries, etc. If you also consider its application to temperature measurement, the effects of improving product quality, managing pickled vegetables, saving energy, etc. are immeasurable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を用いて加熱炉内スラブの温度測
定をする場合の測定系の具体例を概念的に示した図であ
る。 図中の番号は以下の通りである。 1・・・参照放射源、    2・・・分光放射計、3
・・・演算処理装置、 4・・・演算パラメタ入力装置、 5・・・出力装置、     6・・・スラブ、7・・
・直接放射光成分、 8・・・迷光雑音成分。
FIG. 1 is a diagram conceptually showing a specific example of a measurement system for measuring the temperature of a slab in a heating furnace using the method of the present invention. The numbers in the figure are as follows. 1... Reference radiation source, 2... Spectroradiometer, 3
...Arithmetic processing device, 4...Arithmetic parameter input device, 5...Output device, 6...Slab, 7...
・Direct radiation component, 8... Stray light noise component.

Claims (1)

【特許請求の範囲】 1、被測定物体表面に既知の分光放射輝度信号を参照放
射源により照射し、被測定物体表面からの熱放射のうち
波長、偏光、測定角度のいずれかが互いに異なる2種類
の分光放射輝度信号を検出し、それらの各分光放射輝度
信号を被測定物体が発した分光放射輝度信号成分と参照
放射源からの迷光雑音信号成分との和で表した2つの式
と、該分光放射輝度信号に対応する2つの分光放射率間
の関係を表す式との計3つの式を解くことにより被測定
物体温度と2つの分光放射率を求めることを特徴とする
物体の温度と放射率の同時測定方法。 2、被測定物体表面に既知の分光放射輝度信号を照射す
る参照放射源と、被測定物体表面からの熱放射のうち波
長、偏光、測定角度のいずれかが互いに異なる2種類の
分光放射輝度信号を検出する手段と、それら2つの分光
放射輝度信号からそれらに対応する2つの分光放射率と
温度を求める演算装置と、演算によって求められた被測
定物体温度、2つの分光放射率を出力する手段と、2つ
の分光放射率間の関数関係を定義するためのパラメタを
該演算装置に入力するための手段を有し、該演算装置は
各分光放射輝度信号を被測定物体が発した分光放射輝度
信号成分と参照放射源からの迷光雑音信号成分との和で
表した2つの式と、2つの分光放射率間の関係を表す式
との計3つの式を解くことにより被測定物体温度と2つ
の分光放射率を計算することを特徴とする物体の温度と
放射率の同時測定装置。 3、参照放射源として、熱放射源を用いることを特徴と
する請求項2記載の物体の温度と放射率の同時測定装置
。 4、参照放射源として、被測定物体が発する分光放射輝
度信号を再び被測定物体表面に再入射させるための反射
体を用いることを特徴とする請求項2記載の物体の温度
と放射率の同時測定装置。
[Claims] 1. The surface of the object to be measured is irradiated with a known spectral radiance signal by a reference radiation source, and the thermal radiation from the surface of the object to be measured has a different wavelength, polarization, or measurement angle. 2. Two equations that detect various types of spectral radiance signals and express each of the spectral radiance signals as the sum of the spectral radiance signal component emitted by the object to be measured and the stray light noise signal component from the reference radiation source; The temperature of the object and the equation representing the relationship between the two spectral emissivities corresponding to the spectral radiance signal, and the temperature of the object to be measured and the two spectral emissivities are determined by solving a total of three equations. Simultaneous emissivity measurement method. 2. A reference radiation source that irradiates a known spectral radiance signal onto the surface of the object to be measured, and two types of spectral radiance signals that differ in wavelength, polarization, or measurement angle among thermal radiation from the surface of the object to be measured. a calculation device for calculating two corresponding spectral emissivities and temperatures from the two spectral radiance signals, and a means for outputting the temperature of the object to be measured and the two spectral emissivities obtained by the calculations. and means for inputting parameters for defining a functional relationship between two spectral emissivities into the arithmetic device, and the arithmetic device calculates each spectral radiance signal from the spectral radiance emitted by the object to be measured. The measured object temperature and A device for simultaneously measuring the temperature and emissivity of an object, characterized by calculating two spectral emissivities. 3. The device for simultaneously measuring the temperature and emissivity of an object according to claim 2, wherein a thermal radiation source is used as the reference radiation source. 4. Simultaneous measurement of temperature and emissivity of an object according to claim 2, characterized in that a reflector is used as the reference radiation source to cause the spectral radiance signal emitted by the object to be measured to re-enter the surface of the object to be measured. measuring device.
JP2087503A 1990-04-03 1990-04-03 Method and device for simultaneous measurement of temperature and emissivity of body Pending JPH03287026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2087503A JPH03287026A (en) 1990-04-03 1990-04-03 Method and device for simultaneous measurement of temperature and emissivity of body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2087503A JPH03287026A (en) 1990-04-03 1990-04-03 Method and device for simultaneous measurement of temperature and emissivity of body

Publications (1)

Publication Number Publication Date
JPH03287026A true JPH03287026A (en) 1991-12-17

Family

ID=13916787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2087503A Pending JPH03287026A (en) 1990-04-03 1990-04-03 Method and device for simultaneous measurement of temperature and emissivity of body

Country Status (1)

Country Link
JP (1) JPH03287026A (en)

Similar Documents

Publication Publication Date Title
US5624590A (en) Semiconductor processing technique, including pyrometric measurement of radiantly heated bodies and an apparatus for practicing this technique
CA1158887A (en) Surface temperature measuring apparatus for object within furnace
EP0335224A2 (en) Radiation thermometry
US5326172A (en) Multiwavelength pyrometer for gray and non-gray surfaces in the presence of interfering radiation
US3610592A (en) Method and apparatus for estimating errors in pyrometer readings
JPH03287026A (en) Method and device for simultaneous measurement of temperature and emissivity of body
JPH03287025A (en) Method and device for measurement of temperature and emissivity of body and circumferential temperature
JPS6049246B2 (en) Measured value compensation method in infrared temperature measurement method
JPH04276527A (en) Thermometer in furnace
JPH06129911A (en) Method and apparatus for measurement of surface temperature of molten liquid inside crystal pulling furnace
JPH07174634A (en) Method for measuring temperature of object in furnace
JPH02296121A (en) Surface-temperature measuring of object in heating furnace
JPH02138836A (en) Radiation temperature measuring apparatus
JPH0510822A (en) Radiation temperature measuring instrument
JP2007107939A (en) Method and device of measuring temperature of steel plate
JPH03287027A (en) Method and device for simultaneous measurement of temperature and emissivity of body
JPH06241906A (en) Radiation thermometric method and apparatus for matter in furnace
JPS6160364B2 (en)
JPH08285692A (en) Semiconductor processing technology including measurement ofradiated and heated main body by pyrometer and equipment forexecuting technology thereof
JPH05507356A (en) Object temperature measurement method and device and heating method
JPH06147989A (en) Method and instrument for measuring surface temperature of comparatively low-temperature object
Zhukov et al. Innovative Technologies for Continuous Thermal Control of TPPs Boilers
JPH0344527A (en) Temperature measuring method and apparatus
Kreider et al. Lightpipe proximity effects on Si wafer temperature in rapid thermal processing tools
JPH05231944A (en) Method for radiometric temperature measurement using multiple wavelength