JP3291781B2 - Method and apparatus for measuring temperature of steel sheet - Google Patents

Method and apparatus for measuring temperature of steel sheet

Info

Publication number
JP3291781B2
JP3291781B2 JP22838192A JP22838192A JP3291781B2 JP 3291781 B2 JP3291781 B2 JP 3291781B2 JP 22838192 A JP22838192 A JP 22838192A JP 22838192 A JP22838192 A JP 22838192A JP 3291781 B2 JP3291781 B2 JP 3291781B2
Authority
JP
Japan
Prior art keywords
measured
steel sheet
heat source
scanning
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22838192A
Other languages
Japanese (ja)
Other versions
JPH0674831A (en
Inventor
賢志 山内
芳昭 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP22838192A priority Critical patent/JP3291781B2/en
Publication of JPH0674831A publication Critical patent/JPH0674831A/en
Application granted granted Critical
Publication of JP3291781B2 publication Critical patent/JP3291781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は被測定鋼板の放射率及び
温度を非接触にて同時に測定する鋼板の温度測定方法及
び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the emissivity and temperature of a steel sheet to be measured simultaneously without contact.

【0002】[0002]

【従来の技術】一般に鋼板の表面温度を非接触にて測定
するには、放射温度計が用いられている。この放射温度
計は、測定対象物から放射される放射エネルギを検出し
て温度に換算するものであるが、その換算に当たっては
放射率を正しく設定する必要がある。従って、放射温度
計により鋼板の温度を測定する場合には、鋼板表面の放
射率を求めることが極めて重要である。従来、放射率を
考慮した放射温度計としては、例えば特開昭62−28
7124号公報に見られるようなものがある。
2. Description of the Related Art In general, a radiation thermometer is used to measure the surface temperature of a steel sheet in a non-contact manner. This radiation thermometer detects radiant energy radiated from an object to be measured and converts the radiant energy into a temperature. In the conversion, it is necessary to set an emissivity correctly. Therefore, when measuring the temperature of a steel sheet with a radiation thermometer, it is extremely important to determine the emissivity of the steel sheet surface. Conventionally, as a radiation thermometer considering the emissivity, for example, Japanese Patent Laid-Open No. 62-28
No. 7124, for example.

【0003】この放射温度計は、測定対象に対して放射
源から3つの異なった状態(シャッター全開、半開、全
閉)で光放射エネルギを放射して、それぞれの状態で、
測定対象からの放射エネルギと放射源からの放射エネル
ギが測定対象で反射したものの和のエネルギを測定す
る。そして、これらのうち、2つの出力から放射源の寄
与率の差を求め、事前に求めてある寄与率の差と比の関
係に基き、寄与率の差から寄与率の比を求め、この寄与
率の比より拡散反射を考慮した測定対象の反射率を求
め、この反射率から放射率を求め、これを用いて測定対
象の温度を求めるものである。
[0003] This radiation thermometer emits light radiation energy from a radiation source to a measurement object in three different states (shutter fully open, half open, fully closed).
The radiant energy from the measurement target and the radiant energy from the radiation source are reflected by the measurement target, and the sum of the energies is measured. Then, the difference between the contribution ratios of the radiation sources is calculated from the two outputs, and the ratio of the contribution ratio is calculated from the difference between the contribution ratios based on the relationship between the difference between the contribution ratios and the ratio obtained in advance. The reflectance of the measurement object in consideration of the diffuse reflection is determined from the ratio of the rates, the emissivity is determined from the reflectance, and the temperature of the measurement object is determined using this.

【0004】[0004]

【発明が解決しようとする課題】しかし、この放射温度
計においては、次のような不具合がある。
However, this radiation thermometer has the following disadvantages.

【0005】まず、この放射温度計において、放射率が
未知の測定対象の温度を正確に求めるには、測定対象の
放射率測定にあたって補助熱源からの放射エネルギが測
定対象表面で拡散反射するとき、その拡散反射の状態を
熱源の面積を2段階に変化させてそのときの放射温度計
の出力の変化から、放射エネルギの寄与率の比を求め、
事前に求めてある寄与率の差と比の関係から寄与率の比
を求め、この寄与率の比より測定対象の反射率を求める
ようにしている。このとき寄与率の差と比の関係が、事
前にオフラインで求めた関係が実使用のオンライン測定
でも成立することを前提としているが、オンラインとオ
フラインの環境が異なることにより、表面性状が必ずし
も同じになるという保証はない。従って、このような従
来の放射温度計では、上述した関係が成り立つことが前
提であり、これが成り立たないときには適用することは
できない。
First, in this radiation thermometer, in order to accurately determine the temperature of a measurement object whose emissivity is unknown, the radiation energy from the auxiliary heat source diffusely reflects on the surface of the measurement object when measuring the emissivity of the measurement object. The state of the diffuse reflection is changed in two steps of the area of the heat source, and the ratio of the contribution ratio of the radiant energy is obtained from the change of the output of the radiation thermometer at that time,
The ratio of the contribution ratio is determined from the relationship between the difference and the ratio of the contribution ratio determined in advance, and the reflectance of the measurement object is determined from the ratio of the contribution ratios. At this time, it is assumed that the relationship between the difference between the contribution ratios and the ratio is established in advance in the offline measurement of actual use, but the surface properties are not necessarily the same because the online and offline environments are different. There is no guarantee that it will. Therefore, in such a conventional radiation thermometer, it is premised that the above-mentioned relationship is established, and if this relationship is not established, it cannot be applied.

【0006】本発明は上記のような不具合を解消するた
めになされたもので、その目的は鋼板の温度を鋼板の表
面性状の変化、すなわち鋼板の放射率、拡散反射状態に
左右されることなく高精度に測定できる鋼板の温度測定
方法及び装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and its object is to control the temperature of a steel sheet without being affected by changes in the surface properties of the steel sheet, ie, the emissivity of the steel sheet and the diffuse reflection state. It is an object of the present invention to provide a method and an apparatus for measuring the temperature of a steel plate that can be measured with high accuracy.

【0007】[0007]

【課題を解決するための手段】本発明は上記の目的を達
成するため、既知の放射率及び温度の放射熱源より被測
定鋼板の表面における複数の点を含む範囲に放射エネル
ギを放射し、その鋼板表面で反射される放射エネルギと
前記被測定鋼板からの放射エネルギを走査形放射温度計
によりその検出面を前記鋼板表面に対して所定角度走査
しながら当該表面の複数の点を測定し、この走査形放射
温度計により測定された放射エネルギと前記被測定鋼板
からの放射エネルギとの差から得られる反射エネルギ及
び前記放射熱源、走査形放射温度計及び測定対象の位置
関係から前記鋼板表面での放射エネルギの拡散反射状態
を求め、この拡散反射状態と前記放射熱源の放射率及び
温度から求められる前記放射熱源の放射エネルギとから
拡散反射の角度成分を含めた鋼板表面の反射率を求める
と共に、この反射率をもとに前記被測定鋼板の放射率を
求め、この放射率から前記被測定鋼板の温度を求めるも
のである。
In order to achieve the above object, the present invention radiates radiant energy from a radiant heat source having a known emissivity and temperature to a range including a plurality of points on the surface of a steel plate to be measured. The radiant energy reflected from the steel plate surface and the radiant energy from the steel plate to be measured are measured at a plurality of points on the surface while scanning the detection surface thereof at a predetermined angle with respect to the steel plate surface by a scanning radiation thermometer. The reflected energy obtained from the difference between the radiant energy measured by the scanning radiation thermometer and the radiant energy from the steel plate to be measured and the radiation heat source, the scanning radiation thermometer and the positional relationship of the measurement object on the steel sheet surface The diffuse reflection state of the radiant energy is obtained, and the angle component of the diffuse reflection is obtained from the diffuse reflection state and the radiant energy of the radiant heat source obtained from the emissivity and temperature of the radiant heat source. Together determine the reflectivity of the including steel sheet surface, determine the emissivity of the measured steel plate of this reflectance based, and requests the temperature of the measured steel plate from the emissivity.

【0008】また、被測定鋼板上方の予め設定された高
さ位置に設置され、且つ前記被測定鋼板の表面における
複数の点を含む範囲に放射エネルギを放射する既知の放
射率及び温度の放射熱源と、前記被測定鋼板上方の予め
設定された高さ位置に前記鋼板表面に対して検出面が所
定角度走査可能に設置され、且つ走査角度に応じた前記
被測定鋼板からの放射エネルギ及び鋼板表面で反射され
る前記放射熱源からの放射エネルギを、前記検査面の複
数の点について測定する走査形放射温度計と、この走査
形放射温度計で測定された出力信号が入力され、前記走
査形放射温度計により測定された放射エネルギと前記被
測定鋼板からの放射エネルギとの差から得られる反射エ
ネルギ及び前記放射熱源、走査形放射温度計、被測定鋼
板の位置関係から前記鋼板表面での放射エネルギの拡散
反射状態を求める第1の演算手段と、前記放射熱源の放
射率と温度とから求められる前記放射熱源の放射エネル
ギと前記第1の演算手段で求められた拡散反射状態とか
ら拡散反射の角度成分を含めた鋼板表面の反射率を求め
ると共に、この反射率をもとに前記被測定鋼板の放射率
を求め、この放射率から前記被測定鋼板の温度を求める
第2の演算手段とを備えたものである。
[0008] Further, it is installed at a predetermined height position above the steel plate to be measured, and is located on the surface of the steel plate to be measured .
A radiant heat source of a known emissivity and temperature that radiates radiant energy to a range including a plurality of points, and a detection surface can scan a predetermined angle with respect to the steel sheet surface at a preset height position above the steel sheet to be measured. The radiant energy from the steel plate to be measured and the radiant energy from the radiant heat source reflected on the steel plate surface according to the scanning angle are copied to the inspection surface.
A scanning radiation thermometer for measuring a number of points, an output signal measured by the scanning radiation thermometer is input, and the radiation energy measured by the scanning radiation thermometer and the radiation energy from the steel plate to be measured are input. A first calculating means for obtaining a diffuse reflection state of radiant energy on the surface of the steel sheet from the reflected energy obtained from the difference from the radiant heat source, the scanning radiation thermometer, and the positional relationship of the steel plate to be measured; and From the radiant energy of the radiant heat source obtained from the emissivity and the temperature and the diffuse reflection state obtained by the first calculating means, the reflectivity of the steel sheet surface including the angle component of the diffuse reflection is obtained. Second estimating means for obtaining the emissivity of the steel plate to be measured based on the above, and obtaining the temperature of the steel plate to be measured from the emissivity.

【0009】[0009]

【作用】このような鋼板の温度測定方法及び装置にあっ
ては、被測定鋼板の上方に設置された放射熱源からの放
射エネルギと被測定鋼板からの放射エネルギのパターン
を被測定鋼板の上方に設置された走査形放射温度計によ
りその検出面を所定角度走査しながら測定し、その測定
値と被測定鋼板からの放射エネルギとの差から得られる
反射エネルギ及び放射熱源、走査形放射温度計、被測定
鋼板の位置関係から鋼板表面での放射エネルギの拡散反
射状態を求め、さらにこの拡散反射の角度成分を含めた
鋼板表面の反射率を求めると共に、この反射率をもとに
被測定鋼板の放射率を求めているので、この放射率を用
いることにより被測定鋼板の表面温度を鋼板表面の放射
率の変化、拡散状態の変化に影響されずに精度良く測定
することが可能となる。
In such a method and apparatus for measuring the temperature of a steel sheet, the pattern of the radiant energy from the radiant heat source installed above the steel sheet to be measured and the pattern of the radiant energy from the steel sheet to be measured are measured above the steel sheet to be measured. The measurement is performed while scanning the detection surface at a predetermined angle by the installed scanning radiation thermometer, and the reflected energy and the radiation heat source obtained from the difference between the measured value and the radiation energy from the steel plate to be measured, the scanning radiation thermometer, The diffuse reflection state of the radiant energy on the steel sheet surface is determined from the positional relationship of the steel sheet to be measured, and the reflectance of the steel sheet surface including the angular component of the diffuse reflection is further determined. Since the emissivity is determined, it is possible to accurately measure the surface temperature of the steel sheet to be measured without being affected by changes in the emissivity of the steel sheet surface and changes in the diffusion state by using this emissivity. That.

【0010】[0010]

【実施例】以下本発明の一実施例を図面を参照して説明
する。
An embodiment of the present invention will be described below with reference to the drawings.

【0011】図1は本発明による鋼板の温度測定装置の
構成例を示すものである。図1において、1は測定対象
となる鋼板、2はこの鋼板1の上方の設定位置に設置さ
れた走査形放射温度計(1次元走査形放射検出器)、3
はこの走査形放射温度計2の走査面上で、且つ鋼板1の
上方の設定位置に設置された放射率が既知の放射熱源で
ある。また、4はこの放射熱源3の前方に設けられたシ
ャッタ装置、5は放射熱源3の温度を測定する温度測定
機能を有し、且つ放射熱源3を任意の一定の温度に保つ
温度制御装置である。
FIG. 1 shows an example of a configuration of a steel sheet temperature measuring apparatus according to the present invention. In FIG. 1, 1 is a steel plate to be measured, 2 is a scanning radiation thermometer (one-dimensional scanning radiation detector) installed at a set position above the steel plate 1, 3
Is a radiant heat source having a known emissivity installed on a scanning surface of the scanning radiation thermometer 2 and at a set position above the steel plate 1. Reference numeral 4 denotes a shutter device provided in front of the radiant heat source 3, and 5 denotes a temperature control device having a temperature measuring function for measuring the temperature of the radiant heat source 3 and keeping the radiant heat source 3 at an arbitrary constant temperature. is there.

【0012】一方、6は熱源放射率εが与えられると共
に、走査形放射温度計2からの走査出力波形(測定輝度
出力)E、放射熱源3の温度T及びシャッタ装置4のシ
ャッタ開閉信号Sがそれぞれ入力される演算装置で、こ
の演算装置6はこれら走査出力波形E、熱源の温度T、
放射率ε及び鋼板1、放射熱源3、走査形放射温度計2
の位置関係から鋼板表面での放射エネルギの拡散反射状
態、反射率、放射率及び温度を演算するものである。次
に上記のように構成された鋼板の温度測定装置の作用に
ついて述べる。
On the other hand, reference numeral 6 denotes a heat source emissivity ε, and a scan output waveform (measured luminance output) E from the scanning radiation thermometer 2, a temperature T of the radiation heat source 3, and a shutter opening / closing signal S of the shutter device 4 are provided. The arithmetic unit 6 receives the scan output waveform E, the heat source temperature T,
Emissivity ε and steel plate 1, radiant heat source 3, scanning radiation thermometer 2
, The diffuse reflection state, reflectance, emissivity, and temperature of the radiant energy on the surface of the steel sheet are calculated from the positional relationship. Next, the operation of the steel sheet temperature measuring device configured as described above will be described.

【0013】いま、放射熱源3より鋼板1上に放射エネ
ルギが放射され、また走査形放射温度計2が鋼板1の表
面に対して検出面が所定角度走査されているものとすれ
ば、この走査形放射温度計2によりそのときの鋼板1か
らの放射エネルギと、鋼板表面で反射される放射熱源3
からの放射エネルギの和のエネルギが測定され、その走
査出力波形が演算装置6に入力される。
Now, assuming that radiant energy is radiated from the radiant heat source 3 onto the steel plate 1 and that the detection surface of the scanning radiation thermometer 2 is scanned at a predetermined angle with respect to the surface of the steel plate 1, this scanning is performed. Radiant energy from the steel plate 1 at that time by the radiant thermometer 2 and a radiant heat source 3 reflected on the steel plate surface
The energy of the sum of the radiant energies from the above is measured, and the scan output waveform is input to the arithmetic unit 6.

【0014】この演算装置6では、この和のエネルギか
ら反射エネルギを得るため、放射熱源3の前方に設けら
れているシャッタ装置4を開、閉したときの測定値の差
を求める。この場合、放射熱源3からの放射エネルギ
は、走査形放射温度計2の走査角度(測定角度)によっ
て正反射方向および正反射方向から外れた反射(拡散反
射)エネルギが測定される。なお、反射エネルギが微小
となり、無視できる走査端での測定値は鋼板からの放射
光のみなので、測定値からこの放射エネルギを差引いて
も良い。
In order to obtain the reflected energy from the sum energy, the arithmetic unit 6 determines the difference between the measured values when the shutter device 4 provided in front of the radiant heat source 3 is opened and closed. In this case, as the radiant energy from the radiant heat source 3, the specular reflection direction and the reflection (diffuse reflection) energy deviating from the specular reflection direction are measured by the scanning angle (measurement angle) of the scanning radiation thermometer 2. Since the reflected energy becomes very small and the measured value at the scanning end that can be ignored is only the light emitted from the steel plate, this radiant energy may be subtracted from the measured value.

【0015】次に演算装置6では、この反射エネルギと
走査形放射温度計2の走査角度をもとに放射熱源3、走
査形放射温度計2、鋼板1の位置関係から、走査角度に
対応する反射エネルギの拡散角度を求め、この拡散角度
と反射エネルギより反射エネルギの拡散反射状態を次の
ようにして求める。
Next, in the arithmetic unit 6, based on the reflected energy and the scanning angle of the scanning radiation thermometer 2, the scanning angle is determined from the positional relationship among the radiation heat source 3, the scanning radiation thermometer 2, and the steel plate 1. The diffusion angle of the reflected energy is determined, and the diffuse reflection state of the reflected energy is determined from the diffusion angle and the reflected energy as follows.

【0016】即ち、拡散反射の性質に着目すると、鋼板
上を走査する走査形放射温度計2に入射する放射エネル
ギのうち、放射熱源3からの放射光の拡散反射成分は、
図2に示すように走査形放射温度計2の検出面を鋼板表
面に対して所定角度走査することによって拡散反射の角
度成分が得られる。この走査形放射温度計2の出力のう
ち、その最大値の位置は正反射成分が得られているの
で、その点から走査形温度計2を走査端方向へ走査して
行くことにより、拡散反射の角度成分を測定することが
できる。このように演算装置6で走査角度と放射エネル
ギの関係が求められると、次にこれらの関係と、走査形
放射温度計、熱源、鋼板の位置関係から図3に示すよう
な2次元的な拡散反射状態を求める。さらに、この2次
元的な拡散反射状態を正反射軸を中心に360°回転さ
せる、つまり周積分することにより3次元拡散反射状態
を求めることができる。
That is, focusing on the property of diffuse reflection, of the radiant energy incident on the scanning radiation thermometer 2 that scans the steel plate, the diffuse reflection component of the radiation emitted from the radiation heat source 3 is
As shown in FIG. 2, an angle component of diffuse reflection is obtained by scanning the detection surface of the scanning radiation thermometer 2 at a predetermined angle with respect to the steel plate surface. Since the specular component is obtained at the position of the maximum value of the output of the scanning radiation thermometer 2, the scanning thermometer 2 is scanned from the point toward the scanning end to obtain the diffuse reflection. Can be measured. When the relationship between the scanning angle and the radiant energy is obtained by the arithmetic unit 6 in this manner, the two-dimensional diffusion as shown in FIG. Find the reflection state. Furthermore, the three-dimensional diffuse reflection state can be obtained by rotating the two-dimensional diffuse reflection state by 360 ° about the specular reflection axis, that is, by integrating the circumference.

【0017】かくして演算装置6により走査形温度計2
の出力から3次元のあらゆる方向へ拡散する拡散反射成
分を包括して求めると、演算装置6では放射熱源3の放
射率εと温度Tとから放射熱源3からの放射エネルギを
求め、この放射熱源3の放射エネルギにより前述した拡
散反射状態の反射エネルギを除算することで鋼板1の反
射率を求める。そして、この鋼板1の反射率をもとに、
キルヒホッフの法則により {放射率}=1−{反射率}
The scanning thermometer 2 is thus operated by the arithmetic unit 6.
When the diffuse reflection components diffused in all three-dimensional directions are comprehensively determined from the output of the radiant heat source 3, the arithmetic unit 6 determines the radiant energy from the radiant heat source 3 from the emissivity ε of the radiant heat source 3 and the temperature T. The reflectance of the steel sheet 1 is obtained by dividing the above-mentioned reflection energy in the diffuse reflection state by the radiation energy of No. 3. Then, based on the reflectance of the steel sheet 1,
According to Kirchhoff's law, {emissivity} = 1− {reflectance}

【0018】を求め、この放射率及び放射熱源前方に設
置されたシャッタ装置4により放射熱源3の放射エネル
ギをしゃ断したときの鋼板1の放射エネルギとから鋼板
の温度を正確に求めることができる。
The temperature of the steel sheet can be accurately obtained from the emissivity and the radiation energy of the steel sheet 1 when the radiation energy of the radiation heat source 3 is cut off by the shutter device 4 installed in front of the radiation heat source.

【0019】このように本実施例では、既知の放射率及
び温度の放射熱源3から放射エネルギを鋼板に放射し、
この鋼板表面で反射する放射エネルギを鋼板からの放射
エネルギと共に走査形放射温度計2によりその検出面を
所定角度走査しながら測定し、その測定信号を演算装置
6に入力してあらゆる方向へ拡散する拡散反射成分を包
括して求めることにより、放射熱源3からの放射エネル
ギと鋼板表面で反射した放射エネルギから鋼板の反射率
を求めると共に、この反射率から放射率を求めるように
しているので、鋼板の放射率の変化及び拡散状態の変化
に影響されることなく、鋼板表面の温度を精度良く測定
することができる。特に溶融メッキ後加熱によって合金
化を行う合金化溶融亜鉛メッキラインの合金化温度管理
(合金化途中であり、表面の放射率及び拡散状態が大き
く変化するため、従来の測温法では正確な温度測定がで
きない)に有効であり、製品品質の向上に多大な効果を
得ることができる。ここで、本実施例による鋼板の温度
測定装置を用いてオフラインにてテストした結果につい
て述べる。
As described above, in the present embodiment, the radiant energy is radiated from the radiant heat source 3 having the known emissivity and temperature to the steel sheet,
The radiant energy reflected on the surface of the steel plate is measured together with the radiant energy from the steel plate by scanning the detection surface by a scanning radiation thermometer 2 at a predetermined angle, and the measurement signal is input to the arithmetic unit 6 and diffused in all directions. By comprehensively calculating the diffuse reflection component, the reflectivity of the steel sheet is obtained from the radiant energy from the radiant heat source 3 and the radiant energy reflected on the surface of the steel sheet, and the emissivity is obtained from the reflectivity. The temperature of the steel sheet surface can be accurately measured without being affected by the change in the emissivity and the change in the diffusion state. In particular, the alloying temperature control of an alloyed hot-dip galvanizing line in which alloying is performed by heating after hot-dip galvanizing (because the emissivity and diffusion state of the surface change significantly during alloying, accurate temperature measurement is not possible with the conventional temperature measurement method. Measurement cannot be performed), and a great effect can be obtained for improvement of product quality. Here, a result of an off-line test using the steel sheet temperature measuring device according to the present embodiment will be described.

【0020】図4に示すように熱源3として球状の熱源
を用い、これを鋼板1から200mm の位置に設置し、温度
を一定に制御すると共に温度を実測し、放射量の計算に
用いた。また、走査形温度計2は走査角50°のものを
使用し、鋼板1から600mm の位置に設置し、測定される
正反射成分が鋼板1に20°の角度で入射するようにし
た。さらに、鋼板1はヒータにて200 ℃〜300 ℃に加熱
した。一方、反射エネルギは、熱源を設置したときの測
定パターンから、熱源を取除いたときの測定パターンの
差を取り、反射エネルギとした。
As shown in FIG. 4, a spherical heat source was used as the heat source 3, which was installed at a position of 200 mm from the steel plate 1, the temperature was controlled to be constant, the temperature was actually measured, and used for calculating the radiation amount. The scanning thermometer 2 used had a scanning angle of 50 ° and was installed at a position of 600 mm from the steel plate 1 so that the measured regular reflection component was incident on the steel plate 1 at an angle of 20 °. Further, the steel sheet 1 was heated to 200 ° C to 300 ° C by a heater. On the other hand, the reflected energy was defined as the reflected energy by taking the difference between the measurement pattern when the heat source was installed and the measurement pattern when the heat source was removed.

【0021】このような条件下のもとで、鋼板1として
アルミニウム、CGL、ブリキの反射率測定値と真の反
射率とをそれぞれグラフにて表すと図5に示すような結
果が得られた。上記グラフは本実施例装置で測定した 反射光積分値/熱源からの放射光
Under these conditions, the measured values of the reflectance of aluminum, CGL and tinplate and the true reflectance of the steel sheet 1 are shown in a graph, and the results shown in FIG. 5 are obtained. . The above graph shows the integrated value of reflected light measured by the device of the present embodiment / radiated light from the heat source.

【0022】の値と真の反射率をアルミ(拡散反射性
弱)、CGL(拡散性強)、ブリキ(拡散性弱)につい
てアルミ時の値を1としてそれぞれ正規化(比を求め)
して比較したものである。正規化という作業によって等
しい値となるということは、反射率既知の校正板での校
正によって実測可能であると言える。
The values and the true reflectance of aluminum (diffuse reflectivity), CGL (strong diffusivity), and tinplate (weak diffusivity) are normalized to 1 at the time of aluminum (calculation of the ratio).
And compared. It can be said that the fact that the values become equal by the operation of normalization can be actually measured by calibration using a calibration plate with a known reflectance.

【0023】[0023]

【発明の効果】以上述べたように本発明によれば、拡散
反射の角度成分を含めた鋼板の反射率を求め、この反射
率から放射率を求めるようにしているで、鋼板表面の放
射率の変化や拡散状態の変化に左右されずに鋼板の温度
を高精度に測定できる鋼板の温度測定方法及び装置を提
供することができる。
As described above, according to the present invention, the reflectivity of the steel sheet including the angle component of the diffuse reflection is obtained, and the emissivity is obtained from the reflectivity. It is possible to provide a method and an apparatus for measuring the temperature of a steel sheet which can measure the temperature of the steel sheet with high accuracy without being influenced by the change of the temperature and the change of the diffusion state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による鋼板の温度測定装置の一実施例を
示す構成説明図
FIG. 1 is a structural explanatory view showing one embodiment of a steel sheet temperature measuring apparatus according to the present invention.

【図2】同実施例において、走査形放射温度計の走査に
よる拡散反射の角度成分の測定法の説明図。
FIG. 2 is an explanatory diagram of a method for measuring an angle component of diffuse reflection by scanning with a scanning radiation thermometer in the embodiment.

【図3】同実施例において、鋼板表面での拡散反射の状
態を説明するための概念図。
FIG. 3 is a conceptual diagram for explaining a state of diffuse reflection on a steel sheet surface in the embodiment.

【図4】本発明をテスト装置を用いてテストしたときの
概要を示す図。
FIG. 4 is a diagram showing an outline when the present invention is tested using a test apparatus.

【図5】同テスト装置によるテスト結果をグラフとして
示す図。
FIG. 5 is a diagram showing a test result by the test apparatus as a graph.

【符号の説明】[Explanation of symbols]

1……鋼板、2……走査形放射温度計、3……放射熱
源、4……シャッタ装置、5……熱源温度制御装置、6
……演算装置。
DESCRIPTION OF SYMBOLS 1 ... Steel plate, 2 ... Scanning radiation thermometer, 3 ... Radiant heat source, 4 ... Shutter device, 5 ... Heat source temperature control device, 6
…… A computing device.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01J 5/00 - 5/62 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01J 5/00-5/62

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 既知の放射率及び温度の放射熱源より被
測定鋼板の表面における複数の点を含む範囲に放射エネ
ルギを放射し、その鋼板表面で反射される放射エネルギ
と前記被測定鋼板からの放射エネルギを走査形放射温度
計によりその検出面を前記鋼板表面に対して所定角度走
査しながら当該検査面の複数の点を測定し、この走査形
放射温度計により測定された放射エネルギと前記被測定
鋼板からの放射エネルギとの差から得られる反射エネル
ギ及び前記放射熱源、走査形放射温度計及び測定対象の
位置関係から前記鋼板表面での放射エネルギの拡散反射
状態を求め、この拡散反射状態と前記放射熱源の放射率
及び温度から求められる前記放射熱源の放射エネルギと
から拡散反射の角度成分を含めた鋼板表面の反射率を求
めると共に、この反射率をもとに前記被測定鋼板の放射
率を求め、この放射率から前記被測定鋼板の温度を求め
るようにしたことを特徴とする鋼板の温度測定方法。
1. A radiant heat source having a known emissivity and temperature emits radiant energy to a range including a plurality of points on the surface of a steel sheet to be measured, and the radiant energy reflected on the steel sheet surface and the radiant energy from the steel sheet to be measured. The radiant energy is measured at a plurality of points on the inspection surface by scanning the detection surface with a scanning radiation thermometer at a predetermined angle with respect to the steel plate surface, and the radiant energy measured by the scanning radiation thermometer and the radiation intensity are measured. Determine the diffuse reflection state of the radiant energy on the steel sheet surface from the reflected energy and the radiant heat source obtained from the difference with the radiant energy from the measurement steel sheet, and the positional relationship of the scanning radiation thermometer and the measurement target. From the emissivity of the radiant heat source and the radiant energy of the radiant heat source obtained from the temperature, the reflectivity of the steel sheet surface including the angle component of diffuse reflection is obtained. A method for measuring the temperature of a steel sheet, wherein the emissivity of the steel sheet to be measured is obtained based on the emissivity, and the temperature of the steel sheet to be measured is obtained from the emissivity.
【請求項2】 放射熱源より被測定鋼板の表面における
複数の点を含む範囲に放射エネルギを放射する第1のス
テップと、 前記被測定鋼板の表面における複数の点を、走査形放射
温度計により走査しながら測定する第2のステップと、 前記第2のステップにおける測定結果と、前記走査形放
射温度計の各走査角度と、前記放射熱源,前記走査形放
射温度計及び前記被測定鋼板の位置関係とに基づいて、
前記鋼板表面での拡散反射状態を求める第3のステップ
と、 前記放射熱源からの放射エネルギ及び前記拡散反射状態
に基づいて、拡散反射を含めた鋼板表面の反射率に対応
した前記被測定鋼板の反射率を求める第4のステップ
と、 前記被測定鋼板の反射率に基づいて前記被測定鋼板の温
度を求める第5のステップとを備えたことを特徴とする
鋼板の温度測定方法。
2. A first step of radiating radiant energy from a radiant heat source to a range including a plurality of points on a surface of the steel plate to be measured, and a plurality of points on the surface of the steel plate to be measured are scanned by a scanning radiation thermometer. A second step of measuring while scanning; a measurement result in the second step; each scanning angle of the scanning radiation thermometer; and positions of the radiation heat source, the scanning radiation thermometer, and the steel plate to be measured. Based on the relationship
A third step of obtaining a diffuse reflection state on the steel sheet surface; and, based on radiant energy from the radiant heat source and the diffuse reflection state, the measured steel sheet corresponding to the reflectance of the steel sheet surface including diffuse reflection. A method for measuring the temperature of a steel sheet, comprising: a fourth step of determining a reflectance; and a fifth step of determining a temperature of the measured steel sheet based on the reflectance of the measured steel sheet.
【請求項3】 前記走査形放射温度計による測定は、前
記放射熱源の前方に設けられたシャッタ装置を開閉した
ときにそれぞれ行われることを特徴とする請求項1又は
請求項2記載の鋼板の温度測定方法。
3. The steel plate according to claim 1, wherein the measurement by the scanning radiation thermometer is performed when a shutter device provided in front of the radiation heat source is opened and closed. Temperature measurement method.
【請求項4】 被測定鋼板上方の予め設定された高さ位
置に設置され、且つ前記被測定鋼板の表面における複数
の点を含む範囲に放射エネルギを放射する既知の放射率
及び温度の放射熱源と、前記被測定鋼板上方の予め設定
された高さ位置に前記鋼板表面に対して検出面が所定角
度走査可能に設置され、且つ走査角度に応じた前記被測
定鋼板からの放射エネルギ及び鋼板表面で反射される前
記放射熱源からの放射エネルギを、前記走査面の複数の
点について測定する走査形放射温度計と、この走査形放
射温度計で測定された出力信号が入力され、前記走査形
放射温度計により測定された放射エネルギと前記被測定
鋼板からの放射エネルギとの差から得られる反射エネル
ギ及び前記放射熱源、走査形放射温度計、被測定鋼板の
位置関係から前記鋼板表面での放射エネルギの拡散反射
状態を求める第1の演算手段と、前記放射熱源の放射率
と温度とから求められる前記放射熱源の放射エネルギと
前記第1の演算手段で求められた拡散反射状態とから拡
散反射の角度成分を含めた鋼板表面の反射率を求めると
共に、この反射率をもとに前記被測定鋼板の放射率を求
め、この放射率から前記被測定鋼板の温度を求める第2
の演算手段とを備えたことを特徴とする鋼板の温度測定
装置。
4. A radiant heat source having a known emissivity and temperature installed at a predetermined height position above a steel plate to be measured and radiating radiant energy to a range including a plurality of points on the surface of the steel plate to be measured. A detection surface is installed at a predetermined height position above the steel plate to be measured so as to scan the steel plate surface at a predetermined angle, and radiant energy from the steel plate to be measured and a steel plate surface according to a scanning angle. A scanning radiation thermometer for measuring radiant energy from the radiation heat source reflected at a plurality of points on the scanning surface, and an output signal measured by the scanning radiation thermometer; The reflected energy obtained from the difference between the radiant energy measured by the thermometer and the radiant energy from the steel plate to be measured and the radiant heat source, the scanning radiation thermometer, the positional relationship between the steel plate to be measured and the steel First calculating means for obtaining a diffuse reflection state of radiant energy on the plate surface; radiant energy of the radiant heat source obtained from the emissivity and temperature of the radiant heat source; and diffuse reflection obtained by the first calculating means. From the state and the reflectance of the steel sheet surface including the angle component of the diffuse reflection is determined, the emissivity of the measured steel sheet is determined based on the reflectance, and the temperature of the measured steel sheet is determined from the emissivity. 2
A temperature measuring device for a steel sheet, comprising:
【請求項5】 被測定鋼板の表面における複数の点を含
む範囲に放射エネルギを放射する放射熱源と、 前記被測定鋼板の表面における複数の点を、走査しなが
ら測定する走査形放射温度計と、 前記走査形放射温度計の測定結果と、前記走査形放射温
度計の各走査角度と、前記放射熱源、前記走査形放射温
度計及び前記被測定鋼板の位置関係と、前記放射熱源か
らの放射エネルギとに基づいて、拡散反射を含めた鋼板
表面の反射率が考慮された前記被測定鋼板の温度を算出
する演算手段とを備えたことを特徴とする鋼板の温度測
定装置。
5. A radiant heat source that radiates radiant energy to a range including a plurality of points on a surface of a steel sheet to be measured, a scanning radiation thermometer that measures while scanning a plurality of points on the surface of the steel sheet to be measured. The measurement results of the scanning radiation thermometer, the respective scanning angles of the scanning radiation thermometer, the positional relationship between the radiation heat source, the scanning radiation thermometer and the steel plate to be measured, and the radiation from the radiation heat source Calculating means for calculating the temperature of the steel sheet to be measured in consideration of the reflectance of the steel sheet surface including the diffuse reflection based on the energy, and a calculating means for calculating the temperature of the steel sheet.
JP22838192A 1992-08-27 1992-08-27 Method and apparatus for measuring temperature of steel sheet Expired - Fee Related JP3291781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22838192A JP3291781B2 (en) 1992-08-27 1992-08-27 Method and apparatus for measuring temperature of steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22838192A JP3291781B2 (en) 1992-08-27 1992-08-27 Method and apparatus for measuring temperature of steel sheet

Publications (2)

Publication Number Publication Date
JPH0674831A JPH0674831A (en) 1994-03-18
JP3291781B2 true JP3291781B2 (en) 2002-06-10

Family

ID=16875579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22838192A Expired - Fee Related JP3291781B2 (en) 1992-08-27 1992-08-27 Method and apparatus for measuring temperature of steel sheet

Country Status (1)

Country Link
JP (1) JP3291781B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100584130B1 (en) * 1999-12-28 2006-05-30 주식회사 포스코 Emissivity measuer of moving hot steel
EP4212837A4 (en) * 2020-10-27 2024-03-27 Jfe Steel Corp Surface temperature measurement method, surface temperature measurement device, method for manufacturing hot-dip galvanized steel sheet, and facility for manufacturing hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JPH0674831A (en) 1994-03-18

Similar Documents

Publication Publication Date Title
US4172383A (en) Method and an apparatus for simultaneous measurement of both temperature and emissivity of a heated material
JP2020034430A (en) Temperature measurement method, and temperature measurement device
JPH1082620A (en) Method and apparatus for photothermal inspection of surface of workpiece
JP3291781B2 (en) Method and apparatus for measuring temperature of steel sheet
Dunn et al. Ellipsoidal mirror reflectometer
JPH0663848B2 (en) How to measure the surface temperature of an object
US7075085B2 (en) Method of measuring thickness of thin film using infrared thermal imaging system
US4553854A (en) Method for continuously measuring surface temperature of heated steel strip
JP3259815B2 (en) Method and apparatus for measuring emissivity and temperature of an object, and rod-shaped radiation source
JP2556556B2 (en) Method of measuring roughness of metal surface
JP3296171B2 (en) Method and apparatus for measuring temperature of object
JP2013092502A (en) Temperature measuring apparatus and emissivity measuring device
OGASAWARA et al. Image Processing for Reduction of Background Reflection from Thermal Image
JP3324426B2 (en) Method and apparatus for measuring temperature of object
JP3296224B2 (en) Object emissivity measurement method and temperature measurement device
JPH01245125A (en) Method and device for measuring simultaneously emissivity and temperature
JPH08122155A (en) Radiation temperature measurement method for temperature object surface
JPH05209792A (en) Method and device for simultaneous measurement of emissivity and surface temperature
JPH0548405B2 (en)
JP2873943B2 (en) Hemispherical mirror specific heat capacity measurement method
JPS6014193Y2 (en) Simultaneous measurement device for metal surface temperature and emissivity
JPS6049852B2 (en) How to measure object surface temperature
JPS6219947Y2 (en)
JP2004301604A (en) Radiation temperature measuring apparatus and optical measuring apparatus
JP3296223B2 (en) Method and apparatus for measuring temperature of object

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees