JPH03287027A - Method and device for simultaneous measurement of temperature and emissivity of body - Google Patents

Method and device for simultaneous measurement of temperature and emissivity of body

Info

Publication number
JPH03287027A
JPH03287027A JP2087504A JP8750490A JPH03287027A JP H03287027 A JPH03287027 A JP H03287027A JP 2087504 A JP2087504 A JP 2087504A JP 8750490 A JP8750490 A JP 8750490A JP H03287027 A JPH03287027 A JP H03287027A
Authority
JP
Japan
Prior art keywords
measured
spectral
temperature
emissivity
effective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2087504A
Other languages
Japanese (ja)
Inventor
Tomio Tanaka
田中 富三男
Ryoichi Yoshinaga
吉永 良一
Takashi Ohira
尚 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2087504A priority Critical patent/JPH03287027A/en
Publication of JPH03287027A publication Critical patent/JPH03287027A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To realize the method and device for accurately measuring the temperature and effective spectral emissivity of the body to be measured which changes in surface state by continuous annealing, rolling, etc., at the same time by installing a reflection body opposite a measurement point on the surface of the body to be measured and increasing the effective spectral emissivity. CONSTITUTION:When the temperature of an alloyed fused galvanized steel plate as the body 6 to be measured is measured in an atmosphere, the semispherical reflection body 1 which has, for example, its internal surface plate with gold to have a high reflection factor is installed opposite the measurement point and a spectral radiometer 2 detect two kinds of spectral radiation brightness signals which differ in one of the wavelength, polarization, and measured angle of heat radiation from the measurement point through an opening part bored in part of the semispherical reflection body 1. Then two equations represented as the sums of the black spectral radiation brightness and effective spectral emissivity of the body 6 to be measured and an equation showing the relation between two effective spectral emissivity values, i.e. three equations are solved by an arithmetic processor 3. Consequently, the temperature of the body 6 to be measured and two effective spectral emissivity values can be found.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、表面状態が未知の被測定加熱物体の表面温度
測定方法に関する。本発明による方法によれば、被測定
物体からの熱放射信号を2つの異なる波長、偏光状態、
あるいは測定角度の異なる条件で測定し、それらの信号
値と予め求めた2つの実効的分光放射率間の関係式を用
いることによって、被測定物体の温度と2つの実効的分
光放射率を求めることができる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the surface temperature of a heated object to be measured whose surface state is unknown. According to the method according to the invention, the thermal radiation signal from the object to be measured is divided into two different wavelengths, polarization states,
Alternatively, the temperature of the object to be measured and the two effective spectral emissivities can be determined by measuring at different measurement angles and using a relational expression between the signal values and two predetermined effective spectral emissivities. I can do it.

〔従来の技術〕[Conventional technology]

従来の放射測温法では、被測定物体の放射率が既知であ
る必要があったが、多くの工業プロセス、特に、製鋼、
アルミニウム、銅等金属産業のプロセスや電機電子材料
の製造プロセスなどでは、被測定物体の分光放射率が未
知であったり、あるいはプロセス内における相変態、合
金化、酸化、表面粗さ変化等の影響で分光放射率が激し
く変化する場合がある。そのため、従来の測温法では正
確な温度測定ができていない場合が多い。
Conventional radiation thermometry requires that the emissivity of the object to be measured be known, but it is used in many industrial processes, especially steel manufacturing,
In metal industry processes such as aluminum and copper, and manufacturing processes for electrical and electronic materials, the spectral emissivity of the object to be measured is unknown, or the effects of phase transformation, alloying, oxidation, surface roughness changes, etc. in the process may be unknown. The spectral emissivity may change drastically. Therefore, it is often not possible to accurately measure temperature using conventional temperature measurement methods.

放射率を実効的に高めて精度のよい測温をしようとする
試みは、例えばDruryらの方法(M、D。
Attempts to effectively increase emissivity and measure temperature with high accuracy include, for example, the method of Drury et al. (M, D.

Drury、 K、P、Perry、 and T、L
and M、A、、”Pyrometersfor S
urface−Temperature leasur
ement、 ” Journalof the Ir
on and 5teel In5titute、〜o
v、、 19511pp、 245−250)がある。
Drury, K.P., Perry, and T.L.
and M, A,, “Pyrometers for S
surface-temperature leather
ment, ” Journal of the Ir.
on and 5teel in5tituto, ~o
v., 19511pp, 245-250).

この方法では半球型の反射体を被測定物体表面上の測定
点に対向して配置し、実効的な分光放射率を高めること
により測定精度の向上を図っている。しかしながら、こ
の方法では実効的な放射率を1、すなわち被測定物体を
黒体とみなせるほどには実効放射率を高めることはでき
ず、特に放射率が低くかつ変動する物体への適用性は得
られない。
In this method, a hemispherical reflector is placed opposite the measurement point on the surface of the object to be measured, and the measurement accuracy is improved by increasing the effective spectral emissivity. However, with this method, it is not possible to increase the effective emissivity to 1, that is, to the extent that the measured object can be regarded as a black body, and it is not particularly applicable to objects whose emissivity is low and fluctuates. I can't.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、連続焼鈍、合金化処理、塗装、焼付、
圧延、鋳造などのプロセスにおいて表面状態が変化しつ
つある被測定物体に対して、温度と実効的な分光放射率
を正確に測定することができる新しい放射測温法を提案
することにある。
The purpose of the present invention is to perform continuous annealing, alloying treatment, painting, baking,
The purpose of this paper is to propose a new radiation thermometry method that can accurately measure the temperature and effective spectral emissivity of objects whose surface conditions are changing during processes such as rolling and casting.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の物体の温度と放射率の同時測定方法は、被測定
物体表面上の測定点に対向させて反射体を設置して実効
的な分光放射率を高め、被測定物体表面からの熱放射の
うち波長、偏光、測定角度のいずれかが互いに異なる2
種類の分光放射輝度信号を検出し、それらの各分光放射
輝度信号を被測定物体の温度における黒体分光放射輝度
と実効的分光放射率との積として表した2つの式と、該
分光放射輝度信号に対応する2つの実効的分光放射率間
の関係を表す式との計3つの式を解くことにより被測定
物体温度と2つの実効的分光放射率を求めることを特徴
とするものである。
The method of simultaneously measuring the temperature and emissivity of an object according to the present invention installs a reflector opposite the measurement point on the surface of the object to increase the effective spectral emissivity, and the thermal radiation from the surface of the object to be measured is increased. Of these, the wavelength, polarization, or measurement angle is different from each other.
Two equations that detect various types of spectral radiance signals and express each of the spectral radiance signals as the product of the blackbody spectral radiance and the effective spectral emissivity at the temperature of the measured object, and the spectral radiance This method is characterized in that the temperature of the object to be measured and the two effective spectral emissivities are determined by solving a total of three equations, including an equation expressing the relationship between the two effective spectral emissivities corresponding to the signals.

また、本発明の物体の温度と放射率の同時測定装置は、
被測定物体表面上の測定点に対向させて設置される反射
体と、被測定物体表面からの熱放射のうち波長、偏光、
測定角度のいずれかが互いに異なる2種類の分光放射輝
度信号を検出する手段と、それら2つの分光放射輝度信
号からそれらに対応する2つの実効的分光放射率と温度
を求める演算装置と、演算によって求められた被測定物
体温度、2つの実効的分光放射率を出力する手段と、2
つの実効的分光放射率間の関数関係を定義するためのパ
ラメタを該演算装置に入力するための手段を有し、該演
算装置は各分光放射輝度信号を被測定物体の温度におけ
る黒体分光放射輝度と実効的分光放射率との積として表
した2つの式と、2つの実効的分光放射率間の関係を表
す式との計3つの式を解くことにより被測定物体温度と
2つの実効的分光放射率を計算することを特徴とするも
のである。
Furthermore, the device for simultaneously measuring the temperature and emissivity of an object according to the present invention includes:
A reflector is installed facing the measurement point on the surface of the object to be measured, and the wavelength, polarization,
means for detecting two types of spectral radiance signals having different measurement angles; an arithmetic device for calculating two corresponding effective spectral emissivities and temperatures from the two spectral radiance signals; means for outputting the determined temperature of the measured object and two effective spectral emissivities;
means for inputting parameters for defining a functional relationship between two effective spectral emissivities into the arithmetic device, the arithmetic device converting each spectral radiance signal into a blackbody spectral radiation at the temperature of the object to be measured. By solving a total of three equations: two equations expressed as the product of luminance and effective spectral emissivity, and an equation expressing the relationship between two effective spectral emissivities, the measured object temperature and two effective spectral emissivities can be calculated. This method is characterized by calculating spectral emissivity.

〔作 m; 被測定物体表面上の測定点に対向して、例えば内面を金
めつき等で高反射率にした半球型の反射体を配置し、半
球型反射体の一部にあけた開口部を通して測定点からの
熱放射のうち波長、偏光、測定角度の′v)ずれかが互
いに異なる2種類の分光放射輝度信号を検出したときそ
れらは次の式で表される。
[Production m: A hemispherical reflector whose inner surface is plated with gold to make it highly reflective is placed opposite the measurement point on the surface of the object to be measured, and an opening is made in a part of the hemispherical reflector. When two types of spectral radiance signals are detected from the thermal radiation from the measurement point through the sensor, which differ from each other in wavelength, polarization, and deviation in measurement angle, they are expressed by the following equation.

Lイ=εイ ・L、イ(T>       (1)Ly
=ε、・L、ア(T)       (2)ただし、T
  :被測定物体温度 L  :分光放射輝度 L、  :黒体分光放射輝度(温度の既知関数) ε  :実効的な分光放射率 X・y:波長、偏光、測定角度の違いを表す添字 被測定物体から放射された光は反射体により反射されて
被測定物体表面に再入射され、それが再び被測定物体表
面で反射されるために、被測定物体の実効的な放射率は
反射体を使用しなかった場合に比較して格段に高められ
る。
L i = ε i ・L, i (T> (1) Ly
=ε,・L,A(T) (2) However, T
: Measured object temperature L : Spectral radiance L, : Blackbody spectral radiance (known function of temperature) ε : Effective spectral emissivity The light emitted from the object is reflected by the reflector and re-enters the surface of the object to be measured, and is reflected again by the surface of the object to be measured, so the effective emissivity of the object to be measured is It will be much better than if you didn't have it.

被測定物体の表面性状が酸化等により変化すると各分光
放射輝度信号に対応する2つの実効的分光放射率も変化
するが、これらの関係を表す式5式%(3) が既知であれば(1)〜(3〉式は数値的に解くことが
できて、3つの未知数T、ε8.ε、を求めることがで
きる。関数fは、例えば実験的に予め求めておけばよい
When the surface properties of the object to be measured change due to oxidation, etc., the two effective spectral emissivities corresponding to each spectral radiance signal also change, but if Equation 5 expressing these relationships is known, then ( Equations 1) to (3) can be solved numerically, and the three unknowns T, ε8.ε, can be determined.The function f may be determined in advance experimentally, for example.

この方法では、合金化溶融亜鉛めっき鋼板のように大気
中での測定に使用することはもちろんのこと、連続焼鈍
炉内を走行する冷延鋼板のように炉内にある物体の測定
にも使用することができる。
This method can be used not only to measure objects in the atmosphere, such as alloyed hot-dip galvanized steel sheets, but also to measure objects inside the furnace, such as cold-rolled steel sheets running in a continuous annealing furnace. can do.

しかも、合金化反応あるいは酸化反応によって放射率が
変動しても正確に被測定物体の温度を測定することがで
きる。
Moreover, even if the emissivity changes due to alloying reaction or oxidation reaction, the temperature of the object to be measured can be accurately measured.

〔実施例〕〔Example〕

以下、図面を参照しながら本発明の実施例について説明
する。第1図は、本発明の方法を用いて合金化溶融亜鉛
めっき鋼板の温度を大気中で測定する場合の測定系の具
体例を示した図である。1は半球型の反射体、2は2つ
の異なる分光放射輝度り、、Lyを検出するための分光
放射計、3は演算処理装置、4は関数関係(3)式を表
すためのパラメタ等を演算処理装置3へ入力するための
キーボード等の入力装置、5は演算によって得られた被
測定物体温度、実効的分光放射率を出力するための出力
装置、6は被測定物体である鋼板である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a specific example of a measurement system for measuring the temperature of an alloyed hot-dip galvanized steel sheet in the atmosphere using the method of the present invention. 1 is a hemispherical reflector, 2 is a spectroradiometer for detecting two different spectral radiances, Ly, 3 is an arithmetic processing unit, and 4 is a parameter for expressing the functional relationship (3), etc. An input device such as a keyboard for inputting data to the arithmetic processing device 3; 5 an output device for outputting the temperature of the object to be measured and effective spectral emissivity obtained by the calculation; 6 a steel plate as the object to be measured. .

波長を選択するためには例えば干渉フィルターを用いる
方法があり、偏光成分を選択するためには例えば偏光ビ
ームスプリッタ−等を利用することができる。測定角度
が異なる場合には各放射計はそれぞれ別の方向角度に設
置されるが、第1図に示した具体例のように波長が異な
るだけの場合には2つの放射計を同一筐体2内に収納す
ることもできる。もちろん波長帯域によってたとえば3
i、 Ge、 PbSなどの光電変換素子を使い分ける
ことができる。また、光ファイバーを導波路として用い
て分光放射輝度を測定することもできるのは言うまでも
ない。
To select the wavelength, for example, there is a method using an interference filter, and to select the polarization component, for example, a polarizing beam splitter or the like can be used. When the measurement angles are different, each radiometer is installed at a different direction and angle, but when the wavelengths are only different, as in the specific example shown in Figure 1, the two radiometers are installed in the same housing 2. It can also be stored inside. Of course, depending on the wavelength band, for example 3
Photoelectric conversion elements such as i, Ge, and PbS can be used. It goes without saying that spectral radiance can also be measured using an optical fiber as a waveguide.

測定点から反射体を見込む立体角はできるだけ大きいほ
うが望ましいが、必ずしも全立体角を覆うほど大きくな
くても十分効果がある。
It is desirable that the solid angle of the reflector from the measurement point be as large as possible, but it is still effective even if it is not so large as to cover the entire solid angle.

第2図は、連続焼鈍炉内を搬送される冷延鋼板の測温に
本発明による装置を適用した例である。
FIG. 2 is an example in which the apparatus according to the present invention is applied to temperature measurement of a cold-rolled steel sheet conveyed through a continuous annealing furnace.

1は球面型反射体、2は偏光状態の異なる2つの分光放
射輝度を検出するための分光放射計、3は演算処理装置
、4は関数関係を表すためのパラメタ等を演算処理装置
3へ人力するためのキーボード等の人力装置、5は演算
によって得られた被測定物体温度、実効的分光放射率を
出力するための出力装置、6は被測定物体である鋼板、
7は焼鈍炉壁、8は炉壁開口部に反射体lを取り付ける
ための治具、9は炉外に設置された分光放射計2へ分光
放射輝度信号を導くための透過窓、10は鋼板表面から
分光放射計へ放射される分光放射輝度信号、11は鋼板
表面と反射体の間で往来する分光放射輝度信号である。
1 is a spherical reflector, 2 is a spectroradiometer for detecting two spectral radiances with different polarization states, 3 is an arithmetic processing unit, and 4 is a manual input of parameters, etc. for expressing functional relationships to the arithmetic processing unit 3. 5 is an output device for outputting the temperature of the object to be measured and effective spectral emissivity obtained by calculation; 6 is a steel plate as the object to be measured;
7 is an annealing furnace wall, 8 is a jig for attaching the reflector l to the opening of the furnace wall, 9 is a transmission window for guiding the spectral radiance signal to the spectroradiometer 2 installed outside the furnace, and 10 is a steel plate. A spectral radiance signal 11 is radiated from the surface to the spectroradiometer, and is a spectral radiance signal that travels between the steel plate surface and the reflector.

10の分光放射輝度信号のデ;かには鋼板表面から直接
に分光放射計2の方向へ放射される信号成分と、11で
示した分光放射輝度信号のうち鋼板表面で反射されて分
光放射計2の方向へ進行する一部の分光放射輝度成分が
含まれている。
The signal component of the spectral radiance signal shown in 10 is emitted directly from the steel plate surface in the direction of the spectroradiometer 2, and the spectral radiance signal shown in 11 is reflected from the steel plate surface and is emitted to the spectroradiometer 2. Some spectral radiance components traveling in the two directions are included.

分光放射率間の関係式は、実験的に予め求めておき、多
項式を用いた簡単な数学的表現で記述した。もちろん、
方程式の解法にあたっては別の関数表現あるいは数値表
としての表現を用いるなど種々の方法が利用できる。
The relational expression between the spectral emissivities was experimentally determined in advance and described using a simple mathematical expression using a polynomial. of course,
Various methods can be used to solve equations, such as using another function expression or expression as a numerical table.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、表面性状の変化によ
って放射率が変動する物体であっても正確な温度を測定
することができる。このような測温が期待される適用対
象は鉄鋼業だけでも連続溶融亜鉛めっき合金化炉、連続
焼鈍炉、高輝焼鈍炉等数多く、その他罪鉄金属製造業、
セラミック製造業、電子材料製造業等での適用も考えあ
わせれば製品品質の向上、操業管理、省エネルギー等の
効果は計り知れない。
As described above, according to the present invention, it is possible to accurately measure the temperature of an object whose emissivity varies due to changes in surface properties. Such temperature measurement is expected to be applied to many industries such as continuous galvanizing and alloying furnaces, continuous annealing furnaces, and high brightness annealing furnaces in the steel industry, as well as other ferrous metal manufacturing industries,
If application in the ceramic manufacturing industry, electronic material manufacturing industry, etc. is also considered, the effects of improving product quality, operational management, energy saving, etc. will be immeasurable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法を用いて合金化溶融亜鉛めっき
鋼板の温度を大気中で測定する場合の測定系の具体例を
示した図、第2図は、連続焼鈍炉内を搬送される冷延鋼
板の測温に本発明による装置を適用した例である。 図中の番号は以下の通りである。 1・・・反射体、         2・・・分光放射
計3・・・演算処理装置、 4・・・演算パラメタ入力装置、 5・・・出力装置、
6・・・被測定物体、      7・・・焼鈍炉壁、
8・・・炉壁開口部に反射体1を取り付けるための治具
、 9・・・透過窓、 10・・・鋼板表面から分光放射計へ放射される分光放
射輝度信号、 11・・・鋼板表面と反射体の間で往来する分光放射輝
度信号。
Figure 1 shows a specific example of a measurement system used to measure the temperature of an alloyed hot-dip galvanized steel sheet in the atmosphere using the method of the present invention. This is an example in which the device according to the present invention is applied to temperature measurement of a cold-rolled steel plate. The numbers in the figure are as follows. DESCRIPTION OF SYMBOLS 1...Reflector, 2...Spectroradiometer 3...Arithmetic processing device, 4...Arithmetic parameter input device, 5...Output device,
6... Object to be measured, 7... Annealing furnace wall,
8... Jig for attaching the reflector 1 to the reactor wall opening, 9... Transmission window, 10... Spectral radiance signal radiated from the steel plate surface to the spectroradiometer, 11... Steel plate A spectral radiance signal passing between a surface and a reflector.

Claims (1)

【特許請求の範囲】 1、被測定物体表面上の測定点に対向させて反射体を設
置して実効的な分光放射率を高め、被測定物体表面から
の熱放射のうち波長、偏光、測定角度のいずれかが互い
に異なる2種類の分光放射輝度信号を検出し、それらの
各分光放射輝度信号を被測定物体の温度における黒体分
光放射輝度と実効的分光放射率との積として表した2つ
の式と、該分光放射輝度信号に対応する2つの実効的分
光放射率間の関係を表す式との計3つの式を解くことに
より被測定物体温度と2つの実効的分光放射率を求める
ことを特徴とする物体の温度と放射率の同時測定方法。 2、測定物体表面上の測定点に対向させて設置される反
射体と、被測定物体表面からの熱放射のうち波長、偏光
、測定角度のいずれかが互いに異なる2種類の分光放射
輝度信号を検出する手段と、それら2つの分光放射輝度
信号からそれらに対応する2つの実効的分光放射率と温
度を求める演算装置と、演算によって求められた被測定
物体温度、2つの実効的分光放射率を出力する手段と、
2つの実効的分光放射率間の関数関係を定義するための
パラメタを該演算装置に入力するための手段を有し、該
演算装置は各分光放射輝度信号を被測定物体の温度にお
ける黒体分光放射輝度と実効的分光放射率との積として
表した2つの式と、2つの実効的分光放射率間の関係を
表す式との計3つの式を解くことにより被測定物体温度
と2つの実効的分光放射率を計算することを特徴とする
物体の温度と放射率の同時測定装置。
[Claims] 1. A reflector is installed opposite the measurement point on the surface of the object to be measured to increase the effective spectral emissivity, and the wavelength, polarization, and measurement of the thermal radiation from the surface of the object to be measured are Two types of spectral radiance signals having different angles are detected, and each of these spectral radiance signals is expressed as the product of the blackbody spectral radiance and the effective spectral emissivity at the temperature of the measured object2. The temperature of the object to be measured and the two effective spectral emissivities are determined by solving a total of three equations: one equation representing the relationship between the two effective spectral emissivities corresponding to the spectral radiance signal. A method for simultaneously measuring the temperature and emissivity of an object. 2. Two types of spectral radiance signals that differ in wavelength, polarization, or measurement angle from the reflector placed opposite the measurement point on the surface of the object to be measured and the thermal radiation from the surface of the object to be measured. a means for detecting, a calculation device that calculates two corresponding effective spectral emissivities and temperatures from the two spectral radiance signals, and a temperature of the object to be measured and two effective spectral emissivities calculated by the calculations. a means of outputting,
means for inputting into the computing device parameters for defining a functional relationship between two effective spectral emissivities; By solving a total of three equations: two equations expressed as the product of radiance and effective spectral emissivity, and an equation expressing the relationship between two effective spectral emissivities, the measured object temperature and two effective spectral emissivities can be calculated. A device for simultaneously measuring the temperature and emissivity of an object, which is characterized by calculating the spectral emissivity of an object.
JP2087504A 1990-04-03 1990-04-03 Method and device for simultaneous measurement of temperature and emissivity of body Pending JPH03287027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2087504A JPH03287027A (en) 1990-04-03 1990-04-03 Method and device for simultaneous measurement of temperature and emissivity of body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2087504A JPH03287027A (en) 1990-04-03 1990-04-03 Method and device for simultaneous measurement of temperature and emissivity of body

Publications (1)

Publication Number Publication Date
JPH03287027A true JPH03287027A (en) 1991-12-17

Family

ID=13916815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2087504A Pending JPH03287027A (en) 1990-04-03 1990-04-03 Method and device for simultaneous measurement of temperature and emissivity of body

Country Status (1)

Country Link
JP (1) JPH03287027A (en)

Similar Documents

Publication Publication Date Title
EP0335224B1 (en) Radiation thermometry
US4435092A (en) Surface temperature measuring apparatus for object within furnace
US6786634B2 (en) Temperature measuring method and apparatus
JPH03287027A (en) Method and device for simultaneous measurement of temperature and emissivity of body
JP2020008484A (en) Oxide film thickness measuring device and method therefor
JPH03287025A (en) Method and device for measurement of temperature and emissivity of body and circumferential temperature
JPH03287024A (en) Method and device for simultaneous measurement of temperature and emissivity of body
JPH02138836A (en) Radiation temperature measuring apparatus
JPS634651B2 (en)
JPH0933353A (en) Method for measuring radiation temperature and temperature measuring device therefor
JPH03287026A (en) Method and device for simultaneous measurement of temperature and emissivity of body
JPH05273043A (en) Radiation temperature measuring apparatus, emissivity measuring apparatus and decision method of emissivity cumulative ratio-emissivity correlation
JPH05231944A (en) Method for radiometric temperature measurement using multiple wavelength
JPH0510822A (en) Radiation temperature measuring instrument
JPH04276527A (en) Thermometer in furnace
KR102495420B1 (en) Oxide film thickness measurement device and method
JPH06147989A (en) Method and instrument for measuring surface temperature of comparatively low-temperature object
Chen et al. Design of Temperature Control System Based on Vacuum Furnace
JPH02296121A (en) Surface-temperature measuring of object in heating furnace
JP2632086B2 (en) Radiation thermometry and radiation thermometer used for the temperature measurement
Hayk High quality, high accuracy
JPH05273045A (en) Temperature measuring apparatus for object covered with transparent thin film
JPS58169038A (en) Dichroic radiation thermometer
JPS6219947Y2 (en)
JP2007107939A (en) Method and device of measuring temperature of steel plate