JPS6219947Y2 - - Google Patents

Info

Publication number
JPS6219947Y2
JPS6219947Y2 JP1981047445U JP4744581U JPS6219947Y2 JP S6219947 Y2 JPS6219947 Y2 JP S6219947Y2 JP 1981047445 U JP1981047445 U JP 1981047445U JP 4744581 U JP4744581 U JP 4744581U JP S6219947 Y2 JPS6219947 Y2 JP S6219947Y2
Authority
JP
Japan
Prior art keywords
measured
hot plate
temperature
comparison
radiant energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981047445U
Other languages
Japanese (ja)
Other versions
JPS57160645U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981047445U priority Critical patent/JPS6219947Y2/ja
Publication of JPS57160645U publication Critical patent/JPS57160645U/ja
Application granted granted Critical
Publication of JPS6219947Y2 publication Critical patent/JPS6219947Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は、放射率の影響を除去して被測定物
の温度を測定するような放射温度計の改良に関す
るものである。
[Detailed Description of the Invention] This invention relates to an improvement of a radiation thermometer that measures the temperature of an object by removing the influence of emissivity.

従来放射温度計には、物体からの放射エネルギ
ー量より物体温度を求める単色温度計、異なる2
波長の分光放射エネルギーの比より物体温度を求
める2色温度計等があつた。これらの放射温度計
は単色温度計の場合は黒体、2色温度計の場合は
灰色体のみ真の温度が測定でき、一般の物体では
放射率の影響は除去することができず大きな問題
点であつた。
Conventional radiation thermometers include monochromatic thermometers that measure the temperature of an object based on the amount of radiant energy from the object, and two different types.
There were two-color thermometers that determined the temperature of an object from the ratio of spectral radiant energies of wavelengths. These radiation thermometers can only measure the true temperature of a black body in the case of a monochrome thermometer, and only a gray body in the case of a two-color thermometer, and the influence of emissivity cannot be removed for ordinary objects, which is a major problem. It was hot.

この考案の目的は、以上の点に鑑み、一般の物
体においても放射率の影響を除去し、物体の表面
温度を測定することができる改良された放射温度
計を提供することである。
In view of the above points, the purpose of this invention is to provide an improved radiation thermometer that can measure the surface temperature of ordinary objects by removing the influence of emissivity.

この考案の原理を第1図について説明する。図
において1は、温度T、放射率εの被測定物、2
は被測定物1と所定の距離をもたせて設けられ
被測定物1に放射エネルギーを放出する温度
Tc、放射率εcの比較熱板、3は比較熱板2の
開孔2aより被測定物1自体が放出する放射エネ
ルギーおよび被測定物1より反射された比較熱板
2の放射エネルギーを検出する放射検出器であ
る。
The principle of this invention will be explained with reference to FIG. In the figure, 1 indicates an object to be measured with temperature T and emissivity ε, and 2
is set at a predetermined distance from the measured object 1 and emits radiant energy to the measured object 1.
A comparative hot plate 3 with Tc and emissivity εc detects the radiant energy emitted by the object to be measured 1 itself through the opening 2a of the comparative hot plate 2 and the radiant energy of the comparative hot plate 2 reflected from the object to be measured 1. It is a radiation detector.

波長λ,温度Tのとき黒体から放出される分光
放射エネルギー輝度をL(λ,T),被測定物1
と比較熱板2との距離がのとき、放射検出器3
の出力信号をe()とすれば、比較熱板2の放
射率εcが十分1に近いとして距離1のとき次
式が成り立つ。
Let L(λ, T) be the spectral radiant energy luminance emitted from the black body when the wavelength λ and the temperature T, and the measured object 1
When the distance between and the comparison hot plate 2 is , the radiation detector 3
If the output signal is e(), the following equation holds true when the distance is 1 and the emissivity εc of the comparison hot plate 2 is sufficiently close to 1.

e(1)=ε・L(λ,T)+εc(1−ε)L(λ,Tc)・f(1) ……(1) (1)式の右辺第1項は被測定物1自体が放出する
放射エネルギーの寄与分、第2項は比較熱板2か
ら放出された放射エネルギーεcL(λ,Tc)
が、被測定物で反射して放射検出器3に入射する
寄与分で、f(1)は、この比較熱板2よりの
放射エネルギーが被測定物1で反射して放射検出
器3に入射する割合を示す形状係数である。
e(1)=ε・L(λ,T)+εc(1−ε)L(λ,Tc)・f(1)...(1) The first term on the right side of equation (1) is the object to be measured 1 itself The second term is the contribution of the radiant energy emitted by the comparison hot plate 2, εcL (λ, Tc)
is the contribution of the radiation energy reflected from the object to be measured and incident on the radiation detector 3, and f(1) is the contribution of the radiation energy from the comparison hot plate 2 reflected by the object to be measured 1 and incident on the radiation detector 3. This is a shape factor that indicates the proportion of

次に、被測定物1と比較熱板2との距離を2
とすれば、次式が成り立つ。
Next, the distance between the object to be measured 1 and the comparison hot plate 2 is set to 2.
Then, the following formula holds true.

e(2)=ε・L(λ,T)+εc(1−ε)L(λ,Tc)・f(2) ……(2) (1)式から(2)式を減算すると e(1)−e(2)=εc(1−ε)・L(λ,Tc)・{f(1)−f(2)} ……(3) となり、よつて、 1−ε=e(1)−e(2)/εc・L(λ,Tc)・{f(1)−f(2)} ……(4) となる。この右辺において、e(1)−e(
2)は測定可能な量、εc,L(λ,Tc)は既
知の量であるので、f(1)−f(2)が分
つていれば、(3)式より放射率εが求まる。求めた
放射率εを(1)式または(2)式に代入演算することに
より、被測定物1の温度Tが、常時求まることに
なる。
e(2)=ε・L(λ,T)+εc(1−ε)L(λ,Tc)・f(2)...(2) Subtracting equation (2) from equation (1) gives e(1 )-e(2)=εc(1-ε)・L(λ,Tc)・{f(1)-f(2)}...(3) Therefore, 1-ε=e(1) −e(2)/εc·L(λ, Tc)·{f(1)−f(2)} (4). On this right-hand side, e(1)−e(
2) is a measurable quantity and εc, L (λ, Tc) are known quantities, so if f(1) - f(2) is known, the emissivity ε can be found from equation (3). . By substituting the obtained emissivity ε into the equation (1) or (2), the temperature T of the object to be measured 1 can be determined at all times.

なお、形状係数f()は、被測定物1、比較
熱板2の幾何学的形状、相互の位置関係のみに依
存する量なのであらかじめ測定により定めておけ
ばよい。
Note that the shape factor f( ) is a quantity that depends only on the geometrical shapes of the object to be measured 1 and the comparison hot plate 2 and their mutual positional relationship, so it may be determined in advance by measurement.

ところで、被測定物1の鏡面性が強い場合等に
おいて、比較熱板2の開孔2aが中心にある場
合、比較熱板2より放出される放射エネルギーが
被測定物1を反射しても開孔2aに達せず、測定
することができなくなることを防止するため、次
のように比較熱板2を構成する。つまり、比較熱
板2の中心をはずれた位置に開孔2aを設け、垂
線方向に対し、ある角度θの斜め方向に比較熱板
2を移動させるようにする。
By the way, in cases where the object to be measured 1 has a strong specularity and the aperture 2a of the comparison heating plate 2 is located at the center, even if the radiant energy emitted from the comparison heating plate 2 reflects off the object to be measured 1, the opening does not occur. In order to prevent the temperature from reaching the hole 2a and making it impossible to measure, the comparison hot plate 2 is configured as follows. That is, the opening 2a is provided at a position off the center of the comparative hot plate 2, and the comparative hot plate 2 is moved in an oblique direction at a certain angle θ with respect to the perpendicular direction.

なお、比較熱板2の形状は半球状の内面に黒体
条件とするため黒色塗料を塗付したものの他、平
板状のもの等種々の形状が考えられる。
The comparison heating plate 2 may have various shapes, such as a hemispherical inner surface coated with black paint to provide a blackbody condition, or a flat plate.

第2図は、この考案のより具体的な一実施例を
示す構成説明図である。図において、被測定物1
に対して比較熱板2はある角度θをもつて斜めに
移動可能となつており、比較熱板2の中心をはず
れた位置の開孔2aより、放射検出器3は、被測
定物1よりの放射エネルギーを検出することがで
きるようになつている。また、比較熱板2は図示
しない駆動機構により被測定物1との距離を変
化させることができ、必要に応じてB方向の側方
に移動させ、その影響をなくすようにすることが
できる。また比較熱板2にはヒータHが設けら
れ、熱電対等の温度検出器Dによりその温度Tc
が検出され、温度制御部4によりヒータHを制御
して、その温度の制御を行つている。そして、比
較熱板2の位置信号、温度信号Tc、放射検出器
3の出力信号e()は、マイクロコンピユータ
のような演算部5に入力され、前述のような被測
定物1の温度Tを測定するための比較熱板2の移
動等の制御、演算処理が行なわれ、出力端子6よ
り出力信号T,ε等が取り出せる。なお温度制御
部4の処理は、すべて演算部5で行うようにする
こともできる。
FIG. 2 is a configuration explanatory diagram showing a more specific embodiment of this invention. In the figure, the object to be measured 1
On the other hand, the comparison heating plate 2 can be moved obliquely at a certain angle θ, and the radiation detector 3 can be moved from the object to be measured 1 through the aperture 2a located off the center of the comparison heating plate 2. It has become possible to detect the radiant energy of Further, the distance between the comparative hot plate 2 and the object to be measured 1 can be changed by a drive mechanism (not shown), and if necessary, it can be moved laterally in the B direction to eliminate the influence thereof. Further, a heater H is provided on the comparative heat plate 2, and its temperature Tc is detected by a temperature detector D such as a thermocouple.
is detected, and the temperature controller 4 controls the heater H to control its temperature. Then, the position signal of the comparison heat plate 2, the temperature signal Tc, and the output signal e() of the radiation detector 3 are input to a calculation unit 5 such as a microcomputer, and the temperature T of the object to be measured 1 as described above is calculated. Control of the movement of the comparison hot plate 2 for measurement, etc., and arithmetic processing are performed, and output signals T, ε, etc. can be taken out from the output terminal 6. Note that all the processing of the temperature control section 4 may be performed by the calculation section 5.

以上述べたように、この考案は、比較熱板を移
動させたときの放射検出器の出力信号の変化か
ら、演算処理を行い、被測定物の放射率および温
度を測定するようにした放射温度計において、比
較熱板を斜め方向に移動させるようにしたもので
ある。
As mentioned above, this idea is based on the changes in the output signal of the radiation detector when the comparative heat plate is moved, and is used to perform arithmetic processing to measure the emissivity and temperature of the object to be measured. In this case, the comparison heating plate is moved diagonally.

従つて、被測定物の放射率の影響は除去して正
しい温度が測定でき、放射率が変動しても補正が
自動的に行えるので常時、オンラインにて測定を
するのに好適で、鋼板等の移動物体の温度も容易
に測定することができる。又、鋼板等の鏡面性の
強い金属板の場合は、被測定物と比較熱板との距
離は十分大きくすることができるので、走行鋼板
等の測定において、被測定物の上下振動等のバタ
ツキがあつても、安全に測定をすることができ
る。又、比較熱板の温度を被測定物の温度と一致
させるような平衡方式ではないので高速応答が可
能である。又、放射検出器の種類は何でもよく、
放射率と温度とを同時に出力できる等のすぐれた
効果がある。特に、鏡面性の強い金属等の測定に
おいて、比較熱板を斜め方向に移動しているの
で、測定孔の影響は少なく、安定した正確な測定
ができる。
Therefore, the influence of the emissivity of the object to be measured can be removed to measure the correct temperature, and even if the emissivity fluctuates, corrections can be made automatically, so it is suitable for always on-line measurements. The temperature of a moving object can also be easily measured. In addition, in the case of metal plates with strong specularity such as steel plates, the distance between the object to be measured and the comparison hot plate can be made sufficiently large, so when measuring running steel plates, etc., fluctuations such as vertical vibrations of the object to be measured can be avoided. Measurements can be made safely even when In addition, since it is not an equilibrium method in which the temperature of the comparison hot plate is matched with the temperature of the object to be measured, high-speed response is possible. Also, any type of radiation detector may be used,
It has excellent effects such as being able to output emissivity and temperature simultaneously. In particular, when measuring highly specular metals, etc., since the comparison hot plate is moved in an oblique direction, the influence of the measurement hole is small and stable and accurate measurements can be made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この考案の原理説明図、第2図は、
この考案の一実施例を示す構成説明図である。 1……被測定物、2……比較熱板、3……放射
検出器、5……演算部、2a……測定孔。
Figure 1 is an explanatory diagram of the principle of this invention, and Figure 2 is:
FIG. 1 is a configuration explanatory diagram showing an embodiment of this invention. DESCRIPTION OF SYMBOLS 1...Object to be measured, 2...Comparison hot plate, 3...Radiation detector, 5...Calculation unit, 2a...Measurement hole.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 中心からはずれた位置に測定孔を有するととも
に斜め方向に移動可能とされ被測定物に放射エネ
ルギーを放出する比較熱板と、前記被測定物自体
が放出する放射エネルギーおよび被測定物より反
射された前記比較熱板の放射エネルギーを前記比
較熱板の測定孔を介して検出する放射検出器と、
前記被測定物と比較熱板との距離を変化させたと
きの前記放射検出器の出力信号の変化から前記被
測定物の放射率を演算してその温度を測定する演
算部とを備えたことを特徴とする放射温度計。
A comparative hot plate having a measurement hole at a position offset from the center and movable in an oblique direction and emits radiant energy to an object to be measured; and radiant energy emitted by the object to be measured itself and reflected from the object to be measured. a radiation detector that detects the radiant energy of the comparative hot plate through a measurement hole of the comparative hot plate;
and a calculation unit that calculates the emissivity of the object to be measured based on a change in the output signal of the radiation detector when the distance between the object to be measured and the comparison hot plate is changed, and measures the temperature of the object to be measured. A radiation thermometer featuring
JP1981047445U 1981-04-03 1981-04-03 Expired JPS6219947Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981047445U JPS6219947Y2 (en) 1981-04-03 1981-04-03

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981047445U JPS6219947Y2 (en) 1981-04-03 1981-04-03

Publications (2)

Publication Number Publication Date
JPS57160645U JPS57160645U (en) 1982-10-08
JPS6219947Y2 true JPS6219947Y2 (en) 1987-05-21

Family

ID=29844251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981047445U Expired JPS6219947Y2 (en) 1981-04-03 1981-04-03

Country Status (1)

Country Link
JP (1) JPS6219947Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529157A (en) * 1975-07-14 1977-01-24 Hitachi Ltd Safety device for boller functions at low pressure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141677U (en) * 1974-05-09 1975-11-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529157A (en) * 1975-07-14 1977-01-24 Hitachi Ltd Safety device for boller functions at low pressure

Also Published As

Publication number Publication date
JPS57160645U (en) 1982-10-08

Similar Documents

Publication Publication Date Title
EP0335224B1 (en) Radiation thermometry
US4435092A (en) Surface temperature measuring apparatus for object within furnace
US4172383A (en) Method and an apparatus for simultaneous measurement of both temperature and emissivity of a heated material
JPS634651B2 (en)
JPS6219947Y2 (en)
JPS6225973B2 (en)
JPH0521412B2 (en)
JPS6225972B2 (en)
JPS5940250B2 (en) How to measure temperature and emissivity simultaneously
JPH0367137A (en) Surface temperatude controller
JPS6014193Y2 (en) Simultaneous measurement device for metal surface temperature and emissivity
JPH0138502Y2 (en)
JPH0514852B2 (en)
JP3291781B2 (en) Method and apparatus for measuring temperature of steel sheet
JPS6184528A (en) Temperature measuring instrument
JP2632086B2 (en) Radiation thermometry and radiation thermometer used for the temperature measurement
JPS6046371B2 (en) Method and device for simultaneous measurement of metal surface temperature and emissivity
JPH05203497A (en) Measuring method for temperature of steel plate
AU685840B2 (en) Determination of coating thickness and temperature of thinly coated substrates
JPH0511252B2 (en)
JPH0682045B2 (en) Oxide film measuring device in heat treatment furnace for steel strip
JPH0427496B2 (en)
JPS60210728A (en) Measurement of emissivity
JPH0643033A (en) Radiation thermometer
JPH0643032A (en) Radiation thermometer