JPS6160364B2 - - Google Patents

Info

Publication number
JPS6160364B2
JPS6160364B2 JP55102114A JP10211480A JPS6160364B2 JP S6160364 B2 JPS6160364 B2 JP S6160364B2 JP 55102114 A JP55102114 A JP 55102114A JP 10211480 A JP10211480 A JP 10211480A JP S6160364 B2 JPS6160364 B2 JP S6160364B2
Authority
JP
Japan
Prior art keywords
temperature
radiometer
shielding plate
furnace
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55102114A
Other languages
Japanese (ja)
Other versions
JPS5726721A (en
Inventor
Tooru Inochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10211480A priority Critical patent/JPS5726721A/en
Priority to US06/285,192 priority patent/US4435092A/en
Priority to CA000382189A priority patent/CA1158887A/en
Priority to BE0/205482A priority patent/BE889730A/en
Priority to DE3129139A priority patent/DE3129139C2/en
Priority to NL8103499A priority patent/NL190671C/en
Priority to GB8122977A priority patent/GB2082767B/en
Priority to FR8114432A priority patent/FR2487513A1/en
Publication of JPS5726721A publication Critical patent/JPS5726721A/en
Publication of JPS6160364B2 publication Critical patent/JPS6160364B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0044Furnaces, ovens, kilns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/064Ambient temperature sensor; Housing temperature sensor; Constructional details thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)
  • Control Of Heat Treatment Processes (AREA)

Description

【発明の詳細な説明】 本発明は、高温炉内の物体の表面温度を放射測
温する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for radiation-measuring the surface temperature of an object in a high-temperature furnace.

熱延工程に先立つ加熱炉内のスラブの温度は圧
延のためにもまた熱管理上からも正確に測定した
いものの1つであるが、加熱炉は炉壁部分がスラ
ブより高温である即ち外光雑音が被測温対象より
強い放射測温環境なので強力な外光雑音排除手段
が必要である。放射測温における外光雑音の排除
には水冷遮蔽筒が有効であるが、高温加熱炉内に
水冷遮蔽筒を持ち込むことは、被測温物体を局部
的に冷却する恐れがある、水漏れを生じると重大
な事故に発展する恐れがある等の理由で好ましく
ない。そこで遮蔽筒は炉温により加熱されるまゝ
にし、別途該遮蔽筒の温度を実測して補正して正
確な被測温対象温度を求めるという測温方法を案
出し、先に出願した(特願昭54―63469号)。しか
し遮蔽筒自身が千度以上にもなる場合は遮蔽筒温
度を熱電対で実測することも困難になつてくる。
The temperature of the slab in the heating furnace prior to the hot rolling process is one of the things that needs to be accurately measured both for rolling purposes and for heat management reasons. Since this is a radiation temperature measurement environment where the noise is stronger than the temperature of the object to be measured, a powerful means for eliminating outside light noise is required. A water-cooled shield tube is effective in eliminating external light noise in radiation temperature measurement, but bringing a water-cooled shield tube into a high-temperature heating furnace may cause water leaks that may locally cool the object to be measured. This is undesirable because if it occurs, it may lead to a serious accident. Therefore, we devised a temperature measurement method in which the shielding cylinder is left to be heated by the furnace temperature, and the temperature of the shielding cylinder is actually measured and corrected to obtain the accurate temperature of the object to be measured. (Gan-Sho 54-63469). However, if the temperature of the shield tube itself is over 1,000 degrees, it becomes difficult to actually measure the temperature of the shield tube with a thermocouple.

本発明はかゝる点を改善するもので、放射計を
遮蔽筒の測温に利用し、熱電対の使用を不要にし
ようとするものである。即ち本発明の炉内物体の
表面温度測定装置は炉内の被測温物体に対向させ
て走査型放射計を配置し、該放射計の被測温物体
への光路を中間部に有孔遮蔽板を持つ耐熱遮蔽筒
で囲み、該有孔遮蔽板の上方と下方とでそれぞれ
黒体炉を構成させかつ前記放射計を、有孔遮蔽板
の孔を通して被測温物体をおよび有孔遮蔽板の孔
の周囲の遮蔽板部を走査するように構成し、更に
該放射計が有孔遮蔽板の孔を通して入射する放射
エネルギを受光するときの放射計出力と該孔の周
囲の遮蔽板部からの放射エネルギを受光するとき
の放射計出力とから被測温物体の温度を求める演
算装置を設けてなることを特徴とするが、次に実
施例を参照しながらこれを詳細に説明する。
The present invention aims to improve these points by using a radiometer to measure the temperature of the shield tube, thereby eliminating the need for thermocouples. That is, the device for measuring the surface temperature of an object in a furnace according to the present invention has a scanning radiometer placed opposite the object to be measured in the furnace, and a perforated shield in the middle of the optical path of the radiometer to the object to be measured. The radiometer is surrounded by a heat-resistant shielding cylinder having a plate, and the upper and lower parts of the perforated shielding plate constitute a blackbody furnace, and the temperature of the object to be measured is passed through the hole in the perforated shielding plate, and the perforated shielding plate is connected to the radiometer. The radiometer is configured to scan the shielding plate portion around the hole, and the radiometer output when the radiometer receives radiant energy incident through the hole of the perforated shielding plate and from the shielding plate portion around the hole. The present invention is characterized in that it is equipped with an arithmetic device that calculates the temperature of the temperature-measuring object from the radiometer output when receiving the radiant energy, which will be described in detail below with reference to embodiments.

図面で10は高温加熱炉の炉壁、12は該加熱
炉内の被測温物体で本例ではスラブである。14
は走査型放射計で、物体12に対向して炉外に設
置され、該物体との間の光路を遮蔽筒16で包囲
する。遮蔽筒16は炭化硅素(SiC)などの耐熱
材で作られ、中間部内部には有孔遮蔽板16aを
設けられ、竹筒状をなす。16bはその孔であ
る。この遮蔽筒は遮蔽板16aとその上方の遮蔽
筒部分、および遮蔽板16aとその下方の遮蔽筒
部分が、それぞれ黒体炉BF1,BF2を構成する。
この目的で各部は黒体炉条件を満足するように長
さLと径Dとの比L/Dを1〜5以上に選んだり
また内面黒化、粗面化処理などをするとよい。物
体10は移動するので遮蔽筒16の下端面と物体
12との間には空隙を設けておくが、この空隙長
Hは炉壁等からの外光雑音が入らないように充分
小にしておく。
In the drawing, 10 is a furnace wall of a high-temperature heating furnace, and 12 is a temperature-measuring object in the heating furnace, which is a slab in this example. 14
is a scanning radiometer, which is installed outside the furnace facing the object 12, and the optical path between it and the object is surrounded by a shielding tube 16. The shielding cylinder 16 is made of a heat-resistant material such as silicon carbide (SiC), has a perforated shielding plate 16a provided inside the middle part, and has a bamboo cylinder shape. 16b is the hole. The shielding cylinder includes the shielding plate 16a and the upper shielding cylinder part, and the shielding plate 16a and the lower shielding cylinder part respectively constitute blackbody furnaces BF 1 and BF 2 .
For this purpose, it is preferable that the ratio L/D between the length L and the diameter D be selected to be 1 to 5 or more, or that the inner surface be blackened or surface roughened so as to satisfy the blackbody furnace conditions. Since the object 10 moves, a gap is provided between the lower end surface of the shielding cylinder 16 and the object 12, but the length H of this gap is made sufficiently small to prevent external light noise from entering from the furnace wall, etc. .

この装置では放射計14はその走査機能により
孔16bを通して入る放射エネルギG1と、孔周
囲の遮蔽板部分から入る放射エネルギG2を交互
に受け、各々の場合の放射計出力により演算装置
18は物体12の温度を算出する。即ち、遮蔽板
からの放射エネルギG2は上記の黒体炉という条
件から G2=Eb(T2) ……(1) である。こゝでEb(Ti)は温度Ti(本例ではi
=2)の黒体が放出する放射エネルギであり、遮
蔽板温度はT2とする。孔16bを通して入る放
射エネルギG1は下式で表わされる。
In this device, the radiometer 14 alternately receives radiant energy G 1 entering through the hole 16b and radiant energy G 2 entering from the shielding plate portion around the hole by its scanning function, and the arithmetic unit 18 receives the radiometer output in each case. Calculate the temperature of the object 12. That is, the radiant energy G 2 from the shielding plate is G 2 =Eb(T 2 )...(1) from the above-mentioned blackbody furnace condition. Here, Eb(Ti) is the temperature Ti (in this example, i
= 2) is the radiant energy emitted by the black body, and the shielding plate temperature is assumed to be T 2 . The radiant energy G 1 that enters through the hole 16b is expressed by the following formula.

G1=εaEb(T1)+raEb(T2) +ηEb(T3) ……(2) ここでT1は被測温物体12の、T3は炉壁の各
温度、εa,raは物体12の実効放射率および実
効反射率、ηは炉壁からの迷光雑音混入率であ
る。即ち上記(2)式の右辺第1項は物体12からの
放射エネルギ、第2項は黒体炉BF1からの放射エ
ネルギのうちの物体12の表面で反射したもの、
第3項は混入した迷光放射エネルギをそれぞれ示
す。放射率εaは物体12の見掛けの放射率であ
つて、物体12の放射エネルギ放出率の他に該物
体12以外のものが放出した放射エネルギの該物
体表面での反射率をも含んでいる。しかしながら
測温対象がスラブなどのように固定されると前者
は既知としてよく(0.85としてよく、これで殆ん
ど誤差はない)、後者は遮蔽筒形状、物体12と
の間隔Hなどが決ると所定値をとり、結局εa
既知定数(例えば0.868)としてよい。右辺第2
項のEb(T2)は黒体炉BF1とBF2の温度は同じで
ある(T2)のでこれは前記G2として放射計が測定
することになる。ηが充分小さいとき反射率ra
は1−εaとしてよい。右辺第3項は間隔Hを小
にして迷光雑音の侵入を阻止すれば無視してよい
が、ηはやはり幾何的形状で定まる値なので実測
して求めておいてもよい。右辺第3項を無視する
と物体温度T1は下式より求まる。
G 1 = ε a Eb (T 1 ) + r a Eb (T 2 ) + ηEb (T 3 ) ...(2) Here, T 1 is the temperature of the object to be measured 12, T 3 is each temperature of the furnace wall, ε a , r a are the effective emissivity and effective reflectance of the object 12, and η is the stray light noise mixing rate from the furnace wall. That is, the first term on the right side of the above equation (2) is the radiant energy from the object 12, and the second term is the radiant energy from the blackbody furnace BF 1 reflected on the surface of the object 12.
The third term represents the mixed stray light radiant energy. The emissivity ε a is the apparent emissivity of the object 12, and includes, in addition to the radiant energy emission rate of the object 12, the reflectance on the surface of the object of the radiant energy emitted by something other than the object 12. . However, if the object to be measured is fixed, such as a slab, the former can be assumed to be known (0.85, with almost no error), and the latter can be determined by determining the shape of the shield cylinder, the distance H from the object 12, etc. After taking a predetermined value, ε a may be a known constant (for example, 0.868). 2nd right side
The term Eb (T 2 ) is measured by the radiometer as G 2 because the temperatures of the blackbody furnaces BF 1 and BF 2 are the same (T 2 ). When η is sufficiently small, the reflectance r a
may be set as 1−ε a . The third term on the right side can be ignored if the interval H is made small to prevent stray light noise from entering, but since η is still a value determined by the geometrical shape, it may be determined by actual measurement. Ignoring the third term on the right side, the object temperature T 1 can be found from the formula below.

Eb(T1)=1/ε(G1 −raG2) ……(3) なおT1とEb(T1)の関係はブランクの式など
により表わされるからこれを例えばグラフ化して
おいてEb(T1)よりT1を求める。
Eb (T 1 ) = 1/ε a (G 1 − r a G 2 ) ...(3) Since the relationship between T 1 and Eb (T 1 ) is expressed by a blank equation, for example, it can be expressed as a graph. Find T 1 from Eb(T 1 ).

この測温装置によれば高温炉内物体の温度を非
接触で測定でき、そして水冷機構など高温炉には
危険な手段を使用せず、また熱電対など補助測温
手段を必要とすることなく走査型放射計と耐熱遮
蔽筒のみで測温できるので甚だ有効である。
This temperature measuring device can measure the temperature of objects inside a high-temperature furnace without contact, and without using dangerous means for high-temperature furnaces such as water cooling mechanisms, and without the need for auxiliary temperature measuring means such as thermocouples. It is extremely effective because temperature can be measured using only a scanning radiometer and a heat-resistant shield tube.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示す説明図である。 図で10は炉壁、12は被測温物体、14は走
査型放射計、16は耐熱遮蔽筒、16aは有孔遮
蔽板、18は演算装置である。
The drawings are explanatory diagrams showing embodiments of the present invention. In the figure, 10 is a furnace wall, 12 is a temperature measuring object, 14 is a scanning radiometer, 16 is a heat-resistant shielding cylinder, 16a is a perforated shielding plate, and 18 is a calculation device.

Claims (1)

【特許請求の範囲】[Claims] 1 炉内の被測温物体に対向させて走査型放射計
を配置し、該放射計の被測温物体への光路を中間
部に有孔遮蔽板を持つ耐熱遮蔽筒で囲み、該有孔
遮蔽板の上方と下方とでそれぞれ黒体炉を構成さ
せかつ前記放射計を、有孔遮蔽板の孔を通して被
測温物体をおよび有孔遮蔽板の孔の周囲の遮蔽板
部を走査するように構成し、更に該放射計が有孔
遮蔽板の孔を通して入射する放射エネルギを受光
するときの放射計出力と該孔の周囲の遮蔽板部か
らの放射エネルギを受光するときの放射計出力と
から被測温物体の温度を求める演算装置を設けて
なることを特徴とする炉内物体の表面温度測定装
置。
1. A scanning radiometer is placed facing the temperature-measuring object in the furnace, and the optical path of the radiometer to the temperature-measuring object is surrounded by a heat-resistant shielding tube with a perforated shielding plate in the middle. A blackbody furnace is configured above and below the shielding plate, respectively, and the radiometer is configured to scan the object to be measured through the hole in the perforated shielding plate and the shielding plate portion around the hole in the perforated shielding plate. and a radiometer output when the radiometer receives radiant energy incident through the hole of the perforated shielding plate, and a radiometer output when the radiometer receives radiant energy from the shielding plate portion around the hole. A device for measuring the surface temperature of an object in a furnace, characterized in that it is provided with an arithmetic device for determining the temperature of the object to be measured.
JP10211480A 1980-07-25 1980-07-25 Surface temperature measuring device for object in furnace Granted JPS5726721A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP10211480A JPS5726721A (en) 1980-07-25 1980-07-25 Surface temperature measuring device for object in furnace
US06/285,192 US4435092A (en) 1980-07-25 1981-07-20 Surface temperature measuring apparatus for object within furnace
CA000382189A CA1158887A (en) 1980-07-25 1981-07-21 Surface temperature measuring apparatus for object within furnace
BE0/205482A BE889730A (en) 1980-07-25 1981-07-23 APPARATUS FOR MEASURING THE SURFACE TEMPERATURE OF AN OBJECT
DE3129139A DE3129139C2 (en) 1980-07-25 1981-07-23 Device for measuring the surface temperature of an object in an oven
NL8103499A NL190671C (en) 1980-07-25 1981-07-23 Device for measuring a surface temperature.
GB8122977A GB2082767B (en) 1980-07-25 1981-07-24 Surface temperature measuring apparatus for object within furnace
FR8114432A FR2487513A1 (en) 1980-07-25 1981-07-24 APPARATUS FOR MEASURING THE SUPERFICIAL TEMPERATURE OF AN OBJECT IN AN OVEN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10211480A JPS5726721A (en) 1980-07-25 1980-07-25 Surface temperature measuring device for object in furnace

Publications (2)

Publication Number Publication Date
JPS5726721A JPS5726721A (en) 1982-02-12
JPS6160364B2 true JPS6160364B2 (en) 1986-12-20

Family

ID=14318769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10211480A Granted JPS5726721A (en) 1980-07-25 1980-07-25 Surface temperature measuring device for object in furnace

Country Status (2)

Country Link
JP (1) JPS5726721A (en)
BE (1) BE889730A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983019A (en) * 1982-11-04 1984-05-14 Chino Works Ltd Temperature measuring device for body in heating furnace
JPS60257089A (en) * 1984-05-31 1985-12-18 ニチデン機械株式会社 Infrared ray heating device
JP2002005745A (en) * 2000-06-26 2002-01-09 Nec Corp Temperature measuring device and temperature measuring method
CN107907218A (en) * 2017-12-05 2018-04-13 南京佛利蒙特测控技术有限公司 Radiation protection cooling system in a kind of stove for infrared measurement of temperature

Also Published As

Publication number Publication date
JPS5726721A (en) 1982-02-12
BE889730A (en) 1981-11-16

Similar Documents

Publication Publication Date Title
US4435092A (en) Surface temperature measuring apparatus for object within furnace
US5707146A (en) High-temperature thermoelement calibration
JPS6160364B2 (en)
US3610592A (en) Method and apparatus for estimating errors in pyrometer readings
JP2638311B2 (en) Heating temperature measuring device in microwave high electric field
JPS6059511B2 (en) Surface temperature measuring device for objects inside the furnace
JPS6146767B2 (en)
JPH07174634A (en) Method for measuring temperature of object in furnace
JP3552861B2 (en) Surface temperature measurement method for objects in heating furnace
JPH0521412B2 (en)
JPS6222089B2 (en)
KR100411282B1 (en) Method and apparatus for measuring temperature of body in heating furnace
JPH0367137A (en) Surface temperatude controller
KR100301991B1 (en) Method and device for measuring surface temperature of objectives in heating furnace
JPH0138502Y2 (en)
JP3809892B2 (en) Method and apparatus for measuring temperature of object in heating furnace
JPH0533330B2 (en)
JPS6038198Y2 (en) pseudo blackbody radiation source
JPH02296121A (en) Surface-temperature measuring of object in heating furnace
JPH0458569B2 (en)
EP0083100B1 (en) Method of measuring pipe temperature
JPS62180232A (en) Temperature measuring method for tubular body
JPS6124901Y2 (en)
JPS5565143A (en) Measuring method for heat capacity
JPH06147989A (en) Method and instrument for measuring surface temperature of comparatively low-temperature object